LRIG3基因在膀胱尿路上皮癌中的表达及重组腺病毒载体rAd-LRIG3感染T24细胞的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来研究发现,LRIGs基因家族在多种肿瘤中具有抑癌作用,其可能的机制是下调EGFR的表达,从而抑制EGF对人体肿瘤所带来的促细胞增殖、侵袭等作用。但其在膀胱癌中的作用报道甚少,本研究检测了LRIG3基因及蛋白在膀胱癌中的表达,并将其重组腺病毒质粒感染人膀胱癌T24细胞系,观察了LRIG3对T24细胞生长、凋亡及迁移的影响等,分三个部分简述如下。
     第一部分LRIG3蛋白及基因在膀胱肿瘤中的表达及意义
     目的:了解LRIG3蛋白及基因在膀胱肿瘤和正常膀胱组织中的表达及其与膀胱肿瘤不同分级、分期之间的关系。
     方法:采用免疫组化SP法和逆转录.聚合酶链反应(RT-PCR)法检测64例膀胱尿路上皮癌组织和12例正常膀胱粘膜中LRIG3蛋白及mRNA的表达情况,并结合临床资料进行分析。
     结果:膀胱癌组织中LRIG3蛋白和mRNA的表达水平显著低于正常膀胱黏膜组织;且分级和分期越高,LRIG3蛋白和mRNA的表达水平越低。
     结论:LRIG3基因在膀胱癌中存在表达缺失和低表达,提示LRIG3基因在膀胱癌的发生发展中可能具有抑癌基因的作用,有可能成为肿瘤基因治疗的又一靶点。
     第二部分LRIG3基因特异性腺病毒表达载体的构建与鉴定
     目的:构建并鉴定含有LRIG3基因的腺病毒表达载体rAd-LRIG3,并感染人膀胱癌细胞T24,为后期检测LRIG3对膀胱癌生物学行为的影响提供靶细胞。
     方法:通过质粒提取、琼脂糖凝胶电泳、酶切、连接、转化等多种基因工程技术,从感受态大肠杆菌DH5α菌株中提取并大量制备pLRIG3-EGFP真核表达质粒,然后对其行限制性内切酶酶切、凝胶电泳法进行鉴定。测序正确后,利用腺病毒载体系统Adeno-X构建重组腺病毒质粒pAd-LRIG3,酶切、PCR鉴定重组腺病毒质粒,鉴定正确后,将pAd-LRIG3转染至HEK293细胞,包装成复制缺陷型腺病毒质粒rAd-LRIG3。大量扩增rAd-LRIG3,测病毒滴度。实验分为三组:实验组(T24-LRIG3组,感染rAd-LRIG3)、对照组(T24组,未感染腺病毒质粒)和感染空载体组(T24-HK组,感染rAd-HK)。感染48小时后,应用RT-PCR及Western-Blotting鉴定该质粒在细胞中是否得到表达。
     结果:酶切分析、测序鉴定表明rAd-LRIG3构建成功;RT-PCR及W-B分析表明,T24-LRIG3组中LRIG3mRNA及蛋白的表达水平较T24-HK组和T24组明显升高,差异有显著性(P<0.05)。
     结论:携带有LRIG3基因的重组腺病毒构建成功;建立了rAd-LRIG3感染人膀胱癌细胞T24的长期稳定细胞系。可能为寻找膀胱癌的有效基因治疗途径奠定基础。
     第三部分LRIG3基因对膀胱癌细胞T24生物学行为的影响
     目的:研究LRIG3基因对膀胱癌细胞T24生物学行为的影响。以判断LRIG3基因在膀胱癌的发生和进展方面是否具有作用;进而说明LRIG3基因是否是膀胱癌病因学中的一个抑癌基因。
     方法:利用重组腺病毒质粒rAd-LRIG3感染膀胱癌细胞T24,得到稳定细胞株T24-LRIG3,细胞计数并绘制细胞生长曲线;Hoechst33258染色、透射电镜、流式细胞仪检测细胞凋亡情况;细胞迁移实验观察感染后细胞侵袭能力的变化。实验分为三组:实验组(T24-LRIG3组,感染rAd-LRIG3)、对照组(T24组,未感染腺病毒质粒)和感染空载体组(T24-HK组,感染rAd-HK)。
     结果:MTT法观察显示,感染rAd-LRIG3后细胞生长增殖速度较未感染组和空载体感染组明显减慢;Hoechst33258染色及透射电镜显示部分细胞呈现凋亡形态学改变;流式细胞仪定量检测表明感染LRIG3基因后,T24细胞出现较为明显的凋亡峰;细胞迁移力显著低于未转染组和空载体转染组。
     结论:LRIG3基因能有效抑制膀胱癌细胞的生长增殖和迁移,并诱导细胞的凋亡,是膀胱癌病因学中的一个抑癌基因。将来可望为膀胱癌的基因治疗提供新方法。
PartⅠ. The expression of the LRIG3 gene in Urothelial carcinoma of thebladder and its clinical significance
     Objective: To investigate the relationship between the expression of leucine-richrepeats and immunoglobulin-like domain protein 3 (LRIG3) gene and the biologicalbehavior of bladder urothelial carcinoma (BUC).
     Methods: Expressions of LRIG3 in 64 specimens of bladder urothelial carcinoma and12 specimens of normal bladder tissues were detected by SP of immunohistochemistry andRT-PCR. The results were analyzed in relation to the clinical data.
     Results :The expression of LRIG3 protein and mRNA in bladder cancer weresignificantly lower than that of normal bladder epithelium. The expression of LRIG3protein and mRNA were significantly decreased in higher staging and grading tumorscomparing to lower ones.
     Conclusions: The expression of LRIG3 gene was lost or reduced in bladder urothelialcarcinoma, which indicates that the LRIG3 gene may play an important role in suppressingthe tumorigenesis and development in bladder urothelial carcinoma.It may be a new targetfor tumor gene therapy.
     PartⅡ. The construction and identification of Adenovirusexpression vector targeting LRIG3 gene
     Objective : To construct and identify adenovirus vector that expresses the LRIG3 gene(rAd-LRIG3) and to establish a monoclone T24 cell line transfected with plasmidrAd-LRIG3, which will enable development of a gene therapy protocol for the treatment ofhuman bladder carcinoma.
     Methods: Genetic engineering techniques, including plasmid extraction, agarose gelelectrophoresis, restriction enzymolysis, connection, transformation of competent cells,were used to construct the recombinant plasmid of pLRIG3-EGFP from competentescherichia coli DH5α, which is confirmed by restriction enzyme digestion, agarose gelelectrophoresis and sequencing identification. The adenovirus plasmid rAd-LRIG3 wasconstructed by Adeno-x expression system, and the control adenovirus plasmid rAd-HKwas constructed by the same system. After verification by enzymolysis and PCR, thepAd-LRIG3 vector was cotransfected into 293 cells where they were packed as thereplication-deficient adenovirus rAd-LRIG3, rAd-LRIG3 was abundantly amplified andthen virus titer was evaluated. The whole experiment was divided into 3 groups. TherAd-LRIG3 was used to infect the human bladder cancer T24 cells. For controlexperiments, the vector rAd-HK was also transfected into T24 cells and nontransfected T24cells. RT-PCR and Western Blotting were used to detect the LRIG3mRNA and proteinexpression in T24 cell lines.
     Results:rAd-LRIG3 was successfully constructed and verified by enzymolysis andsequencing. RT-PCR and W-B analysis showed that LRIG3mRNA and protein level inrAd-LRIG3 transfected T24 cells was significantly higher than that in rAd-HK transfectedand nontransfected T24 cells; the difference was significant(P<0.05).
     Conclusions: Successful construction of the recombinant adenovirus vector containingthe LRIG3 gene was achieved. A T24 cell line transfected with rAd-LRIG3 was obtained, which could stably express the LRIG3 protein in cells, and it will establish a foundation forthe future research about bladder cancer gene therapy.
     PartⅢ. The Effects of LRIG3 Gene on the Biological Behaviors ofHuman Bladder Cancer Cell (T24)
     Objective: To investigate whether the expression of gene LRIG3 can effect thegrowth, proliferation and apoptosis of bladder cancer T24 cells.
     Methods: The whole experiment was divided into 3 groups. The rAd-LRIG3 was usedto infect the human bladder cancer T24 cells. For control experiments, the vector rAd-HKwas also transfected into T24 cells and nontransfected T24 cells. The effect of LRIG3 onthe cellular proliferation capacity of T24 cells was assayed by the growth curve. The cellapoptosis was detected by Hoechst33258 staining, electron microscope, and flow cytometryanalysis. The cell migration assay was used to detect the difference of invasion andmetastases between transfected and non-transfected cells.
     Results: MTT showed the cell proliferation was markedly inhibited compared with thecontrol cells. Partial cancer cells presented morphological changes of apoptosis byHoechst33258 staining , electron microscope and flow cytometry analysis. Contrast tocontrol cells and rAd-HK transfected T24, the invasion ability of rAd-LRIG3 transfectedcells decreased obviously.
     Conclusion: LRIG3 gene can suppress T24 cell growth and proliferation, in additionto acceleration of its apoptosis. LRIG3 may act as a tumours suppressor gene in bladdercancer progression. This implied the possibility of LRIG3 as the potential method for genetherapy of bladder cancer.
引文
1. Jemal A, Murray T, Samuels A, et al.Cancer statistics, 2008[J]. CA Cancer J Clin 2008; 58:71-96.
    2.顾方六,刘玉立.50年泌尿男生殖系肿瘤发病和构成情况的变迁[J].中华泌尿外科杂志,2002,23(2):88-90.
    3. Guo DS, Holmlund C, Henriksson R, et al. The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea. Genomics, 2004, 84:157-165.
    4. Guo D, Han L, Shu K, et al. Down-regulation of leucinerich repeats and immunoglobulin-like domain proteins (LRIG1-3) in HP75 pituitary adenoma cell line[J]. J Huazhong Univ Sci Technolog Med Sci, 2007, 27(1): 91-94.
    5. Guo D, Nilsson J, Haapasalo H et al. Perinuclear leucine-rich repeats and immunoglobulin-like domain proteins(LRIG1-3) as prognostic indicators in astrocytic tumors. Acta Neuropathol (B erl), 2006, 111: 238-246.
    6. Andersson U, Guo D, Malmer B, et al.Epidermal growth factor receptor family (EGFR, ErbB2-4) in gliomas and meningiomas[J]. Acta Neuropathol, 2004, 108(2): 135-142.
    7. Mukohara T, Guo D, Yamauchi S, et al. Expression of epidermal growth factor receptor (EGFR) and downstream activated peptides in surgically excised non-small-cell lung cancer (NSCLC)[J]. Lung Cancer, 2003, 41(2): 123-130.
    8. Mimeault M, Pommery N, Henichartj P. New advances on prostate carcinogenesis and therapies: involvement of EGF-EGFR transduction system [J]. Growth Factors, 2003, 21(1): 1-14.
    9. Tsutsuis, Ohnos, Murakamis, et al.Comparison of the immunohistochemical expression of EGFR, c-erbB2 and p53 protein between primary and recurrent breast cancer [J]. Breast Cancer, 2002, 9 (2): 111-117.
    10. Shinojiman, Tadak, Shiraishis, et al. Prognostic value of epidermal growth factor receptor in patients with glioblastomamultiforme [J]. Cancer Res, 2003, 63 (20) :6962-6970.
    11. Torchilin VP. Drug targeting [J]. Eur J Pharm Sci. 2000;11::81-91.
    12. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003 May; 4(5):346-58.
    1. Guo DS, Holmlund C, Henriksson R, et al. The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea. Genomics, 2004, 84: 157-165.
    2. Holmlund C, Nilsson J, Guo DS, et al. Characterization and tissue-specific expression of human LRIG2[J].Gene, 2004, 332: 35-43.
    3. Hedman H, Nilsson J, Guo DS, et al. Is LRIG1 a Tumor Suppressor Gene at Chromosome 3p14. 3?[J] Acta Oncologica, 2002, 41: 352-354.
    4.薛庆善,主编.体外培养的原理与技术[M].第2版,北京:科学出版社,2001:349-358.
    5. Tanemura A, Nagasawa T, Inui S, et al. LRIG provides a novel prognostic predictor in squamous cell carcinoma of the skin: immunohistochemical analysis for 38 cases[J]. Dermatol Surg, 2005, 31: 423-430.
    6.卢圣栋,主编.现代分子生物学实验技术[M].第2版,北京:中国协和医科大学出版社,1999:458-481.
    7. Gal G, Chanan R, Menachem K, et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation [J]. The EMBO Journal, 2004, 23:3270-3281.
    8.易伟,叶飞,郭东生等.Down regulation expression and significance of LRIG1gene in human ast rocytomas[J].中华实验外科杂志,2005,22(6):759-762.
    9. Gu RG, Rub InC, Ka TM, et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation [J].EMBO J, 2004, 23(16): 3270-3281.
    10. Guo D, HanL, Shu K, et al. Down-regulation of leucinerich repeats and immunoglobulin-like domain proteins (LRIG1-3) in HP75 pituitary adenoma cell line[J]. J Huazhong Univ Sci Technolog Med Sci, 2007, 27(1): 91-94.
    11. Guo D, Nilsson J, Haapasalo H et al. Perinuclear leucine-rich repeats and immunoglobulin-like domain proteins (LRIG1-3) as prognostic indicators in astrocytic tumors. Acta Neuropathol[J], 2006, 111:238-246.
    12.席桂发,吴群,王宝峰等.LRIG3对GL15细胞增殖和侵袭的影响及分子机制的研究[J].浙江大学学报(医学版),2008,37(5):444-450.
    13. Liebmann C. Regulation of MAP kinase activity by peptide receptor signalling pathway: paradigms of multiplicity [J]. Cell Signal, 2001, 13: 777-785.
    14. Klapper LN, Kirschbaum MH, Sela M, et al. Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors [J]. Adv Cancer Res, 2000, 77:25-79.
    15. Yarden Y. The EGFR family and its ligands in human cancer: signaling mechanisms and therapeutic opportunities [J]. Eur J Cancer, 2001, 37:s3-s8.
    16. Andersson U, Guo D, Maimer B, et al.Epidermal growth factor receptor family (EGFR, ErbB2-4) in gliomas and meningiomas[J]. Acta Neuropathol, 2004, 108(2): 135-142.
    17. Mukohara T, Guo D, Yamauchi S, et al. Expression of epidermal growth factor receptor (EGFR) and downstream activated peptides in surgically excised non-small-cell lung cancer (N SCLC)[J]. Lung Cancer, 2003, 41(2):123-130.
    18. Mimeault M, Pommery N, Henichartj P. New advances on prostate carcinogenesis and therapies: involvement of EGF-EGFR transduction system [J]. Growth Factors, 2003, 21(1):1-14.
    19. Tsutsuis, Ohnos, Murakamis, et al.Comparison of the immunohistochemical expression of EGFR, c-erbB2 and p53 protein between primary and recurrent breast cancer [J]. Breast Cancer, 2002, 9(2):111-117.
    20. Shinojiman, Tadak, Shiraishis, et al. Prognostic value of epidermal growth factor receptor in patients with glioblastomamultiforme [J]. Cancer Res, 2003, 63(20): 6962-6970.
    1.薛庆善,主编.体外培养的原理与技术[M].第2版,北京:科学出版社,2001:349-358.
    2.金冬雁,黎孟枫(译).分子克隆实验指南[M].北京:化学工业出版社,1998.
    3. Otterbein LE, Zuckerbraun BS, Haga M, Liu F, et al. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury[J]. Nat Med, 2003, 9(2):183-190.
    4. Katori M, Busuttil RW, Kupiec-Weglinski JW. Heme oxygenase-1 system in organ transplantation [J]. Transplantation, 2002, 15:74(7):905-912.
    5. Cross D, Burmeste J. Gene therapy for cancer treatment: past, present and future. Clin Med Res, 2006, 4: 218-227.
    6. Selkirk S. Gene therapy in clinical medicine. Postgrad Med J, 2004, 80:560-570.
    7. Bagley J, Aboody-Guterman K, Breakefield X, et al. Long-term expression of the gene encoding green fluorescent protein in murine hematopoietic cells using retroviral gene transfer. Transplantation, 1998, 65(9):1233-1240.
    8. Baltzer AM, Lattermann C, Whalen JD, et al. Potential role of direct adenoviral gene transfer in enhacing fiacture repair [J]. Clin Orthop, 2000, (379 Suppl):S120-S125.
    9. Wang L, Qi X, Sun Y, et al. Adenovirus-mediated combined P16 gene and GM-C-SF gene therapy for the treatment of established tumor and induction of antitumor immunity. Cancer Gene Ther. 2002, 9:819-824.
    10.施明,王福生,高兰英.腺病毒载体的研究进展.世界华人消化杂志.2000,8:1282-1286.
    11. Zhou Z, Zhang DF, Ren H. Humoral immunization and cell-mediated immunization evoked by HBsAg and B7-2 Ag co-expression recombinant adenovirus vector. Zhonghua Ganzangbing Zazhi. 2001, 9:111-113.
    12. Krougliak V, Graham FL. Development of cell lines capable of complementing E1, E4 and protein IX defective adenovirus type 5 mutants. Human Gene Therapy. 1995,6:1575-1586.
    13. He TC. A simplified system for generation recombinant adenoviruses. Proc Natl Acad Sci USA. 1998, 95:2509-2514.
    14. Krougliak V, Graham FL. Development of cell lines capable of complementing El, E4 and protein IX defective adenovirus type 5 mutants. Human Gene Therapy. 1995,6:1575-1586.
    15. Davis AR, Wivel NA, Palladino JL. Construction of adenoviral vectors. Mol Biotechnol.2001, 18:63-70.
    16. Matthews DA, Cumming D, Evelegh C. Development and use of a 293 cell line expressing lac repressor for the rescue of recombinant adenovirns expressing high levels of rabies virus. J Gen Virol. 1999, 80:345-353.
    17. Langer SJ, Schaack J. 293 cell lines that inducibly express high levels of adenovir- s types 5 precursor terminal protein. Virology.1996, 221:172-179.
    18. Brough DE, Lizonova A, Hsu C. A gene transfer vector-cell line system for complete functional complementation of adenovirus early regions El and E4.J Virol. 1996,70:6497-6501.
    19. Davis AR, Wivel NA, Palladino JL. Construction of adenoviral vectors. Mol Biotechnol.2001, 18:63-70.
    20. Breyer B, Jiang W, Cheng H. Adenoviral vector-mediated gene transfer for human gene therapy. Curr Gene Ther. 2001, 1:149-162.
    21. Yang T T, Cheng L N, Kain S R. Optimizedcoden Usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res,1996, 24:459-462.
    22. Plautz J D, Day R N , Dailey G M, et al. Green fuuorescent protein and its derivatives as versatile markers for gene expression in living Drosophilamelanogaster plant and mammalian cells. Gene, 1996, 173:83-87.
    1.司徒镇强,主编.细胞培养.第1版.西安:世界图书出版公司,2004.250-252.
    2. Guo DS, Holmlund C, Henriksson R, et al. The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea. Genomics, 2004, 84:157-165.
    3.易伟,叶飞,郭东生等.Down regulation expression and significance of LRIG1gene in human astrocytomas[J].中华实验外科杂志,2005,22(6):759-762.
    4. Gu R G, Rub In C, Ka Tz M, et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation [J].EMBO J, 2004, 23(16): 3270-3281.
    5. Guo D, Han L, Shu K, et al. Down-regulation of leucinerich repeats and immunoglobulin-like domain proteins (LRIG1-3) in HP75 pituitary adenoma cell line[J]. J Huazhong Univ Sci Technolog Med Sci, 2007, 27(1): 91-94.
    6. Guo D, Nilsson J, Haapasalo H et al. Perinuclear leucine-rich repeats and immunoglobulin-like domain proteins(LRIG1-3) as prognostic indicators in astrocytic tumors. Acta Neuropathol (B erl), 2006, 111: 238-246.
    7.席桂发,吴群,王宝峰等.LRIG-3对GL15细胞增殖和侵袭的影响及分子机制的研究[J].浙江大学学报(医学版),2008,37(5):444-450.
    8.王瑞年,主编。分子肿瘤学概论[M]。上海:科技教育出版社,2001:25-78.
    9.马文丽,主编。分子肿瘤学[M]。北京:科学出版社,2003:98-236.
    10.纪春祥,主编。肿瘤学[M]。北京:科学出版社,2003:15-145.
    11.王书奎,主编。实用流式细胞术彩色图谱[M].上海第二军医大学出版社.2004:145-168.
    12. Edwards BS, Oprea T, Prossnitz ER, et al. Flow cytometry for high-throughput, high-content screening. Cur Opin Chem Biol. 2004;8(4):392-8.
    13. Darzynkiewicz Z, Crissman H, Jacobberger JW. Cytometry of the cell cycle:cycling through history. Cytometry A. 2004;58(1):21-32.
    14. Ulrich H, Martins AH, Pesquero JB.RNA and DNA aptamers in cytomics analysis. Cytometry A. 2004;59(2):220-31.
    1. Jemal A, Murray T, Samuels A, et al.Cancer statistics, 2008[J]. CA Cancer J Clin 2008; 58:71-96.
    2.顾方六,刘玉立.50年泌尿男生殖系肿瘤发病和构成情况的变迁[J].中华泌尿外科杂志,2002,23(2):88-90.
    3. Brandau S, Bohle A. Bladder cancer I molecular and genetic bassi of carcinogenesis Eruo Urol 2001; 39: 491-497.
    4. Reznikoff CA, Sarkar S, Julicher KP, et al. Genetic alterations and biological pathways in human bladder cancer pathogenesis. Urol Oncol 2000; 5: 191-203.
    5. Barbacid M. Ras genes. Annu Rev Biochem 1987; 56: 779-827.
    6. Rabbani F, Cordon-Cardo C. Mutation of cell cycle regulations and their impact on superficial bladder cancer. Urol Clin Nroth Am 2000; 27: 83-89.
    7. Moriyama M, Akiyama T, Yamamoto T, et al. Expression of c-erbB-2 gene product in urinary bladder cancer. J Urol 1991; 145: 423-427.
    8. Jimenez RE, Hussain M, Binaco FJ Jr, et al. Her-2/neu overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic significance and comparative analysis in primary and metastatic tumors. Clin Cancer Res 2001; 7: 2440-2447.
    9. Messing EM. Clinical implications of the expression of epidermal growth factor receptors in human transitional cell carcinoma. Cancer Res 1990; 50: 2530-2537.
    10. Mellon K, Wright C, Kelly P, et al. Long-term outcome related to epidermal growth factor receptor status in bladder cancer. J Urol 1995; 153: 919-925.
    11. Oliner JD, Kinzler KW, Meltzer PS, et al. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358: 80-83.
    12. Shiina H, Igawa M, Shigeno K, et al. Clinical significance of mdm2 and p53expression in bladder cancer: A comparison with cell proliferation and apoptosis. Oncology 1999; 56: 239-247.
    13. Zhou H, Kuang J, Zhong L, et al. Tumor amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 1998; 20:189-193.
    14. Sen S, Zhou H, Zhang RD, et al. Amplification/overexpression of a mitotic kinase gene in human bladder cancer. J Natl Cancer Inst 2002; 94: 1320-1329.
    15. Kretzner L, Blackwood EM, Eisenman RN. Myc and Max proteins possess distinct transcriptional activities. Nature 1992; 359: 426-429.
    16. Mahdy E, Pan Y, Wang N, et al. Chromosome 8 numerical aberration and C-MYC copy number gain in bladder cancer are linked to stage and grade. Anticancer Res 2001;21: 3167-3173.
    17. Bringuier PP, Tamimi Y, Schuuring E, et al. Expression of cyclin D1 and EMS1 in bladder tumors: relationship with chromosome 11q13 amplification. Oncogene 1996;12:1747-1753.
    18. Watters AD, Latif Z, Forsyth A, et al. Genetic aberrations of c-myc and CCND1 in the development of invasive bladder cancer. Br J Cancer 2002; 87: 654-658.
    19. Duggan BJ, Kelly JD, Keane PF, et al. Molecular targets for the therapeutic manipulation of apoptosis in bladder cancer. J Urol 2001; 165: 946-965.
    20. Lu ML, Wikman F, Orntoft TF, et al. Impact of alterations affecting the p53 pathway in bladder cancer on clinical outcome, assessed by conventional and array-based methods. Clin Cancer Res 2002; 8: 171-179.
    21. Sarkis AS, Bajorin DF, Reuter VE, et al. Prognostic value of p53 nuclear overexpression in patients with invasive bladder cancer treated with neoadjuvant MVAC. J Clin Oncol 1995; 13: 1384-1390.
    22. Cote RJ, Datar RH. Therapeutic approaches to bladder cancer: identifying targets and mechanisms. Crit Rev Oncol Hematol 2003; 46 Suppl: 67-83.
    23. Nevins JR, Leone G, Degregori J, et al. Role of the RB/E2F pathway in cell growth control. J Cell Physiol 1997; 173: 233-236.
    24. Xu HJ, Cairns P, Hu SX, et al. Loss of RB protein expression in primary bladder cancer correlates with loss of heterozygosity at the RB locus and tumor progression. Int J Cancer 1993; 53: 781-784.
    25. Grossman HB, Liebert M, Antelo M, et al. p53 and RB expression predict progression in T1 bladder cancer. Clin Cancer Res 1998; 4: 829-834.
    26. Lacombe L, Orlow I, Silver D, et al. Analysis of p21AAFl/CIPl in primary bladder tumors. Oncol Res 1996; 8: 409-414.
    27. Shariat SF, Kim J, Raptidis G, et al. Association of p53 and p21 expression with clinical outcome in patients with carcinoma in situ of the urinary bladder. Urology 2003; 61: 1140-1145.
    28. Korkolopoulou P, Christodoulou P, Konstantinidou AE, et al. Cell cycle regulators in bladder cancer: a multivariate survival study with emphasis on p27Kip1. Hum Pathol 2000; 31: 751-760.
    29. Orlow I, Larue H, Osman I, et al. Deletions of the INK4A gene in superficial bladder tumors: Association with recurrence. Am J Pathol 1999; 155:105-113.
    30. Aveyard JS, Skilleter A, Habuchi T, et al. Somatic mutation of PTEN in bladder carcinoma. Br J Cancer 1999; 80: 904-908.
    31. Baffa R, Gomella LG, Vecchione A, et al. Loss of FHIT expression in transitional cell carcinoma of the urinary bladder. Am J Patho 2000; 156: 419-424.
    32. Vecchione A, Sevignani C, Giamieri E, et al. Inactivation of the FHIT gene favors bladder cancer development. Clin Cancer Res 2004; 10: 7607-7612.
    33. Gromova I, Gromov P, Celis JE. bc10: A noval human bladder cancer-associated protein with a conserved genomic structure downregulated in invasive cancer. Int J Cancer 2002; 98: 539-546.
    34. Sibley K, Cuthbert-Heavens D, Knowles MA. Loss of heterozygosityat 4pl6.3 and mutation of FGFR3 in transitional cell carcinoma.Oncogene 2001; 20: 686-691.
    35. Billerey C, Chopin D, Aubriot-Lorton MH, et al. Frequent FGFR3 mutationsin papillary non-invasive bladder (pTa) tumors. Am J Pathol 2001; 158:1955-1959.
    36. Van Rhijn BW, Lurkin I, Radvanyi F, et al. The fibroblast growth factor receptor 3(FGFR3) mutation is a strong indicator of superficial bladder cancer with lowrecurrence rate. Cancer Res 2001; 61:1265-1268.
    37. Huh JJ. Wolf JK. Fightmaster DL, et al. Transduction of adeno-virus-mediated wild-type p53 after radiotherapy in human cervical cancer cells[J]. Gvnecol Oncol,2003, 89:243-250.
    38. Senatus P B, Li Y, Mandigo C, et al. Restoration of p53 function for selective Fas-mediated apoptosis in human and rat gliom, a cells in vitro and in vivo by a p53 COOH-terminal peptide [J] .Mol Cancer Ther, 2006, 5 (1) :20 - 28.
    39. Li M, Gu FL, L WB, et al. Introduction of wild-type p53 gene downregulates the expression of H-ras gene and suppresses the growth of bladder cancer cells. Urol Res 1995; 23: 311-314.
    40. Pagliaro LC, Keyhani A, Williams D, et al. Repeated intravesical instillations of an adenoviral vector in patients with locally advanced bladder cancer : a phase I study of p53 gene therapy. J Clin Oncol 2003; 21: 2247-2253.
    41. Ries S, Korn WM. ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br J Cancer 2002; 86: 5-11.
    42. Stoeltzing O, Mccary MF, Key JS. et al. Role of hypoxia - indueible factor lalpha in gastric cancer cell growth, angiogenesis,and vesselmaturation [J]. J Natl Cancer Inst,2004, 96 (10): 946-956.
    43. Tanaka M, Koul D, Davies MA, et al. MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells. Oncogene 2000; 19:5406-5412.
    44. Small EJ, Halbi S, Dalbagni G, et al. Overview of bladder cancer trials in the cancer and leukemia group B. Cancer 2003; 97: 2090-2098.
    45. Baffa B, Letko J, McClung C, et al. Molecular genetics of bladder cancer: targets for diagnosis and thrapy. J Exp Clin Cancer Res 2006; 25: 145-160.
    46. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003 May;4(5):346-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700