神经生长因子基因修饰的许旺细胞治疗大鼠脊髓损伤的疗效观察及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分许旺细胞的取材、纯化和鉴定
     目的培养并纯化大鼠许旺细胞,为后续的实验提供细胞来源。
     方法取新生3-4天SD大鼠的坐骨神经和臂丛神经,采用Ⅳ型胶原酶消化的半植块培养法获取原代大鼠许旺细胞;然后用免疫磁珠分选法获纯化许旺细胞。用S-100抗体进行免疫组织化学染色鉴定许旺细胞并计算细胞纯度。
     结果取材后6-8小时可见到细胞贴壁,呈现出明显的梭形,遮光性强。免疫磁珠分选后可获得了高纯度的许旺细胞,免疫细胞化学染色见到大量的阳性细胞,阳性率达到95%以上。
     结论肤酶和胶原酶联合消化法联合磁珠分选法可以获得高纯度的许旺细胞,为后续的实验提供了细胞来源。
     神经生长因子基因载体的构建、转染及表达
     目的构建绿色荧光蛋白标记的神经生长因子基因表达载体,并检测其表达效率。
     方法采用双酶切法切取人神经生长因子基因序列,采用PCR法扩增,酶切后和载体EGFP-N1连接;感染感受态大肠杆菌后挑选单克隆菌株,提取质粒酶切鉴定证实为目的质粒后进行扩增。用Iipofectamine2000将质粒转染大鼠许旺细胞,用ELISA法检测神经生长因子表达量的变化。
     结果PCR凝胶电泳结果显示切取的片段约为750bp左右,和目的基因片段大小相符合;提取质粒后双酶切显示切取片段和目的基因的大小相符合;转然后24小时在显微镜下可见到明显的绿色荧光,一周后上清液中NGF的含量较对照组明显升高。
     结论成功构建出含有神经生长因子基因的EGFP-N1质粒,转染许旺细胞后能够促进NGF的表达。
     高表达NGF的许旺细胞移植治疗脊髓损伤的疗效及其机制探讨
     目的观察高表NG的许旺细胞移植治疗大鼠脊髓损伤的效果,并探讨其作用的可能机制。
     方法用改良Allen法制备大鼠脊髓损伤模型,随机分为A、B、C、D四组,A组为转染含NGF基因的许旺细胞移植组,B组为许旺细胞移植组,C组为PBS对照组,D组为假手术组,造模一周后分别用108/ml含有转染NGF的许旺细胞的PBS液、108/m1许旺细胞的PBS液、PBS液注入A、B、C组大鼠脊髓损伤部位及其上下各5μ1。注射后一二、三、四周分别用BBB评分法观察大鼠双下肢运动功能,用肌电图检测大鼠的神经传导功能;处死后用免疫组织化学染色法检测脊髓损伤部位Bcl-2和6AP-43的表达变化。并取转染组的大鼠脊髓组织行纵行切片观察许旺细胞的迁移情况。
     结果各时间点BBB评分结果显示D组>A组>B组>C组;肌电图检测结果显示中枢潜伏时传导速度A、B、C组间差别有统计学意义P<0.05,中枢波幅A、B、C组间未见明显差异(P>0.05),D组明显高于其它三组; Bc1-2和GAP-43免疫组化检测结果提示A>B>C组,D组仅有少量表达。大鼠脊髓组织纵行切片观察显示在脊髓损伤后一周损伤区有大量的绿色荧光蛋白表达,随后随着时间的延长,大鼠脊髓损伤区内的许旺细胞数量逐渐减少。
     结论本研究证实NGF基因修饰的许旺细胞能够促进脊髓损伤的恢复,可能是通过抑制受损细胞的凋亡和促进神经轴突的生长有关。
Part1Purified and Identified of Schwann Cells from Rat
     Object To culture and purify schwan cells of rat, which provides cells for following up experiments.
     Method The sciatic and brachial plexus nerves were obtained from SD rats which were newborn3-4days. The primary schwann cells were acquried through these nerves digested by collagenase Ⅳ. The schwann cells were purified by immunomagnetic beads after cultured two generations. The S-100antibody were used to identify the schwann cells and calculate the purity by immunohistochemical staining.
     Result The schwann cells were adhesioned after cultured6-8hours, showing a clear spindle. The purity of schwann cells were as high as95%indetified by immunohistochemical staining which were pueified by immunomagnetic beads.
     Conclusion High purity of schwann cells were obtain through collagenase IV digestion method combined with magnetic bead sorting, providing a cell source for subsequent experiments.
     Part2Construction and Expression of Retroviral Vector of pEGFP-N1/NGFβ
     Object To construct retroviral vector carrying nerve growth factor (NGF) beta gene which were labelled by EGFP, and to observe its expression in rat Schwann cell (SC).
     Method The NGF beta gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) from pAAV-SP vector which was send by Dr Lynne Moor. By gene recombination technique, human NGF beta gene was inserted into vector pEGFP-N1. Then, we transfected the recombination plasmid into SC by lipofectamine2000, and collected the positive clones after G418selection and observed its expression under fluorescence microscope and detect the NGF concentration by ELISA.
     Result The PCR production of NGF beta is about750bp. The recombinant plasmid was identified by restriction endonuclease analysis. The human NGF beta gene could be expressed successfully by SCs under fluorescence microscope and the concentration of NGF beta is higher than untransfection SCs.
     Conclusion The recombination vector pEGFP-hNGFβ was construction successfully. The NGF beta gene could be efficient expressed by SC.
     Part3Nerve Growth Factor Gene Modified Schwann Cells Inhabit Apoptosis and Promote Functional Recovery after Contusion Spinal Cord Injury in Sprague Dawley Rats
     Object Schwann cells(SCs) which were modified by human nerve growth factor gene were injected into the injured spinal cord,to observe the functional recovery of hind limb and the expression of Bcl-2and GAP-43after spinal cord injury, and to explore the mechanism of SCs on the spinal cord injury.
     Methods52SD rat were divided into four groups randomly:EGFP-N1-NGF transfected SCs transplantation group (group A)16rats,SCs transplantation group (group B)16rats, PBS control group (group C)12rats and sham group(group D)8rats. The modified Allen method was using to made spinal coed injury(SCI) model.BBB scores were observed to evaluate the behavior improvement and EMG detect the velocity of the central nerve at7d、14d、21d and28d, respectively. Then the animals were killed and the SCI areas were embedded by paraffin, tissue section and immunostaining of Bcl-2and GAP-43evaluate the Histology recovery after spinal cord injury. The migration of hNGF gene modified SCs in the group A were observed by fluorescence microscope.
     Result The result of BBB scores showed that the animals in group A were higher than group B and group C, and animals in group B were higher than group C, the animals in group D were normal (P<0.05); There is significantly difference of central latency between group A、B and C, but were longer than group D; However, there were no significantly difference of central amplitude between group A、B and C. The immunostaining of Bcl-2and GAP-43showed that group A> group B> group C, the group D have little expression. The SCs in injured spinal cord were distributed in punctate, the SCs were granduly reduced as time follow.
     Conclusion Our study confirmed that NGF gene modified SCs promote the recovery of spinal cord injury, probably by inhibiting the apoptosis of damaged cells and promoting the growth of the nerve axon.
引文
[1]S. Thuret, L.D. Moon, F.H. Gage, Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7 (2006) 628-643.
    [2]P.J. Homer, F.H. Gage, Regenerating the damaged central nervous system. Nature 407 (2000) 963-970.
    [3]P. Lu, L.L. Jones, E.Y. Snyder, M.H. Tuszynski, Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181 (2003) 115-129.
    [4]C.P. Hofstetter, E.J. Schwarz, D. Hess, J. Widenfalk, A. El Manira, D.J. Prockop, L. Olson, Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 99 (2002) 2199-2204.
    [5]G. Tharion, K. Indirani, M. Durai, M. Meenakshi, S.R. Devasahayam, N.R. Prabhav, C. Solomons, S. Bhattacharji, Motor recovery following olfactory ensheathing cell transplantation in rats with spinal cord injury. Neurol India 59 (2011) 566-572.
    [6]S.C. Barnett, J.S. Riddell, Olfactory ensheathing cells (OECs) and the treatment of CNS injury:advantages and possible caveats. J Anat 204 (2004) 57-67.
    [7]K. Bhatheja, J. Field, Schwann cells:origins and role in axonal maintenance and regeneration. Int J Biochem Cell Biol 38 (2006) 1995-1999.
    [8]徐斌,江澄川,许旺细胞移植在中枢神经再生和修复中的作用.立体定向和功能性神经外科杂志14(2001)115-117.
    [9]万虹,孙梅珍,于忠诚,张亚卓,雪旺氏细胞移植至大鼠中脑损伤区域的研究.中华实验外科杂志20(2003)637-638.
    [10]张军,许百男,李冲,周定标,许旺细胞移植促进大鼠脑胆碱能纤维损伤后的修复.中国组织工程研究与临床康复11(2007)499-501.
    [11]M. Oudega, L.D. Moon, R.J. de Almeida Leme, Schwann cells for spinal cord repair. Braz J Med Biol Res 38 (2005) 825-835.
    [12]A.W. Mudge, Neurobiology. Motor neurons find their factors. Nature 363 (1993) 213.
    [13]刘恩渝,费舟,章翔,神经生长因子及其受体在中枢神经系统修复中的作用.国外医学神经病学神经外科学分册28(2001)112-115.
    [14]B.S. Bregman, J.V. Coumans, H.N. Dai, P.L. Kuhn, J. Lynskey, M. McAtee, F. Sandhu, Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Prog Brain Res 137 (2002) 257-273.
    [15]江平,张志坚,刘锦波,李君荣,任春兰,许燕,钱雷敏,大鼠脊髓损伤后NGF及其受体TrkA在运动神经元及神经胶质细胞表达的变化.神经解剖学杂志20(2004)573-578.
    [16]P.L. Wilkins, D. Suchovsky, L.N. Berti-Mattera, Immortalized schwann cells express endothelin receptors coupled to adenylyl cyclase and phospholipase C. Neurochem Res 22(1997) 409-418.
    [17]A.A. Lavdas, F. Papastefanaki, D. Thomaidou, R. Matsas, Schwann cell transplantation for CNS repair. Curr Med Chem 15 (2008) 151-160.
    [18]F. Papastefanaki, J. Chen, A.A. Lavdas, D. Thomaidou, M. Schachner, R. Matsas, Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain 130(2007)2159-2174.
    [19]C. Bachelin, F. Lachapelle, C. Girard, P. Moissonnier, C. Serguera-Lagache, J. Mallet, D. Fontaine, A. Chojnowski, E. Le Guern, B. Nait-Oumesmar, A. Baron-Van Evercooren, Efficient myelin repair in the macaque spinal cord by autologous grafts of Schwann cells. Brain 128 (2005) 540-549.
    [20]P. Dinh, N. Bhatia, A. Rasouli, S. Suryadevara, K. Cahill, R. Gupta, Transplantation of preconditioned Schwann cells following hemisection spinal cord injury. Spine (Phila Pa 1976) 32 (2007) 943-949.
    [21]张雪宝,曾园山,陈穗军,一种快速、经济、省时的施万细胞体外培养和纯化方法解剖学报38(2007)628-630.
    [22]连小峰,侯铁胜,傅.强,袁.东,金.洋,陈元贵,植块法与酶消化法结合培养原代大鼠雪旺细胞.中国脊柱脊髓杂志18(2008)703-707.
    [23]M. Vroemen, N. Weidner, Purification of Schwann cells by selection of p75 low affinity nerve growth factor receptor expressing cells from adult peripheral nerve. J Neurosci Methods 124 (2003) 135-143.
    [24]黄明,罗卓荆,肖伟,张强,免疫磁珠法分离和提纯雪旺细胞的实验研究.中国矫形外科杂志16(2008)599-601,612.
    [25]F. Huang, X. Dong, L. Zhang, X. Zhang, D. Zhao, X. Bai, Z. Li, The neuroprotective effects of NGF combined with GM1 on injured spinal cord neurons in vitro. Brain Res Bull 79 (2009) 85-88.
    [26]A. Naderi, L. Hughes-Davies, Nerve growth factor/nuclear factor-kappaB pathway as a therapeutic target in breast cancer. J Cancer Res Clin Oncol 135 (2009) 211-216.
    [27]R. Linker, R. Gold, F. Luhder, Function of neurotrophic factors beyond the nervous system:inflammation and autoimmune demyelination. Crit Rev Immunol 29 (2009) 43-68.
    [28]B. Samah, F. Porcheray, N. Dereuddre-Bosquet, G. Gras, Nerve growth factor stimulation promotes CXCL-12 attraction of monocytes but decreases human immunodeficiency virus replication in attracted population. J Neurovirol 15 (2009) 71-80.
    [29]L. Tarsa, A. Balkowiec, Nerve growth factor regulates synaptophysin expression in developing trigeminal ganglion neurons in vitro. Neuropeptides 43 (2009) 47-52.
    [30]S. Madduri, M. Papaloizos, B. Gander, Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro. Neurosci Res (2009).
    [31]成松明,马敏敏,徐格林,刘新峰,神经生长因子对神经干细胞发育的调节.中国临床神经科学16(2008)324--327.
    [32]M. Lin, L. Yang, R. Fu, H. Zhao, Cloning of the eukaryotic expression vector with nerve growth factor in rats and its effects on proliferation and differentiation of mesencephal neural stem cells of fetal rats. J Huazhong Univ Sci Technolog Med Sci 28 (2008) 513-516.
    [33]乌优图,王运杰,神经生长因子对神经干细胞分化及神经元轴突形成的影响.中国组织工程研究与临床康复12(2008)5631-5635.
    [34]万炜,何洁,陈熙,李学军,大鼠脊髓全横断后TrkA和NGF在运动皮质的免疫组化研究万炜.南华大学学报.医学版31(2003)257-260.
    [35]Z. Ahmed, E.L. Suggate, E.R. Brown, R.G. Dent, S.J. Armstrong, L.B. Barrett, M. Berry, A. Logan, Schwann cell-derived factor-induced modulation of the NgR/p75NTR/EGFR axis disinhibits axon growth through CNS myelin in vivo and in vitro. Brain 129 (2006) 1517-1533.
    [36]D.X. Ban, X.H. Kong, S.Q. Feng, G.Z. Ning, J.T. Chen, S.F. Guo, Intraspinal cord graft of autologous activated Schwann cells efficiently promotes axonal regeneration and functional recovery after rat's spinal cord injury. Brain Res 1256 (2009) 149-161.
    [37]K. Abou-Amsha, L. Front, I. Gelernter, J. Hart, A. Catz, [Rehabilitation outcomes in patients with spinal cord injury 1992-2003:survival, neurologic recovery, length of stay in hospital]. Harefuah 147 (2008) 504-508,575.
    [38]E. Ahoniemi, T. Pohjolainen, H. Kautiainen, Survival after spinal cord injury in Finland. J Rehabil Med 43(2011)481-485.
    [39]F. Huang, J. Wang, A. Chen, Effects of co-grafts mesenchymal stem cells and nerve growth factor suspension in the repair of spinal cord injury. J Huazhong Univ Sci Technolog Med Sci 26 (2006) 206-210.
    [40]M. Agudo, A. Woodhoo, D. Webber, R. Mirsky, K.R. Jessen, S.B. McMahon, Schwann cell precursors transplanted into the injured spinal cord multiply, integrate and are permissive for axon growth. Glia 56(2008)1263-1270.
    [41]M.R. Andrews, D.J. Stelzner, Evaluation of olfactory ensheathing and schwann cells after implantation into a dorsal injury of adult rat spinal cord. J Neurotrauma 24 (2007) 1773-1792.
    [42]S.Q. Feng, X.H. Kong, S.F. Guo, P. Wang, L. Li, J.H. Zhong, X.F. Zhou, Treatment of spinal cord injury with co-grafts of genetically modified Schwann cells and fetal spinal cord cell suspension in the rat. Neurotox Res 7 (2005) 169-177.
    [43]A.A. Lavdas, J. Chen, F. Papastefanaki, S. Chen, M. Schachner, R. Matsas, D. Thomaidou, Schwann cells engineered to express the cell adhesion molecule L1 accelerate myelination and motor recovery after spinal cord injury. Exp eurol 221 (2010) 206-216.
    [44]C.J. Chang, The effect of pulse-released nerve growth factor from genipin-crosslinked gelatin in schwann cell-seeded polycaprolactone conduits on large-gap peripheral nerve regeneration. Tissue Eng Part A 15(2009)547-557.
    [45]M. Aspalter, A. Vyas, J. Feiner, J. Griffin, T. Brushart, R. Redett, Modification of Schwann cell gene expression by electroporation in vivo. J Neurosci Methods 176 (2009) 96-103.
    [46]A. Bozkurt, R. Deumens, C. Beckmann, L. Olde Damink, F. Schugner, I. Heschel, B. Sellhaus, J. Weis, W. Jahnen-Dechent, G.A. Brook, N. Pallua, In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials 30 (2009) 169-179.
    [47]D.M. Basso, M.S. Beattie, J.C. Bresnahan, Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139 (1996) 244-256.
    [48]彭忠勇,陈志斌,修波,赵振强,袁昆雄,孙朝晖,嗅鞘细胞移植联合督脉电针对脊髓损伤大鼠脊髓诱发电位的影响.中国组织工程研究与临床康复13(2009)4426-4432.
    [49]J. Biernaskie, J.S. Sparling, J. Liu, C.P. Shannon, J.R. Plemel, Y. Xie, F.D. Miller, W. Tetzlaff, Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. J Neurosci 27 (2007) 9545-9559.
    [50]E.F. Bondan, M.A. Lallo, F. Martins Mde, D.L. Graca, Schwann cell expression of an oligodendrocyte-like remyelinating pattern after ethidium bromide injection in the rat spinal cord. Arq Neuropsiquiatr 68 (2010) 783-787.
    [51]K.L. Golden, D.D. Pearse, B. Blits, M.S. Garg, M. Oudega, P.M. Wood, M.B. Bunge, Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp Neurol 207 (2007) 203-217.
    [52]N. Nagoshi, S. Shibata, M. Hamanoue, Y. Mabuchi, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, Schwann cell plasticity after spinal cord injury shown by neural crest lineage tracing. Glia 59 (2011) 771-784.
    [53]Z.L. Tang, J. Hu, J.H. Li, S.J. Zou, Effect of nerve growth factor and Schwann cells on axon regeneration of distracted inferior alveolar nerve following mandibular lengthening. Chin J Traumatol 7 (2004) 81-86.
    [54]G. Cao, C.P. Ko, Schwann cell-derived factors modulate synaptic activities at developing neuromuscular synapses. J Neurosci 27 (2007) 6712-6722.
    [55]J. Hu, J. Zhou, X. Li, F. Wang, H. Lu, Schwann cells promote neurite outgrowth of dorsal root ganglion neurons through secretion of nerve growth factor. Indian J Exp Biol 49 (2011) 177-182.
    [56]L. Cao, Y.L. Zhu, Z. Su, B. Lv, Z. Huang, L. Mu, C. He, Olfactory ensheathing cells promote migration of Schwann cells by secreted nerve growth factor. Glia 55 (2007) 897-904.
    [57]B.A. Urschel, C.E. Hulsebosch, Schwann cell-neuronal interactions in the rat involve nerve growth factor. J Comp Neurol 296 (1990) 114-122.
    [58]Z.H. Wang, GF. Walter, L. Gerhard, The expression of nerve growth factor receptor on Schwann cells and the effect of these cells on the regeneration of axons in traumatically injured human spinal cord. Acta Neuropathol 91 (1996) 180-184.
    [59]X. Cao, C. Tang, Y. Luo, Effect of nerve growth factor on neuronal apoptosis after spinal cord injury in rats. Chin J Traumatol 5 (2002) 131-135.
    [60]P.S. DiStefano, E.M. Johnson, Jr., Nerve growth factor receptors on cultured rat Schwann cells. J Neurosci 8 (1988) 231-241.
    [61]N. Weidner, A. Blesch, R.J. Grill, M.H. Tuszynski, Nerve growth factor-hypersecreting Schwann cell grafts augment and guide spinal cord axonal growth and remyelinate central nervous system axons in a phenotypically appropriate manner that correlates with expression of L1. J Comp Neurol 413 (1999)495-506.
    [62]J. Namiki, A. Kojima, C.H. Tator, Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma 17(2000) 1219-1231.
    [63]D.X. Ban, G.Z. Ning, S.Q. Feng, Y. Wang, X.H. Zhou, Y. Liu, J.T. Chen, Combination of activated Schwann cells with bone mesenchymal stem cells:the best cell strategy for repair after spinal cord injury in rats. Regen Med 6 (2011) 707-720.
    [64]G Chen, Y.R. Hu, H. Wan, L. Xia, J.H. Li, F. Yang, X. Qu, S.G. Wang, Z.C. Wang, Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells and Schwann cells. Chin Med J (Engl) 123 (2010) 2424-2431.
    [65]H. Saberi, P. Moshayedi, H.R. Aghayan, B. Arjmand, S.K. Hosseini, S.H. Emami-Razavi, V. Rahimi-Movaghar, M. Raza, M. Firouzi, Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation:an interim report on safety considerations and possible outcomes. Neurosci Lett 443 (2008) 46-50.
    [66]A.B. Jackson, M. Dijkers, M.J. Devivo, R.B. Poczatek, A demographic profile of new traumatic spinal cord injuries:change and stability over 30 years. Arch Phys Med Rehabil 85 (2004) 1740-1748.
    [67]J.W. Fawcett, A. Curt, J.D. Steeves, W.P. Coleman, M.H. Tuszynski, D. Lammertse, P.F. Bartlett, A.R. Blight, V. Dietz, J. Ditunno, B.H. Dobkin, L.A. Havton, P.H. Ellaway, M.G. Fehlings, A. Privat, R. Grossman, J.D. Guest, N. Kleitman, M. Nakamura, M. Gaviria, D. Short, Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel:spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45 (2007) 190-205.
    [68]M.T. Jurkiewicz, D.J. Mikulis, M.G. Fehlings, M.C. Verrier, Sensorimotor cortical activation in patients with cervical spinal cord injury with persisting paralysis. Neurorehabil Neural Repair 24 (2010) 136-140.
    [69]M.T. Jurkiewicz, D.J. Mikulis, W.E. Mcllroy, M.G. Fehlings, M.C. Verrier, Sensorimotor cortical plasticity during recovery following spinal cord injury:a longitudinal fMR1 study. Neurorehabil Neural Repair 21 (2007) 527-538.
    [70]E.S. Rosenzweig, G. Courtine, D.L. Jindrich, J.H. Brock, A.R. Ferguson, S.C. Strand, Y.S. Nout, R.R. Roy, D.M. Miller, M.S. Beattie, L.A. Havton, J.C. Bresnahan, V.R. Edgerton, M.H. Tuszynski, Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 13 (2010)1505-1510.
    [71]R.J. Hurlbert, Strategies of medical intervention in the management of acute spinal cord injury. Spine (Phila Pa 1976) 31 (2006) S16-21; discussion S36.
    [72]M.G. Fehlings, R.G. Perrin, The timing of surgical intervention in the treatment of spinal cord injury:a systematic review of recent clinical evidence. Spine (Phila Pa 1976) 31 (2006) S28-35; discussion S36.
    [73]A.D. Levi, G. Casella, B.A. Green, W.D. Dietrich, S. Vanni, J. Jagid, M.Y. Wang, Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury. Neurosurgery 66 (2010) 670-677.
    [74]A.D. Levi, B.A. Green, M.Y. Wang, W.D. Dietrich, T. Brindle, S. Vanni, G. Casella, G. Elhammady, J. Jagid, Clinical application of modest hypothermia after spinal cord injury. J Neurotrauma 26 (2009) 407-415.
    [75]P. Arlotta, B.J. Molyneaux, J. Chen, J. Inoue, R. Kominami, J.D. Macklis, Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45 (2005) 207-221.
    [76]A.A. Al-Majed, S.L. Tam, T. Gordon, Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cell Mol Neurobiol 24 (2004)379-402.
    [77]P. Lu, A. Blesch, M.H. Tuszynski, Neurotrophism without neurotropism:BDNF promotes survival but not growth of lesioned corticospinal neurons. J Comp Neurol 436 (2001) 456-470.
    [78]L.M. Ramer, M.S. Ramer, J.D. Steeves, Setting the stage for functional repair of spinal cord injuries:a cast of thousands. Spinal Cord 43 (2005) 134-161.
    [79]K. Low, M. Culbertson, F. Bradke, M. Tessier-Lavigne, M.H. Tuszynski, Netrin-1 is a novel myelin-associated inhibitor to axon growth. J Neurosci 28 (2008) 1099-1108.
    [80]Y. Liu, X. Wang, C.C. Lu, R. Kerman, O. Steward, X.M. Xu, Y. Zou, Repulsive Wnt signaling inhibits axon regeneration after CNS injury. J Neurosci 28 (2008) 8376-8382.
    [81]L. Benowitz, Y. Yin, Rewiring the injured CNS:lessons from the optic nerve. Exp Neurol 209 (2008) 389-398.
    [82]A. Hoke, C. Cheng, D.W. Zochodne, Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats. Neuroreport 11 (2000) 1651-1654.
    [83]H. Shen, J.M. Chung, K. Chung, Expression of neurotrophin mRNAs in the dorsal root ganglion after spinal nerve injury. Brain Res Mol Brain Res 64 (1999) 186-192.
    [84]D.J. Barakat, S.M. Gaglani, S.R. Neravetla, A.R. Sanchez, C.M. Andrade, Y. Pressman, R. Puzis, M.S. Garg, M.B. Bunge, D.D. Pearse, Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Cell Transplant 14 (2005) 225-240.
    [85]D.D. Pearse, A.R. Sanchez, F.C. Pereira, C.M. Andrade, R. Puzis, Y. Pressman, K. Golden, B.M. Kitay, B. Blits, P.M. Wood, M.B. Bunge, Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord:Survival, migration, axon association, and functional recovery. Glia 55 (2007)976-1000.
    [86]S.L. Rossi, H.S. Keirstead, Stem cells and spinal cord regeneration. Curr Opin Biotechnol 20 (2009) 552-562.
    [87]L. Taylor, L. Jones, M.H. Tuszynski, A. Blesch, Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J Neurosci 26 (2006) 9713-9721.
    [88]P. Lu, H. Yang, L.L. Jones, M.T. Filbin, M.H. Tuszynski, Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci 24 (2004) 6402-6409.
    [89]A. Blesch, M.H. Tuszynski, Transient growth factor delivery sustains regenerated axons after spinal cord injury. J Neurosci 27 (2007) 10535-10545.
    [90]A. Blesch, H. Yang, N. Weidner, A. Hoang, D. Otero, Axonal responses to cellularly delivered NT-4/5 after spinal cord injury. Mol Cell Neurosci 27 (2004) 190-201.
    [91]M. Bibel, Y.A. Barde, Neurotrophins:key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14 (2000) 2919-2937.
    [92]P.C Maisonpierre, L. Belluscio, B. Friedman, R.F. Alderson, S.J. Wiegand, M.E. Furth, R.M. Lindsay, G.D. Yancopoulos, NT-3, BDNF, and NGF in the developing rat nervous system:parallel as well as reciprocal patterns of expression. Neuron 5 (1990) 501-509.
    [93]J. Yang, C.J. Siao, G. Nagappan, T. Marinic, D. Jing, K. McGrath, Z.Y. Chen, W. Mark, L. Tessarollo, F.S. Lee, B. Lu, B.L. Hempstead, Neuronal release of proBDNF. Nat Neurosci 12 (2009) 113-115.
    [94]R.W. Oppenheim, Q.W. Yin, D. Prevette, Q. Yan, Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 360 (1992) 755-757.
    [95]H. Thoenen, Y.A. Barde, Physiology of nerve growth factor. Physiol Rev 60 (1980) 1284-1335.
    [96]W.D. Snider, E.M. Johnson, Jr., Neurotrophic molecules. Ann Neurol 26 (1989) 489-506.
    [97]L. Li, R.W. Oppenheim, M. Lei, L.J. Houenou, Neurotrophic agents prevent motoneuron death following sciatic nerve section in the neonatal mouse. J Neurobiol 25 (1994) 759-766.
    [98]N.M. Geremia, L.M. Pettersson, J.C. Hasmatali, T. Hryciw, N. Danielsen, D.J. Schreyer, V.M. Verge, Endogenous BDNF regulates induction of intrinsic neuronal growth programs in injured sensory neurons. Exp Neurol 223 (2010) 128-142.
    [99]X.Y. Song, F. Li, F.H. Zhang, J.H. Zhong, X.F. Zhou, Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury. PLoS One 3 (2008) e1707.
    [100]T. Hagg, B. Fass-Holmes, H.L. Vahlsing, M. Manthorpe, J.M. Conner, S. Varon, Nerve growth factor (NGF) reverses axotomy-induced decreases in choline acetyltransferase, NGF receptor and size of medial septum cholinergic neurons. Brain Res 505 (1989) 29-38.
    [101]T. Hagg, M. Manthorpe, H.L. Vahlsing, S. Varon, Delayed treatment with nerve growth factor reverses the apparent loss of cholinergic neurons after acute brain damage. Exp Neurol 101 (1988) 303-312.
    [102]S.S. Firkins, C.A. Bates, D.J. Stelzner, Corticospinal tract plasticity and astroglial reactivity after cervical spinal injury in the postnatal rat. Exp Neurol 120 (1993) 1-15.
    [103]B.S. Bregman, M.E. Goldberger, Anatomical plasticity and sparing of function after spinal cord damage in neonatal cats. Science 217 (1982) 553-555.
    [104]B.K. Kwon, J. Liu, C. Lam, W. Plunet, L.W. Oschipok, W. Hauswirth, A. Di Polo, A. Blesch, W. Tetzlaff, Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury. Spine (Phila Pa 1976) 32 (2007) 1164-1173.
    [105]M.J. Ruitenberg, G.W. Plant, F.P. Hamers, J. Wortel, B. Blits, P.A. Dijkhuizen, W.H. Gispen, G.J. Boer, J. Verhaagen, Ex vivo adenoviral vector-mediated neurotrophin gene transfer to olfactory ensheathing glia:effects on rubrospinal tract regeneration, lesion size, and functional recovery after implantation in the injured rat spinal cord. J Neurosci 23 (2003) 7045-7058.
    [106]J.H. Brock, E.S. Rosenzweig, A. Blesch, R. Moseanko, L.A. Havton, V.R. Edgerton, M.H. Tuszynski, Local and remote growth factor effects after primate spinal cord injury. J Neurosci 30 (2010) 9728-9737.
    [107]K.M. Giehl, S. Rohrig, H. Bonatz, M. Gutjahr, B. Leiner, I. Bartke, Q. Yan, L.F. Reichardt, C. Backus, A.A. Welcher, K. Dethleffsen, P. Mestres, M. Meyer, Endogenous brain-derived neurotrophic factor and neurotrophin-3 antagonistically regulate survival of axotomized corticospinal neurons in vivo. J Neurosci 21 (2001)3492-3502.
    [108]R.J. Grill, A. Blesch, M.H. Tuszynski, Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells. Exp Neurol 148 (1997) 444-452.
    [109]P. Lu, L.L. Jones, M.H. Tuszynski, BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 191 (2005) 344-360.
    [110]M.S. Ramer, J.V. Priestley, S.B. McMahon, Functional regeneration of sensory axons into the adult spinal cord. Nature 403 (2000) 312-316.
    [111]M. Oudega, T. Hagg, Neurotrophins promote regeneration of sensory axons in the adult rat spinal cord. Brain Res 818 (1999) 431-438.
    [112]L.T. Alto, L.A. Havton, J.M. Conner, E.R. Hollis,2nd, A. Blesch, M.H. Tuszynski, Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat Neurosci 12(2009)1106-1113.
    [113]K. Kadoya, S. Tsukada, P. Lu, G. Coppola, D. Geschwind, M.T. Filbin, A. Blesch, M.H. Tuszynski, Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury. Neuron 64 (2009) 165-172.
    [114]S. Neumann, C.J. Woolf, Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23 (1999) 83-91.
    [115]F.J. Stam, H.D. MacGillavry, N.J. Armstrong, M.C. de Gunst, Y. Zhang, R.E. van Kesteren, A.B. Smit, J. Verhaagen, Identification of candidate transcriptional modulators involved in successful regeneration after nerve injury. Eur J Neurosci 25 (2007) 3629-3637.
    [116]D. Cai, Y. Shen, M. De Bellard, S. Tang, M.T. Filbin, Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22 (1999) 89-101.
    [117]S. Neumann, F. Bradke, M. Tessier-Lavigne, A.I. Basbaum, Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34 (2002) 885-893.
    [118]M. Fitzgerald, M.L. Reynolds, L.I. Benowitz, GAP-43 expression in the developing rat lumbar spinal cord. Neuroscience 41 (1991) 187-199.
    [119]M.S. Chong, M. Fitzgerald, J. Winter, M. Hu-Tsai, P.C. Emson, U. Wiese, C.J. Woolf, GAP-43 mRNA in Rat Spinal Cord and Dorsal Root Ganglia Neurons:Developmental Changes and Re-expression Following Peripheral Nerve Injury. Eur J Neurosci 4 (1992) 883-895.
    [120]D.J. Schreyer, J.H. Skene, Injury-associated induction of GAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons. J Neurobiol 24 (1993) 959-970.
    [121]T.M. Brushart, P.N. Hoffman, R.M. Royall, B.B. Murinson, C. Witzel, T. Gordon, Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J Neurosci 22 (2002) 6631-6638.
    [122]E. Udina, M. Furey, S. Busch, J. Silver, T. Gordon, K. Fouad, Electrical stimulation of intact peripheral sensory axons in rats promotes outgrowth of their central projections. Exp Neurol 210 (2008) 238-247.
    [123]E.R. Hollis,2nd, P. Lu, A. Blesch, M.H. Tuszynski, IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury. Exp Neurol 215 (2009) 53-59.
    [124]B. Blits, P.A. Dijkhuizen, G.J. Boer, J. Verhaagen, Intercostal nerve implants transduced with an adenoviral vector encoding neurotrophin-3 promote regrowth of injured rat corticospinal tract fibers and improve hindlimb function. Exp Neurol 164 (2000) 25-37.
    [125]L.F. Wong, P.K. Yip, A. Battaglia, J. Grist, J. Corcoran, M. Maden, M. Azzouz, S.M. Kingsman, A.J. Kingsman, N.D. Mazarakis, S.B. McMahon, Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nat Neurosci 9 (2006) 243-250.
    [126]E.R. Hollis,2nd, P. Jamshidi, K. Low, A. Blesch, M.H. Tuszynski, Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci U S A 106 (2009) 7215-7220.
    [127]H. Sun, R. Lesche, D.M. Li, J. Liliental, H. Zhang, J. Gao, N. Gavrilova, B. Mueller, X. Liu, H. Wu, PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A 96 (1999) 6199-6204.
    [128]K. Liu, Y. Lu, J.K. Lee, R. Samara, R. Willenberg, I. Sears-Kraxberger, A. Tedeschi, K.K. Park, D. Jin, B. Cai, B. Xu, L. Connolly, O. Steward, B. Zheng, Z. He, PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13 (2010) 1075-1081.
    [129]K.K. Park, K. Liu, Y. Hu, P.D. Smith, C. Wang, B. Cai, B. Xu, L. Connolly, I. Kramvis, M. Sahin, Z. He, Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322 (2008) 963-966.
    [130]R.N. Lemon, J. Griffiths, Comparing the function of the corticospinal system in different species: organizational differences for motor specialization? Muscle Nerve 32 (2005) 261-279.
    [131]M. Eriksdotter Jonhagen, A. Nordberg, K. Amberla, L. Backman. T. Ebendal, B. Meyerson, L. Olson, Seiger, M. Shigeta, E. Theodorsson, M. Viitanen, B. Winblad, L.O. Wahlund, Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer's disease. Dement Geriatr Cogn Disord 9 (1998) 246-257.
    [132]M.H. Tuszynski, Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurol 1 (2002) 51-57.
    [133]A. Sandvig, M. Berry, L.B. Barrett, A. Butt, A. Logan, Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors:expression, receptor signaling, and correlation with axon regeneration. Glia 46(2004)225-251.
    [134]J.M. Schwab, F. Bernard, C. Moreau-Fauvarque, A. Chedotal, Injury reactive myelin/oligodendrocyte-derived axon growth inhibition in the adult mammalian central nervous system. Brain Res Brain Res Rev 49 (2005) 295-299.
    [135]J.K. Atwal, J. Pinkston-Gosse, J. Syken, S. Stawicki, Y. Wu, C. Shatz, M. Tessier-Lavigne, PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322 (2008) 967-970.
    [136]Y. Shen, A.P. Tenney, S.A. Busch, K.P. Horn, F.X. Cuascut, K. Liu, Z. He, J. Silver, J.G. Flanagan, PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326 (2009) 592-596.
    [137]H.J. Song, G.L. Ming, M.M. Poo, cAMP-induced switching in turning direction of nerve growth cones. Nature 388 (1997) 275-279.
    [138]J.A. Raper, J.P. Kapfhammer, The enrichment of a neuronal growth cone collapsing activity from embryonic chick brain. Neuron 4 (1990) 21-29.
    [139]G.N. Li, L.L. Livi, C.M. Gourd, E.S. Deweerd, D. Hoffman-Kim, Genomic and morphological changes of neuroblastoma cells in response to three-dimensional matrices. Tissue Eng 13 (2007) 1035-1047.
    [140]G.N. Li, D. Hoffman-Kim, Tissue-engineered platforms of axon guidance. Tissue Eng Part B Rev 14 (2008)33-51.
    [141]X. Cao, M.S. Shoichet, Photoimmobilization of biomolecules within a 3-dimensional hydrogel matrix. J Biomater Sci Polym Ed 13 (2002) 623-636.
    [142]L. Yao, G. Damodaran, N. Nikolskaya, A.M. Gorman, A. Windebank, A. Pandit, The effect of laminin peptide gradient in enzymatically cross-linked collagen scaffolds on neurite growth. J Biomed Mater Res A 92 (2010) 484-492.
    [143]B.H. Gahwiler, M. Capogna, D. Debanne, R.A. McKinney, S.M. Thompson, Organotypic slice cultures: a technique has come of age. Trends Neurosci 20 (1997) 471-477.
    [144]E.C. Kaal, E.A. Joosten, P.R. Bar, Prevention of apoptotic motoneuron death in vitro by neurotrophins and muscle extract. Neurochem Int 31 (1997) 193-201.
    [145]L. Sundstrom, B. Morrison,3rd, M. Bradley, A. Pringle, Organotypic cultures as tools for functional screening in the CNS. Drug Discov Today 10 (2005) 993-1000.
    [146]B. Bonnici, J.P. Kapfhammer, Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model. Eur J Neurosci 27 (2008) 2483-2492.
    [147JE.F. Ellis, J.S. McKinney, K.A. Willoughby, S. Liang, J.T. Povlishock, A new model for rapid stretch-induced injury of cells in culture:characterization of the model using astrocytes. J Neurotrauma 12 (1995) 325-339.
    [148]A. Mukhin, L. Fan, A.I. Faden, Activation of metabotropic glutamate receptor subtype mGluR1 contributes to post-traumatic neuronal injury. J Neurosci 16 (1996) 6012-6020.
    [149]M.C. LaPlaca, D.K. Cullen, J.J. McLoughlin, R.S. Cargill,2nd, High rate shear strain of three-dimensional neural cell cultures:a new in vitro traumatic brain injury model. J Biomech 38 (2005) 1093-1105.
    [150]M.T. Fitch, C. Doller, C.K. Combs, G.E. Landreth, J. Silver, Cellular and molecular mechanisms of glial scarring and progressive cavitation:in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19 (1999) 8182-8198.
    [151]R.J. McKeon, R.C. Schreiber, J.S. Rudge, J. Silver, Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11 (1991)3398-3411.
    [152]M.C. Shearer, S.P. Niclou, D. Brown, R.A. Asher, A.J. Holtmaat, J.M. Levine, J. Verhaagen, J.W. Fawcett, The astrocyte/meningeal cell interface is a barrier to neurite outgrowth which can be overcome by manipulation of inhibitory molecules or axonal signalling pathways. Mol Cell Neurosci 24(2003)913-925.
    [153]G. Yiu, Z. He, Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7 (2006) 617-627.
    [154]R.J. Gilbert, R.J. McKeon, A. Darr, A. Calabro, V.C. Hascall, R.V. Bellamkonda, CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension. Mol Cell Neurosci 29 (2005) 545-558.
    [155]J. Kimura-Kuroda, X. Teng, Y. Komuta, N. Yoshioka, K. Sango, K. Kawamura, G Raisman, H. Kawano, An in vitro model of the inhibition of axon growth in the lesion scar formed after central nervous system injury. Mol Cell Neurosci 43 (2010) 177-187.
    [156]D.K. Cullen, S.E. Stabenfeldt, C.M. Simon, C.C. Tate, M.C. LaPlaca, In vitro neural injury model for optimization of tissue-engineered constructs. J Neurosci Res 85 (2007) 3642-3651.
    [157]E. East, J.P. Golding, J.B. Phillips, A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis. J Tissue Eng Regen Med 3 (2009) 634-646.
    [158]J.K. Chilton, Molecular mechanisms of axon guidance. Dev Biol 292 (2006) 13-24.
    [159]E.L. Goh, J.K. Young, K. Kuwako, M. Tessier-Lavigne, Z. He, J.W. Griffin, G.L. Ming, beta 1-integrin mediates myelin-associated glycoprotein signaling in neuronal growth cones. Mol Brain 1 (2008) 10.
    [160]J. Mai, L. Fok, H. Gao, X. Zhang, M.M. Poo, Axon initiation and growth cone turning on bound protein gradients. J Neurosci 29 (2009) 7450-7458.
    [161]B. Vahidi, J.W. Park, H.J. Kim, N.L. Jeon, Microfluidic-based strip assay for testing the effects of various surface-bound inhibitors in spinal cord injury. J Neurosci Methods 170 (2008) 188-196.
    [162]V.J. Tom, M.P. Steinmetz, J.H. Miller, C.M. Doller, J. Silver, Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J Neurosci 24 (2004) 6531-6539.
    [163]N. Gomez, Y. Lu, S. Chen, C.E. Schmidt, Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture. Biomaterials 28(2007)271-284.
    [164]L. Yao, S. Wang, W. Cui, R. Sherlock, C. O'Connell, G. Damodaran, A. Gorman, A. Windebank. A. Pandit, Effect of functionalized micropatterned PLGA on guided neurite growth. Acta Biomater 5 (2009)580-588.
    [165]C. Joanne Wang, X. Li, B. Lin, S. Shim, G.L. Ming, A. Levchenko, A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. Lab Chip 8 (2008) 227-237.
    [166]Y.T. Kim, K. Karthikeyan, S. Chirvi, D.P. Dave, Neuro-optical microfluidic platform to study injury and regeneration of single axons. Lab Chip 9 (2009) 2576-2581.
    [167]J.A. Chuckowree, J.C. Vickers, Cytoskeletal and morphological alterations underlying axonal sprouting after localized transection of cortical neuron axons in vitro. J Neurosci 23 (2003) 3715-3725.
    [168]S.K. Dertinger, X. Jiang, Z. Li, V.N. Murthy, G.. Whitesides, Gradients of substrate-bound laminin orient axonal specification of neurons. Proc Natl Acad Sci U S A 99 (2002) 12542-12547.
    [169]V.M. Tysseling-Mattiace, V. Sahni, K.L. Niece, D. Birch, C. Czeisler, M.G. Fehlings, S.I. Stupp, J.A. Kessler, Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 28 (2008) 3814-3823.
    [170]K.M. Munro, V.M. Perreau, Current and future applications of transcriptomics for discovery in CNS disease and injury. Neurosignals 17 (2009) 311-327.
    [171]T. Houchin-Ray, A. Huang, E.R. West, M. Zelivyanskaya, L.D. Shea, Spatially patterned gene expression for guided neurite extension. J Neurosci Res 87 (2009) 844-856.
    [172]D. van Noort, S.M. Ong, C. Zhang, S. Zhang, T. Arooz, H. Yu, Stem cells in microfluidics. Biotechnol Prog 25 (2009) 52-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700