番茄防病内生细菌ZB-6的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2002-2004年,对番茄根、茎、叶等组织可培养内生细菌进行分离培养,获得了大量的内生细菌菌株。通过拮抗作用测定,从分离自番茄叶片的菌株中,筛选出对主要作物病原微生物具有较强拮抗作用的番茄内生细菌菌株ZB-6。在种类鉴定的基础上,对ZB-6在番茄体内的内生定殖能力、培养过滤液的抑菌活性与机制,进行了较为系统地研究,同时,评估了该菌株对番茄青枯病的生防作用。通过三年的实验,取得以下实验结果:
     1、番茄组织中存在大量的内生细菌。采用平板分离法,对番茄植株内生细菌进行分离培养,结果表明,番茄根、茎、叶等组织中存在大量的可培养内生细菌,各组织内生细菌数量约为:1.78×10~3~2.75×10~4CFU/克(FW),根中内生细菌含量最多,叶中次之,茎中最少。
     2、部分番茄内生细菌对病原菌具较为明显的拮抗活性。对分离所得的93个可培养内生细菌株进行拮抗作用测定,38个菌株对待测病原真菌表现出拮抗活性,12个菌株对番茄青枯雷尔氏菌(Ralstonia solanacearum)具有拮抗作用,拮抗菌频率为40.86%,其中从番茄叶片中分离获得的菌株ZB-6,对待测病原真菌与细菌的拮抗作用最强。
     3、经形态学和生理生化特征测定,确定菌株ZB-6为枯草芽孢杆菌(Bacillus subtilis)。
     4、菌株ZB-6可在番茄体内成功定殖并迅速传导。对ZB-6进行利福平(500μg/ml)抗性标记,采用灌根和叶片喷雾接种,测定ZB-6在番茄体内的定殖与传导,结果表明,标记菌株可进入番茄体内并成功增殖,35d后在番茄植株内各器官均可分离到大量的标记菌株;标记菌株能在番
    
    茄植株内自由转移,其转移速率因接种部位不同而略有差异。
     5、菌株ZB一6培养滤液具有较强的抑菌活性,可引起病原物发育异
    常,甚至死亡。对菌株zB一6培养滤液的抑菌活性进行测定,结果表明,
    培养滤液对多种病原菌有较强的抑制作用,根据测试病原菌的不同,培
    养滤液的拮抗能力呈现较大差别。该培养滤液可使番茄早疫病菌(茄链
    格抱,Alternarl’asoZanl’)分生抱子萌发异常,芽管畸形膨大,呈泡囊状,
    24h后,泡囊消融、破裂,分生抱子萌发受到完全抑制。
     6、菌株ZB一6对番茄青枯病具有良好的控制效果。盆栽试验表明,
    菌株ZB一6对番茄青枯病具有良好的防效,7d时防效达63.7%,27d时平
    均防效仍高达58.0%。田间防效略低。据认为,菌株ZB一6以拮抗和竞争
    二种方式协同作用,来控制番茄青枯病的危害,其接种时间对病害防治
    效果影响显著。
A number of endophytic culturable bacterial strains were obtained from roots, stems and leaves of tomato plants by plate culture during 2002-2004. Among all culturable endophytic bacterial strains, ZB-6, a strain from tomato leaf, showed the strongest inhibitory activity to plant fungal pathogens. Main attention was paid to taxonomy of ZB-6, colonization and movement of strain ZB-6 in tomato plants. Inhibition of the filtrate from ZB-6 was evaluated systematically. Meanwhile, control effects of ZB-6 on tomato bacterial wilt (Ralstonia solanacearum) were assessed. The main results are as follows:
    1. There are a large number of endophytic bacteria in tomato plants. With the surface sterilized with 0.1% mercuric chloride, culturable endophytic bacteria were counted by plate culture. The results showed that culturable endophytic bacteria in tomato plants ranged from 1.78?03 to 2.75?04 CFU (colony formation unit) per gram (FW) . There are more culturable endophytic bacteria in roots than in stems and leaves.
    2. The endophytic bacteria from tomato plants were with strong inhibition to fungal phytopathogens. Among the total of 93 endophytic bacteria isolates tested, 38, or 40.86%, had in vitro inhibitory activity to fungal phytopathogens, such as Colletotrichum dematium and Alternaria solani,etc. and 12 isolates had in vitro inhibitory activity to Ralstonia solanacearum. The strain ZB-6, isolated from tomato leaf, was with the strongest inhibitory activity.
    3. The strain ZB-6 was identified as Bacillus subtilis, based on the taxonomic results including cell shape, Gram's stain, sporulation, production of catalase and oxidase ect.
    3
    
    
    4. The strain ZB-6 was able to colonize successfully and move frequently between different parts in tomato plants. ZB-6Rif500, the mutant strain of ZB-6, was resistant to rifampicin. After inoculated with ZB-6Rif500 by spraying leaves and watering roots, a number of ZB0 were found in all parts of tomato plants at 35d after inoculation. The results implied that ZB-6 was able to colonize successfully in tomato and move frequently between different parts of plants.
    5. Filtrate from ZB-6 cultivation in medium gave strong inhibition to the fungal phytopathogens tested. However, there was obvious difference in inhibitory activity to various fungal phytopathogens. The deformation and disintegration of the spore germinal tube from Alternaria solani were observed 24h after treatment with the filtrate.
    6. The strain ZB-6 showed effective control to tomato bacterial wilt (Ralstonia solanacearum) in both outdoor pots and field. The control effects of ZB-6 on tomato bacterial wilt were 63.7% at 7d and 58.0% at 27d, respectively in outdoor experiments. Preventive inoculation of strain ZB-6 improved greatly its control effect to tomato bacterial wilt.
引文
1.孔庆科,丁爱云.内生细菌作为生防因子的研究进展.山东农业大学学报(自然科学版)2001,32(2):256-260.
    2.谢栋,胡剑.枯草芽孢杆菌抗菌蛋白X980的纯化与性质.微生物学报1998,38(1):13-19
    3. Gabr MR, Hussein NA.Susceptibility of certain varieties and genotypes and control of wilt and root rot diseases of sesame attributed to Fusarium oxysporum f.sp. sesami and Maerophomina phaseolina. Egyptian-Journal-of-Microbiology. 1998, 33(3): 403-428
    4. Kumar BSD.Fusarial wilt suppression and crop improvement through two rhizobacterial strains in chickpea growing in soils infested with Fusarium oxysporum f.sp. ciceris. Biology-and-Fertility-of-Soils. 1999, 29(1): 87-91
    5. Galler M,Wittmann J.Induced tolerance and induced resistance against biotrophic pathogens and cereal aphids in wheat. Integrated control in cereal crops. Meeting held at Lleida, Spain, 13-14 March, 1997. Bulletin-OILB-SROP 1998, 21 (8): 193-199
    6. Murphy JF,Zehnder GW.Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus.Plant-Disease 2000, 84(7): 779-784
    7. Office of pesticide program:biopestieide [R].2001. in http://www.epa.gov/pesticides/biopesticides
    8. Baker K F.Evolving concepts of biological control of plant pathogens[J]. Ann. Rev. Phytopathol 1987,25:67-85
    9. Asaka O.Shoda M. Biocontrol of plant Diseases[C]. Bejing:China Agricultural University Press, 1996.
    10.王金生,张宏声.枯草杆菌B1菌株对大白菜软腐病的生防作用.南京农业大学学报1989,12(4):59-62
    11.陈庆河,翁启勇.筛选利用生防菌防治大白菜软腐病研究.福建农业学报1999,14(1):15-18
    12.何红,蔡学清.内生菌BS-2菌株的抗菌蛋白及其防病作用.植物病理学报.2003,33(4):373-378
    13.何红,蔡学清.辣椒内生枯草芽孢杆菌BS—2和BS—1防治香蕉炭疽病.福建农林大学学报:自然科学版2002,31(4):442-444
    14.何红,蔡学清.辣椒内生细菌的分离及拮抗菌的筛选.中国生物防治2002,18(4):171-175
    15. Gupta VP,Boehow H.Plant growth-promoting Bacillus subtilis strain as potential inducer of systemic resistance in tomato against Fusarium wilt. Zeitschrift-fur- Pflanzenkrankheiten- und-Pflanzenschutz 2000, 107(2): 145-154
    16.范青,田世平.枯草芽孢杆菌(Bacillus subtilis)B—912对采后对采后柑桔果实青、绿霉病的抑制效果.植物病理学报2000,30(4):343-348
    17.陈志谊,高太东.枯草芽孢杆菌B—916防治水稻纹枯病的田间试验.中国生物防治1997,13(2):75-78
    18.王春霞,王道本.棉花根际促生菌筛选菌株的分类鉴定.华中农业大学学报1997,16(1):29-32
    19.王雅平,刘伊强.枯草芽孢杆菌A014菌株防治小麦赤霉病的初步研究.生物防治通报1992,8(2):54-57
    20.辛玉成,秦淑莲.苹果霉心病生防菌株抗菌蛋白的提纯与部分初报.莱阳农学院学报.1999,16(1).35-38
    21.陈中义,张杰.植物病害生防芽袍杆菌抗菌机制与遗传改良研究.植物病理学报2003,33(2):97-103
    22. Sturz A V, Christie B R and Nowak J. Baterial endophytes: Potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences 2000,19(1):1-30
    23. Marl M, Guizzardi M and Pratella G C. Biological control of gray mold in pears by antagonistic bacteria. Biological Control 1996,(7):30-37.
    24.陈志谊,许志刚.水稻纹枯病拮抗细菌的评价与利用.中国水稻科学2000,14(2):98-102
    25.呈福,李德葆.枯草芽孢杆菌(Bacillus subfilis)S9对植物病原真菌的溶菌作用.植物病理学报
    
    2003,33(2): 174-177
    26. Conrad B,Stein T.Antibiotic strategies of Bacillus subtilis A1/3[C]. New aspects of resistance research on cultivated plants: bacterial diseases. Proceedings of an international symposium, 18-19 November 1998, Aschersleben, Germany.
    27.童有仁,马志超.枯草芽孢杆菌B034拮抗蛋白的分离纯化及特性分析.微生物学报1999,39(4):339-343
    28.谌晓曦,陈卫良抗水稻纹枯病菌拮抗蛋白质的理化性质研究.浙江大学学报:农业与生命科学版1999,25(5):491-494
    29.刘颖,徐庆,陈章良.抗真菌肽LP-1的分离纯化及特性分析.微生物学报1999,39(5):441-447。
    30. Chester K. The problem of acquired physiological immunity in plants. Quart. Rev. Biol 1933,8:129-151
    31. Ross A F. Systemic acquired resistance by localized virus infection in plants. Virology. 1961,14:340-358
    32. Hurbert J J, Helton A W. A translocated resistance phenomenon in Prunus domestica induced by initial with Cytospora cineta. Phytopatho11967, 57: 1094-1098.
    33. Tuzun S and Kleopper J W. Induced systemic resistance by plant growth promoting rhizobacteria. In: Improving Plant Productivity with Rhizosphere Bacteria. Proc. Of 3rd. Int. Wok. PDPR. Ryder M.H.,Stephens P. M.,and Bowen G. D.,Eds. CSIRO Div.Soils,Adelaide,Australia,pp. 104-109. 1991.
    34. Hammerschmidt R, Kuc J. Induced resistance to disease in plants. Kluwer Academic Publishers, DordreehtL, The Netherlands. 1995,182,.
    35. Van Loon L C, Bakker P A H M, Pieterse C M J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol 1998, 36:453-483.
    36. Ramamoorthy V, Viswanathan R, Raguchander T, et al. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pest and diseases. Crop Protection 2001,20:1-11.
    37. Cameron R K, Dixon R, Lamb C. Biologically induced systemic acquired resistance in Arabidopsis thaliana. Plant J. 1994,5:715-725.
    38. Van Loon L C. Induced resistance in plants and the role of pathogensis related proteins. Eur. J. Plant Pathol. 1997,103:753-765.
    39. Podile AR,Laxml VDV.Seed bacterization with Bacillus subtilis AF 1 increases phenylalanine ammonia-lyase and reduces the incidence of fusarial wilt in pigeonpea. Journal of Phytopathology 1998, 146:(5-6):255-259
    40. Wittmann J,Schonbeck F.Studies of tolerance induction in wheat infested with powdery mildew or aphids. Zur Toleranzinduktion an Weizen nach Mehltau bzw. Blattlausbefall. Zeitschrift-fur-Pflanzenkrankheiten-und-Pflanzenschutz. 1996, 103(3): 300-309
    41. Kilian M ,Steiner U.FZB24(R) Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality.Pflanzenschutz-Naehrichten-Bayer. 2000, 53(1): 72-93
    42. Bochow H,Dolej S.Mechanisms of tolerance induction in plants by root eolonising Bacillus subtilis isolates.Modern fungicides and antifungal compounds Ⅱ. 12th International Reinhardsbrunn Symposium, Friedriehroda, Thuringia, Germany, 24th-29th May 1998. 1999, 411-416
    43.程爱丽,唐文华.枯草芽孢杆菌B—908几丁质酶基因的转及表达.植物病理学报1996,26(3):204-204
    44.王雅平,刘伊强.利用原生质体融合技术选育防治植物病虫害的基因重组菌株.遗传学报1993,20(6):524-530
    45.陈中义,陈志谊.杀虫防病基因工程枯草芽孢杆菌的构建.生物工程学报1999,15(2).215-220
    46. Azevedo J L, Walter M J, Jose Odair P, et al. Endophytie microorganisms: a review on insect control and recent advances on tropical plants. EJB Electronic J. Biotechnol 2000,3(I):40-65
    47.刘云霞.植物内生细菌的研究与应用.植物保护1994,20(5):30-32.
    
    
    48. Barraquio W L, Revilla L and Ladha J K. Isolation of endophytic bacteria diazotrophic bacteria from wetland rice. Plant Soil. 1997,194:15-24.
    49. EIvira Reeuenco M and van Vuurde J W L. Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can. J. Microbiol. 2000,46:1036-1041.
    50. McInroy J A and Kleopper J W. Studies on indigenous endophytic bacteria of sweet corn and cotton . In: Molecular Ecology of Rhizosphere Microorganisms. Biotechnology and the Release of GMOs. O'Gara F. Dowling D N. and Boesten B. Eds. VCH,Verlagesellshaft MBH,Germany,pp. 19-28.1994.
    51. Hollis J P. Bacteria in the healthy potato tissue. Phytopathol. 1951, 41: 197-209.
    52. Misaghi I J and Donndelinger C R. Endophytic bacteria in symptom-free cotton plants. Phytopathol. 1990,80:808-811.
    53. Chen C, Bauske EM, Musson G, et al. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol. Control 1995,5:83-91.
    54.吴蔼民,顾本康,傅正擎等.内生菌73a在不同抗性品种棉花体内的定殖和消长动态研究.植物病理学报2001,31(4):289-294.
    55.刘云霞,张青文,周明(爿羊).电镜免疫胶体金定位水稻内生细菌的研究.农业生物技术学报1996,4(4):354-358.
    56. Quadt Hallman A, Benhamou N and Kloepper J W. Immunological detection and localization of cotton endophyte Enterobacter asburiae JM22 in different plant species, Can. J. Microbiol. 1996,42:1144-1154.
    57. Adel Elbetagy, Klyo Nishioka, Tadashi Sato, et al. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. Isolated from wild rice species. Appl. Environ. Microbiol 2001,67(11):5285-5293.
    58.冯永君,宋未.水稻内生优势成团泛菌GFP标记菌株的性质与标记丢失动力学.中国生物化学与分子生物学报2002,18(1):85-91.
    59. Fisher P J, Petrini O and Lappin Scott H M. The distribution of some fungal and bacterial endophytes in maize(Zea mays L.). New Phytol 1992,122:299-305.
    60. De Boer S H and Copeman R J. endophytic bacterial flora in Solanum tuberosam and its significance in bacterial ring rot diagnosis. Can. J. Plant Sci 1974,54:115-122.
    61.杨海莲,孙晓璃,宋未.植物根际促生细菌和内生细菌的诱导抗病性的研究进展.植物病理学报2000,30(2):106-110.
    62. Meneley J C and Stanghellini M E. Establishment of an inactive population of Erwinia carotovora in heathy cucumber fruit. Phytopathol 1975,65:670-673.
    63. Sharma V K and Nowak J. Enhancement ofverticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings wilt a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Can.J.Microbiol 1998,44:528-536.
    64. Kempe J and Sequlera L. Biological control of bacterial wilt of potatoes: demonstration of pyocyanin and fluorescein. Plant Disease. 1983,67:499-503.
    65. Nowak J, Asiedu S K, Bensalim S, et al. From laboratory to applications :Challenges and progress with in vitro dual cultures of potato and beneficial bacteria. Plant Cell Tissue Organ. Cult 1998, 52:97-103.
    66. Hinton D M, Bacon C. W. Enterobacter cloacae is an endophytie symbiont of com. Mycopathologia 1995,129(2): 117-125.
    67. Lima G, Ippolito A, Nigro F, Salermo M. Attempts in the biological control of citrus mal secco (Phoma tracheiphila) using endophytie bacteria. Difesa delle Piante 1994,17(1-2):43-49.
    68.黎起秦,罗宽.番茄青枯病内生拮抗细菌的筛选.植物病理学报2003,33(4).364-367
    69. Zehnder G W, Murphy J F, Sikora E J, et al. Application of rhzobacteria for induced resistance. Eur. J.. Plant Pathol 2001,107:39-50.
    70. Benhamou N, Belanger R R, Paulitz T C. Induction of differential host responses by
    
    Pseudomonas Fluorescens in Ri T-DNA transformed pea roots after challenge with Fusarium oxysporum f.sp. pisi and Pythium ultimum. Phytopatthol. 1996a, 86:114-128.
    71. Benhamou N, Kloepper J W, Quadt Hallmann A, et al. Induction of defense-related ultrastrutural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 1996b, 112(3):919-929.
    72. M'piga P, Belanger R R, Paulitz T C, et al. Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomoto plants treated with the endophytie bacterium Pseudomonas fluorescens stain 63-28. Physiol.Mol. Plant Pathol. 1997,50:301-320.
    73. Boddey R M, de Oliveira O C, Urquiaga S,et al. Biological nitrogen fixation associated with sugarcane and rice :contributions and prospects for improment. Plant Soil. 1995,174:195-209.
    74. Ladha J K, de Bruijn F J and Malik K A. Introduction: assessing opportunities for nitrogen fixation in rice—a frontier project. Plant Soil. 1997, 194:1-10.
    75. Yanni Y G, Rizk R Y, Corich V, et al. Natural endophytic association between Rhizobium leguminosarum bv. Trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil. 1997,194:99-114.
    76. Webster G, gough C, Vasse J, et al. Interactions of rhizobia with rice and wheat. Plant Soil. 1997,194:115-122.
    77. de Bruijn F J, Jing Y and Dazzo F B. Potential pitfalls of trying to extend symbiotic interactions of nitrogen-fixing organisms to presently non-nodulated plants,such as rice. Plant Soil 1995,174:225-240.
    78. Kennedy I R, Pereg Gerk L L, Wood C, et al. Biological nitrogen fixation in non-leguminous field crops: facilitating the evolution of an effective association between Azospirtllum and wheat. Plant Soil. 1997. 194:65-79.
    79. Stoltzfus J R, So R, Malarvithi P P, et al. Isolation of endophytie bacteria from rice and assessment of their potential for supplying rice with bioltgically fixed nitrogen. Plant Soil. 1997,194:25-36.
    80. Swensen S M and Mullin B C. The impact of molecular systematies on the hypothesis for the evolution of root nodule symbioses and implications for expanding symbioses to new host plant genera. Plant Soil 1997, 194:185-192.
    81. Dixon R, Cheng Q, Shen G F, et al. Nif gene transfer and expression in chloroplasts: Prospects and problems. Plant Soil. 1997,194:193-203.
    82. Gough C,Vasse J, Galera C, et al. Interactions between bacterial diazotrophs and non-legume dicots: Arabidopsis thaliana as a model plant. Plant Soil. 1997,194:123-130.
    83. Lampel J S. Integrative cloning, Expression, and Stability of the CryIA(c) Genne from Btk in a Recombinant Strain of Clavibacter xyli subsp, cynodontis. Appl. Environ. Microbiol., 1994,60(2):501-508.
    84. MahaffeeW F, Kloepper J W, et al. In Improving Plant Productivity with Rhizosphere Bacteria. Ryder,M,H., Stephenes,P.M., Bowen, G.D., (eds). CSIRO, Australia, 1994:180
    85. Downing K J, Thomson J A. Introduction of the Serratia marcescens chiA gene into an entophytic Pseudoraonas fluorescens for the biocontrol of phytopathgenie fungi. Can. J. Microbiol 2000,46(4):363-369.
    86. Tomasino S F, Leister R T, Dimock M B, et al. Field performance of Clavibacter xyli subsp. Cynodontis expressing the insecticidal protein gene crylA (c) of Bacillus thuringiensis against European corn borer in field corn. Biological Control 1995,5:442-448.
    87. Wilhelm E, Arthofer W and Sehafleitner R. Bacillus subtilis, an endophyte of chestnut (Castanea saliva), as antagonist against chestnut blight (Cryphonectria parasitica), In A. C. Cassells (ed.), Pathogen and microbial contamination management in micropropagation. Kluwer Academic Publishers, Dortrecht, The Netherlands. 1997:331-337
    88. Vargas C, Lopes A and Hemerly A. Variability and interactions between endophytie bacteria and
    
    fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 2001,47(3): 229-236.
    89.林东,徐庆.枯草芽孢杆菌S0113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化.农业生物技术学报2001,9(1).-77-80
    90.东秀珠,蔡妙英等.常见细菌鉴定手册.科学出版社.2001
    91.唐启义,冯明光.实用统计分析及其DPS数据处理系统.科学出版社.2002
    92.任欣正,谢贻格.番茄青枯病的生物防治.南京农业大学学报1993,16(1).45-49
    93.龙良鲲,肖崇刚.内生细菌叭01-144在番茄根茎内定殖的初步研究.微生物学通报2003,30(5):53-56
    94.孔建,王同贵.枯草芽孢杆菌B—903菌株抗菌物质对植物病原真菌的抑制作用.植物病理学报1995,25(1):69-72
    95.郭坚华,孙平华,吴云波等.植物细菌性青枯病的生物防治机制和途径.中国生物防治1997,13(1):42-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700