聚烯烃管材脉动挤出制备及自增强机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塑料管材在建筑、市政建设、水利工程、燃气输送等领域有着广泛和重要的应用。与传统管材(铸铁管、混凝土管等)相比,具有重量轻、流动阻力小、耐腐蚀性好、密封性好、安装方便、节省能耗、寿命长等优点。因而塑料管材已成为重要的工业材料,年消耗量非常巨大。但塑料管材强度比传统管材低得多,因此提高塑料管材的强度以适应工程应用的高要求就具有重大的现实意义。除了外增强塑料管材,出于可持续发展等各方面的考虑,自增强塑料管材已成为国内外研究热点之一。
     聚合物电磁动态塑化成型加工技术和设备,通过螺杆的轴向振动,将振动力场引入到聚合物成型的整个过程,为聚合物成型加工理论和加工技术提出了新的研究方向。这一独特的加工方法深刻地影响了聚合物塑化挤出过程,使得聚合物的加工应用和理论都发生了巨大的变化。前期研究表明,振动力场的引入,可以提高制品的力学性能和外观质量。目前对于电磁动态塑化挤出成型未见有研究振动力场对塑料管材性能影响的报道。而系统地研究振动力场下管材性能与聚集态结构的变化,解释脉动挤出实现管材自增强的机理,从理论上和实验上深刻地揭示脉动挤出对聚合物产生的影响,可以为聚合物动态挤出成型提供理论指导,具有重要的科学意义和实际意义。
     本文利用电磁动态塑化挤出机,并自行设计了一个螺旋芯棒式管材机头。首先采用数值模拟方法,揭示了螺旋芯棒式管材机头流道中的聚合物熔体的流动特性,并通过实验验证了数值模拟的可靠性。结合正交试验,以螺旋分配系统出口截面处速度分布均匀性为目标,实现了螺旋芯棒式管材机头的优化设计。根据工业化生产实际情况,搭建起整个挤管实验装置。
     在工业化生产条件下,将振动力场引入到聚烯烃管材挤出成型的全过程,系统研究了振动参数对管材力学性能、热性能和聚集态结构的影响。研究结果表明,脉动挤出实现了管材的双向自增强,特别是管材周向强度得到明显提高,这对于承受内压力管材的使用具有重要意义。力学性能测试表明,对HDPE管材,与稳态相比,管材爆破压力最大提高了34.2%,轴向拉伸屈服强度最大提高了5.3%,轴向冲击强度最大提高了20.2%;对PP管材,与稳态相比,管材爆破压力最大提高了27.03%,轴向拉伸屈服强度最大提高了7.3%,轴向冲击强度最大提高了16.2%。脉动挤出提高了HDPE管材的耐热性能。当振动频率为6Hz,振幅为200μm时,HDPE管材维卡软化温度比稳态挤出时提高了3.1℃。DSC、WAXD、SEM分析测试表明,脉动挤出的聚烯烃管材熔点向高温漂移,结晶度也有所提高,结晶更加完善,晶面取向度得到提高,但晶型没有发生改变。
     耐慢速裂纹增长性是提高塑料管道耐用性的关键因素。塑料管材需具有良好的耐慢速裂纹增长性能,以确保管材的使用寿命。对脉动挤出的聚烯烃管材进行了耐慢速裂纹增长性能测试,研究了脉动挤出对HDPE管材耐慢速裂纹增长性能的影响及机理。研究发现,与稳态挤出的HDPE管材相比,脉动挤出的HDPE管材裂纹增长速率更小,脉动挤出可以提高HDPE管材的耐慢速裂纹增长性能,这对于管材的使用具有重要的现实意义。通过螺杆轴向振动引入振动力场后,有利于HDPE的成核和晶粒的长大。脉动挤出的HDPE管材结晶度提高,熔点升高,晶片变厚,晶粒尺寸变大,结晶完善,同时管材制品分子链形成了一种拟网结构,这些均有利于管材耐慢速裂纹增长性能的提高。
     基于合理的假设,考虑非定常流动,建立起数学模型。根据修正的Ostwald幂律本构方程,加载合适的动态边界条件,首次对脉动挤出条件下螺旋芯棒式管材机头流道中聚合物熔体的流动进行了全三维非牛顿等温数值模拟,同时数值模拟结果与实验结果具有较好的一致性。这为振动力场作用下机头流道内聚合物熔体流动特性的数值模拟提供了新方法和新思路。研究发现,随振动力场的引入,流道内熔体的剪切速率、粘度、剪切应力、压力和速度等呈周期性规律变化。另一方面,随着振动频率或振幅的增加,流场的剪切速率平均值有一定程度的增加,而流场的粘度平均值、剪切应力平均值和压力平均值均有一定程度的下降。
     最后本文从脉动挤出加工—聚集态结构—性能三者之间的关系出发,对聚集态结构测试结果、数值模拟得到的熔体流变性能进行分析和总结,分析了脉动挤出聚烯烃管材的自增强机理。聚烯烃管材力学性能的改善是振动力场提高结晶度、改善分子链的取向以及改善晶体形态等共同作用的结果。其中管材周向强度明显提高主要是由于螺杆轴向振动增强了管材分子链在周向的取向程度。
     上述这些研究成果丰富了聚合物动态成型加工理论和内容,加深了对脉动挤出过程中振动影响熔体流变行为、制品结构和性能的规律的认识,同时,为优化振动参数和模具设计,提供了实验数据与理论依据,对聚合物动态成型加工技术的进一步研究和推广,制备高性能的聚合物制品,具有重要的理论与现实意义。
Plastic pipes are widely and importantly used in many fields including building, municipal construction, hydraulic engineering and gas transportation etc.. Compared with traditional pipes (cast iron pipe, concrete pipe etc.), plastic pipes have multiple advantages such as low weight, small flow resistance, excellent corrosion resistance, good sealing performance, convenient installation, low energy consumption and long service life. So plastic pipes play a very important role among industrial materials and the consumptions every year are very tremendous. However, the strength of plastic pipe is much lower than traditional pipe. And in engineering applications, plastic pipes have to be reinforced to meet the high demands on strength. Besides the additive-based reinforcement plastic pipes, the self-reinforcement plastic pipes have become one of the hot topics at home and abroad based on continuous development.
     The electromagnetic dynamic plasticating processing technology and equipment for polymer provide a new research direction for polymer processing theory and technology, which introduces a vibration force field into the entire polymer process by the axial vibration of the screw. The particular processing technology has a great impact on the polymer plasticating and extrusion processing, which makes the polymer processing technology, application and theory change greatly. The previous research showed that the vibration force field can improve the mechanical properties and apparent quality of the products. But at present, no investigation has been carried out on the effect of the vibration force field on the properties of plastic pipes prepared by the electromagnetic dynamic plasticating processing technology. The detailed research on the relationship between microstructures and mechanical properties, and the self-reinforcement mechanism of plastic pipes obtained by pulsatile extrusion, and study on the impact of pulsatile extrusion on polymer by experiment and theory ways can provide the theory guidance for polymer dynamic extrusion processing, which has an important scientific and realistic significance.
     An electromagnetic dynamic plasticating extruder equipped with a specially designed spiral mandrel die for pipe was used in this work. The melt flow characteristic of the spiral mandrel die for pipe was studied by numerical simulation, and the reliability of numerical simulation was validated by experiment. Based on the orthogonal experiment, the optimum design of spiral mandrel die for pipe was achieved by aiming at the distribution uniformity of the exit velocity of the spiral distribution system. The whole experiment device for pipe extrusion was builded according to industrial production.
     The vibration force field was introduced into the whole extrusion process for polyolefins pipe under industrial production condition, and the effect of the vibration parameters on the mechanical properties, thermal properties and microstructure of plastic pipes was studied. The results showed that the circumferential strength of pipes increased significantly, and biaxial self-reinforcement pipes could be obtained by pulsatile extrusion, which has an important significance for the pipe application. When compared with the static extruded pipes, for HDPE pipes, the mechanical properties testing showed that the maximum increase of bursting pressure, tensile yield strength, and impact strength were 34.2%, 5.3%, and 20.2%, respectively. For PP pipes, they were 27.03%, 7.3%, and 16.2%, respectively. The heat resistance of HDPE pipe was also improved. When the vibration frequency is 6Hz and vibration amplitude is 200μm, the Vicat softening temperature of HDPE pipe increased 3.1℃compared with the static extrusion pipe. The DSC, WAXD and SEM analysis showed that the polyolefins pipe prepared by pulsatile extrusion had higher melting temperature, higher crystallinity, more perfect crystals and higher orientation degree of crystalline planes, but no change in the crystalline form.
     The slow crack growth resistance is the key factor to improve the plastic pipe application. The plastic pipe should have excellent slow crack growth resistance in order to ensure the service life. The slow crack growth resistance of polyolefins pipe obtained by pulsatile extrusion was investigated in this paper, and the effect and mechanism between pulsatile extrusion and slow crack growth resistance of HDPE pipe was studied. The results showed that the HDPE pipes prepared by pulsatile extrusion had lower crack growth rate, namely the slow crack growth resistance was increased by pulsatile extrusion, which has an important realistic significance for the pipe application. The vibration force field introduced by axial vibration of the screw can make the HDPE melt form crystal nuclei more easily to facilitate the growth of HDPE crystals. The HDPE pipes prepared by pulsatile extrusion had higher crystallinity, higher melting temperature, larger lamellar thickness, larger crystal sizes and more perfect crystals, and the molecular chains formed a network structure. All these were favorable for the improvement of slow crack growth resistance of HDPE pipes.
     The mathematical model was established based on reasonable assumption and time-dependent flow considered. The polymer melt flow of spiral mandrel die for pipe was firstly studied by three-dimensional non-Newtonian and isothermal numerical simulation under pulsatile extrusion, and the numerical simulation result was well consistent with the experiment result, which provided a new method and idea for the numerical simulation of the polymer melt flow characteristic in the dies under vibration force field. The research showed that the melt shear rate, viscosity, shear stress, pressure and velocity had the cycle change when the vibration force field was introduced. On the other hand, The average value of shear rate increased with the increase of the vibration frequency or amplitude, but the average value of the viscosity, shear stress and pressure decreased.
     Finally, the microstructure results and the melt rheological properties obtained by numerical simulation were discussed and summarized, and the self-reinforcement mechanism of polyolefins pipe was analyzed based on the relationships among the pulsatile extrusion process and microstructure and property. The improvement of mechanical properties of polyolefins pipe using the pulsatile extrusion process was attributed to the higher crystallinity and the improvement of the molecular orientation and of the crystalline morphology under the influence of a vibration force field. Also, the significant increase of the circumferential strength of pipe was mainly assigned to the axial vibration of the screw which improved the circumferential degree of orientation of molecular chains.
     The above research achievements enrich the theory and content of polymer dynamic processing technology, and the knowledge about the effect of the vibration on the melt rheological behavior, the product structure and properties during pulsatile extrusion. Also, the experimental data and theoretical basis are provided for the optimization of the vibration parameters and mold design. The research has an important scientific and realistic significance for the further research and popularization of the polymer dynamic processing technology and the production of high performance polymer products.
引文
[1]申长雨,陈静波,刘春太等.塑料挤出成型加工设备[J].工程塑料应用,1999,27(11):28-33
    [2]周达飞,唐颂超.高分子材料成型加工[M].北京:中国轻工业出版社,2002:217-268
    [3]刘铁民,张广成,陈挺等.XLPE在穿插法修复旧管道领域中的应用[J].塑料工业,2005,33(1):43-45
    [4]刘伯元.21世纪塑料管材发展的机遇与挑战[J].石化技术与应用,2005,23(1):1-4
    [5]刘伯元.我国塑料管材发展趋势概述[J].中国建材,2003,(3):60-63
    [6]王迎涛.我国塑料管道的应用现状及发展前景[J].科技咨讯,2007,(21):210-210
    [7]张玉川.如何进一步提高塑料管道质量的探讨[J].中国住宅设施,2005(4):17-19
    [8]张英杰,李玉松,马国玉.我国聚烯烃管材专用料的应用与开发现状[J].塑料工业,2008,36(7):1-5,10
    [9]刘汉良.我国塑料管道行业如何突破发展瓶颈[J].塑料工业,2009,37(7):71-73
    [10]塑料管道大于10%的增速不减[J].上海塑料,2009,(2):49-49
    [11]魏若奇,潘颖,华晔.聚烯烃管道系统的质量控制[J].化学建材,2009,(2):9-14
    [12]王占杰.塑料管道行业“十五”状况及“十一五”发展趋势[J].中国塑料,2007,21(1):1-7
    [13]刘新民,葛涛,杨金平等.塑料管材的发展概况及市场调查[J].塑料科技,2003,(6):41-45,49
    [14]孙逊.聚烯烃管道[M].北京:化学工业出版社,2002:16-352
    [15]张阳,孟祥考.聚烯烃管道的性质与用途[J].河北化工,2003,(6):22,28
    [16]刘益,吴世见,申开智等.聚烯烃材料的自增强研究及其现状[J].中国塑料,2001,15(6):14-20
    [17]瞿金平,秦雪梅.高分子材料成型加工过程的自增强[J].广东化工,2005,32(11):18-23,74
    [18]袁毅.在复合应力场下获取高性能凝聚态结构的聚烯烃管材的研究[D].成都:四川大学,2005
    [19] Malkovich N., Chavers R., Battjes K, et al. Mechanical and Fracture Behavior of Rigid-Rod Self Reinforced Polymers[C]. Long Beach, CA, United States: 49th International SAMPLE Symposium and Exhibiton: Materials and Processing Technology-60 Years of SAMPLE Progress, SAMPLE 2004,2004,49: 3356-3362
    [20] Motamedi F., Isomaki M., Trimmer M. S., et al. Molecular Characteristics of Self-reinforced Thermoplastic Polyphenylenes[C]. Atlanta, GA, USA: Proceedings of the 1998 56th Annual Technical Conference, ANTEC, 1998,2: 1772-1776
    [21]陈军,倪海鹰,申开智.自增强聚烯烃复合材料挤出成型技术的进展[J].中国塑料,1999,13(3):1-6
    [22] Odell J.A., Grubb D.T., Keller A. New Route to High Modulus Polyethylene by Lamellar Structures Nucleated onto Fibrous Substrates with General Implications for Crystallization Behavior[J]. Polymer, 1978, 19(6): 617-626
    [23] Odell J.A., Grubb D.T., Keller A. High Modulus Through Lamellar Structures Nucleated by Flow Induced Fibrous Substrates[J]. Polymer Engineering and Science, 1978, 19(6): 433-435
    [24] Ehrenstein G.W., Maertin C.L., Kassel. Kunstoffe, 1985, 75(2):105-109
    [25] Isayev A.I., Modic M. Self-Reinforced Melt Processible Polymer Composites: Extrusion, Compression, and Injection Molding[J]. Polymer Composites, 1987,8(3): 158-175
    [26] Isayev A.I., M.J. Modic. Self-Reinforced Melt Processible Polymer Composites[C]. Boston, MA, USA: Antec 86-Conference Proceedings-Society of Plastics Engineering 44th Annual Technical Conference & Exhibit, 1986: 573-579
    [27] Obadal M., Cermak R., Stoklasa K., et al. Extrusion of Self-Reinforced Polyethylene[J]. Plastics, Rubber and Composites. 2004, 33(7): 295-298
    [28] Pornnimit B., Ehrenstein G.W. Extrusion of Self-Reinforced Polyethylene[J]. Advances in Polymer Technology. 1992, 11(2): 91-98
    [29] Bashir Z., Odell J.A. Polyethylene-Polyethylene Microfibrillar Composites[J]. Journal of Materials Science. 1993,28(4): 1081-1089
    [30] Bashir Z., Odell J.A., Keller A. Stiff and Strong Polyethylene With Shish Kebab Morphology by Continuous Melt Extrusion[J]. Journal of Materials Science. 1986, 21(11): 3993-4002
    [31]黄汉雄.自增强HDPE棒材的制备与结构形态[J].合成树脂及塑料,1997,14(4):45-48
    [32] Huang H.X. Continuous Extrusion of Self-Reinforced High Density Polyethylene[J]. Polymer Engineering and Science. 1998, 38(11):1805-1811
    [33]黄汉雄,彭玉成.HDPE熔体连续挤出自增强的研究(Ⅰ):机头压力与温度对自增强试样结构与性能的影响[J].高分子材料科学与工程,1999,15(3):146-149
    [34]黄汉雄,彭玉成.HDPE熔体连续挤出自增强的研究(Ⅱ):自增强试样横截面上性能的不均匀性[J].高分子材料科学与工程,1999,15(4):162-163
    [35]申开智,胡文江,向子上等.聚丙烯在单向拉伸力场中形成双向自增强片材及其结构与性能的研究[J].高分子材料科学与工程,2002,18(1):145-148
    [36]陈军,胡文江,申开智.临界状态下温度对挤出自增强PP片材结构性能的影响[J].中国塑料,2002,16(8):81-83
    [37]陈军,申开智,倪海鹰等.近熔点状态下聚乙烯在收敛流道模具连续挤出自增强[J].塑料工业,2002,30(1):26-27,34
    [38]郭建明,吴世见,欧阳初等.在复合外场中形成HDPE双向拉伸自增强片材[J].塑料工业,2003,31(5):28-30
    [39]郭建明,欧阳初,吴世见等.挤出成型温度对HDPE双向自增强片材形态结构及性能的影响[J].高分子材料科学与工程,2003,19(5):164-167
    [40]瞿金平,胡汉杰.聚合物成型原理及成型技术[M].北京:化学工业出版社,2001:116-318
    [41] Casulli J., Clermont J.R. The Oscillating Die: A Useful Concept in Polymer Extrusion[J]. Polymer Engineering and Science, 1990, 30(23): 1551-1556
    [42] Fridman M.L., Peshkovsky S.L., Vinoqradov G.V. The Rheology of Thermoplastics under Conditions of Spiral Flow and Vibrations on Extrusion[J]. Polymer Engineering and Science, 1981, 21(12): 755-767
    [43] Fridman M L, Peshkovsky S L. Molding of Polymers under Conditions of Vibration Effects[J]. Advances in Polymer Science, 1990, 93: 43-79.
    [44] Wong C.M., Chen C.H. Flow of Thermoplastics in An Annular Die under Parallel Oscillation[J]. Polymer Engineering and Science, 1990, 30(24): 1574-1584
    [45] Isayev A.I., Wong C.M., Zeng X. Effect of Oscillations During Extrusion on Rheologyand Mechanical Properties of Polymers[J]. Advance in Polymer Technology, 1990, 10(1): 31-45
    [46]李云涛,郭少云,陈光顺等.超声辐射对HDPE加工及力学性能的影响[J].高分子材料科学与工程,1999,15(6):142-144
    [47] Chen G.S., Guo S.Y., Li H.L. Ultrasonic Improvement of the Compatibility and Rheological Behavior of High-Density Polyethylene/Polystyrene Blends[J]. Journal of Applied Polymer Science, 2002, 86(1): 23-32
    [48] Guo S.Y., Li Y.T., Chen G.S. Ultrasonic Improvement of Rheological and Processing Behavior of LLDPE during Extrusion[J]. Polymer International, 2003, 52(1): 68-73
    [49] Chen G.S., Guo S.Y., Li H.L. Ultrasonic Improvement of Rheological Behavior of Polystyrene[J]. Journal of Applied Polymer Science, 2002, 84(13): 2451-2460
    [50] Cao Y.R., Li H.L. Influence of Ultrasond on the Processing and Structure of Polypropylene during Extrusion[J]. Polymer Engineering and Science, 2002, 42(7): 1534-1540
    [51]曹玉荣,李惠林.超声辐射对聚丙烯加工及结构性能的影响[J].高分子材料科学与工程,2001,17(3):146-149
    [52]高雪芹,申开智,陈长森.振动挤出对HDPE力学性能及凝聚态结构的影响[J].高分子材料科学与工程, 2006, 22(2):197-200
    [53]高雪芹,申开智,陈长森.HDPE在振动场中挤出成型时的流变行为[J].工程塑料应用, 2006, 33(8):35-37
    [54] Gao X.Q., Zhang J., Chen C.S., et al. Effect of Vibration on High-Density Polyethylene [J]. Journal of Applied Polymer Science, 2007, 106(1): 552-557
    [55]瞿金平.电磁动态塑化挤出方法及设备[P].中国:90101034,1992-11-25
    [56] Qu J.P. A method and equipment for the electromagnetic dynamic plasticating extrusion of polymers[P]. US: 5217302, 1993-06-08
    [57] Qu J.P. A method and equipment for the electromagnetic dynamic plasticating extrusion of polymers[P]. EP: 444306, 1995-03-29
    [58]瞿金平.聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005:1-118
    [59]瞿金平.振动力场下聚合物塑化挤出技术研究[J].工程塑料应用,2000,28(11):11-14
    [60]吴宏武,周南桥,何和智等.电磁动态塑化挤出性能的研究[J].中国塑料,1996,10(1):53-58
    [61] Qu J.P. Study on the Pulsating Extrusion Characteristics of Polymer Melt through Round-Sectioned Die[J]. Polymer-Plastics Technology and Engineering, 2002, 41(1): 115-132
    [62] Qu J.P., Zeng G.S., Feng Y.H., et al. Effect of Screw Axial Vibration on Polymer Melting Process in Single-Screw Extruders[J]. Journal of Applied Polymer Science, 2006, 100(5): 3860-3876
    [63] Luo W.H., Zhou N.Q., Zhang Z.H., et al. Effects of Vibration Force Field on Structure and Properties of HDPE/CaCO3 Nanocomposites[J]. Polymer Testing, 2006, 25(1): 124-129
    [64] Li B., Zhou N.Q., Zhang Z.H., et al. Study on Mechanical Properties and Molecular Aggregate of the Dynamic Extrusion Polymer System[J]. Polymer-Plastics Technology and Engineering, 2007, 46(3): 293-298
    [65]瞿金平,卿艳梅,田野春等.塑料电磁动态塑化挤出机加工制品的力学性能[J].塑料工业,2000,28(5):23-24
    [66]周南桥,罗卫华,占国荣等.振动对mLLDPE加工影响的研究[J].工程塑料应用,2004,32(12):25-27
    [67]周南桥,罗卫华,占国荣等.振动力场对m-PE-LLD薄膜拉伸强度的影响[J].中国塑料,2005,19(2):62-64
    [68]占国荣.mLLDPE挤出吹塑机理及技术的研究[D].广州:华南理工大学,2004
    [69] Zhou N.Q., Zhang P., Wu H.W., et al. An Electromagnetic Dynamic Film Blowing Technology for mLLDPE[J]. Journal of Applied Polymer Science, 2006, 101(3): 83-89
    [70]秦雪梅,瞿金平,曹贤武等.振动塑化挤出对聚烯烃片材性能的影响[J].现代塑料加工应用,2006,18(3):33-36
    [71] Qi X.M., Qu J.P., Cao X.W. Structure and Properties of Vibrating Extruded High-Density Polyethylene Sheet[J]. Polymer Bulletin, 2006, 56(6): 607-618
    [72] Qu J.P., Qi X.M., Cao X.W., et al. Effect of Vibrating Extrusion on the Structure and Mechanical Properties of Isotactic Polypropylene[J]. Polymer-Plastics Technology and Engineering, 2006, 45(9): 1065-1071
    [73]瞿金平,朱旭,曹贤武等.快速冷却条件下螺杆轴向振动对HDPE挤出制品拉伸性能的影响[J].工程塑料应用,2008,36(5):40-43
    [74]刘泽,瞿金平,向华.衣架式机头动态挤出PP的力学性能[J].塑料工业,2007,35(5):33-36
    [75] Jiang L., Shen K.Z., Ji J.L., et al. A mandrel-rotating die to produce high-hoop-strength HDPE pipe by self-reinforcement[J]. Journal of Applied Polymer Science, 1998, 69(2): 323-328
    [76] Gross B. UK Patent, No 946371, 1964
    [77] Shepherd G.W., Clark H.G., Pearsall G.W. Extrusion of Polymer Tubing Using A Rotating Mandrel[J]. Polymer Engineering and Science, 1976, 16(12): 827-830
    [78] Debereev R.Y., Zuev B.M., Bezruk L.I., et al. International Journal of Polymeric Material, 1974, 3: 177
    [79] Worth R.A. Polymer Engineering and Science, 1980, 20: 551
    [80] Bush S.F., et al. 6th International Conference. Plastic Pipes, 1985: 47
    [81] Zachariades A.E., Chung B. Morphological and Mechanical Property Studies of Polymer Extrudates Obtained by The Rotatonal Extrusion Process[J]. Annual Technical Conference-Society of Plastics Engineers, 1986: 965-967
    [82]申开智,蒋龙,吉继亮.自增强塑料管材的制备方法及装置[P].中国:97107852.1,1999-07-07
    [83]蒋龙,申开智,吉继亮.高耐压HDPE自增强管挤出系统及试样的结构与性能[J].高等学校化学学报,1998,19(4):638-641
    [84]申开智.能同时获得周向和轴向自增强塑料管的装置[P].中国:200620033682.7,2007-04-18
    [85]王琪,张杰,郭岳等.一种高性能聚合物管材的制备方法及其装置[P].中国:200810045785.9,2009-01-07
    [86]唐志玉.挤塑模设计[M].北京:化学工业出版社,1997:93-101
    [87] Parnaby J., Hassan G.A., Helmy H.A.A., et al. Design of Plastics Processing Machinery Using Lumped Parameter Methods[J]. Plastics and Rubber Processing and Application, 1981, 1(4): 303-315
    [88] Procter B. Analysis for Extrusion Die Design[C]. SPE Annu Tech Conf’29, 1971:211-218
    [89] Procter B. Flow Analysis in Extrusion Dies[J]. SPE Journal, 1972, 28(2): 34-41
    [90]钱端伟.螺旋芯棒薄膜机头设计的理论计算[J].塑料,1982,(4):6-17
    [91] Wortberg J., Schmitz K.P. Design and Optimisation of A Spiral Mandrel Die[J]. Kunststoffe, 1982, 72(4): 8-13
    [92] Helmy H.A.A., Worth R.A. Design of Polymer Melt Extrusion Dies to Avoid Non-Uniformity of Flow[C].Naples, Italy: Plastics in Medicine and Surgery(International Conference), 1980(3): 69-76
    [93] Cheng C.Y. Screw and Die Designing for HDPE Blown Film[J]. Polymer-Plastics Technology and Engineering, 1981, 17(1): 45-58
    [94] Rauwendaal C. Flow Distribution in Spiral Mandrel Dies[J]. Polymer Engineering and Science, 1987, 27(3): 186-191
    [95] Saillard P., Agassant J.F. Polymer Flow in A Spiral Mandrel Die for Tubular Films[J]. Polymer Process Engineering, 1984, 2(1): 37-52
    [96] Saillard P. These Docteur-Ingenieur, Sophia Antipolis, Valbonne, France, Dec, 1982
    [97] Perdikoulias J., Vlcek J., Vlachopoulos J. Polymer Flow Through Spiral Mandrel Dies: A Comparison of Models[J]. Advances in Polymer Technology, 1987, 7(3): 333-341
    [98] Vlcek J., Kral V., Kouba K. The Calculation of The Form of A Spiral Mandrel[J]. Plastics and Rubber Processing and Applications, 1984, 4(4): 309-315
    [99] Vlcek J., Vlachopoulos J., Perdikoulias. International Polymer Process, 1988,2: 174-181
    [100] Fahy E.J., Gilmour P.W. A Finite Element Analysis of Generalized Newtonian Fluids Through Spiral Mandrel Dies[J]. International Journal for Numerical Methods in Engineering, 1986, 23: 1-11
    [101] Perdikoulias J., Vlcek J., Vlachopoulos J. An Experimental Evaluation of Flow Distribution Models for Spiral Mandrel Dies[J]. Advances in Polymer Technology, 1990, 10(2): 111-123
    [102] Perdikoulias J., Vlcek J., Vlachopoulos J. Predicting Flow Performance of Spiral Mandrel Dies[J]. Journal of Plastic Film and Sheeting, 1989, 5: 18-31
    [103] Benkhoucha K., Sebastian D.H. SPE Antec, 1989: 1774
    [104] Perdikoulias J., Tzoganakis C., Vlachopoulos J. Flow Visualization and ResidenceTime Distribution in Spiral Mandrel Dies[J]. Plastics and Rubber Processing and Applications, 1989, 11(1): 59-66
    [105] Perdikoulias J., Tzoganakis C., Penlidis A. Residence Time Distribution in Spiral Mandrel Die Design[C]. SPE ANTEC, 1994, 1: 35-37
    [106] Huang C.C. A Systematic Approach for The Design of A Spiral Mandrel Die[J]. Polymer Engineering and Science, 1998, 38(4): 573-582
    [107]黄汉雄,彭玉成.对螺旋芯棒吹膜机头的系统分析[J].中国塑料,1989,3(1):64-70
    [108]李志华、李桂香.螺旋芯棒式机头螺纹流道的流变学分析[J].塑料加工应用,2000,22(4):5-7
    [109]占国荣,周南桥.螺旋芯棒薄膜机头的计算机辅助设计[J].塑料,2003,32(5):74-77,73
    [110]申长雨,李海梅.塑料模具CAE技术概况及发展趋势[J].工程塑料应用,2001,29(2):40-43
    [111] Wen S.H., Liu T.J., Tsou J.D. Three-Dimensional Finite Element Analysis of Polymeric Fluid Flow in An Extrusion Die. PartⅠ: Entrance Effect[J]. Polymer Engineering and Science, 1994, 34(10): 827-834
    [112] Evan M. Three-Dimensional Non-Newtonian Computations of Extruder Swell with the Finite Element Method[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 180(3):333-344
    [113]李学章,郭奕崇.管材挤出模具新型压缩段流道的研究[J].北京化工大学学报,2005,32(3):103-105
    [114]彭炯,陈晋南.计算流体力学在口模设计中的应用[J].现代塑料加工应用,2001,13(6):31-33
    [115] Huang Y.H., Gentle C.R., Hull J.B. A Comprehensive 3-D Analysis of Polymer Melt Flow in Slit Extrusion Dies[J]. Advances in Polymer Technology, 2004, 23(2): 111-124
    [116]宿果英,杨卫民,丁玉梅.L形片材挤出机头流道压力分布三维有限元分析[J].合成橡胶工业,2001,24(5):288-290
    [117]张先明,陆永胜,贾毅.鱼尾型片材机头内熔体流动的三维有限元模拟[J].现代塑料加工应用,2003,15(6):42-45
    [118]周宏志,江波.衣架机头三维数值模拟[J].橡塑技术与装备,2005,31(2): 1-5
    [119]陈晋南,吴荣方.数值模拟橡胶挤出口模内熔体的非等温流动[J].北京理工大学学报,2008,28(7):626-630
    [120] Coyle D.J., Perdikoulias. Flow Simulation and Visualization in Spiral Mandrel Dies[J]. ANTEC’91, 1991: 2445-2447
    [121] Skabrahova P., Svabik J. A Non-Isothermal 3D FEM Study of Spiral Mandrel Dies with Non-Symmetrical Input[J]. ANTEC’2003, 2003: 305-309
    [122] Sun Y., Gupta M. An Analysis of the Effect of Elongational Viscosity on the Flow in a Spiral-Mandrel Die[J]. Advances in Polymer Technology, 2006: 90-97
    [123]辛业波,冯连勋.螺旋芯棒吹膜机头的优化设计[J].橡塑技术与装备,2007,33(9):1-4
    [124]冯彦洪,瞿金平,何和智.振动力场作用下聚合物熔体单螺杆挤出过程数值模拟[J].塑料工业,2002,30(6): 27-30
    [125]陈达,冯彦洪,瞿金平.振动力场下单螺杆挤出机聚合物熔融过程模拟[J].现代塑料加工应用,2006,18(2): 44-48
    [126]柳和生,吴晓.入口压力振动对聚合物熔体在异型材挤出口模内流动的影响[J].塑性工程学报,2004,11(4): 85-91
    [127]柳和生,吴晓,李绅元等.振动场作用下聚合物熔体在异型材挤出口模内的充填流动分析[J].高分子材料科学与工程,2005,21(2): 20-23
    [128] Dipl.Ing.W.Ast. Tubular Film and Pipe Extrusion Moulds with Spiral Spreader[J]. Kunststoffe, 1976, 66(4): 2-5
    [129] Dobrowsky J., Vienna. Spiral Mandrel Distributor Dies for Pipe Production[J]. Kunststoffe, 1988, 78(4): 10-13
    [130] Fischer P. Dies for Multi-layer Pipe Extrusion[J]. Kunststoffe, 2001, 91(8): 142-145
    [131] Stieglitz H. Design Criteria for Spiral Mandrel Distributor[J]. Kunststoffe, 2002, 92(8): 10-11
    [132]毛维友,汪映寒,林师沛.挤管用螺旋芯模机头内熔体流动分析[J].高分子材料科学与工程,1992,(4): 99-107
    [133]吴卫平.用于管材加工的螺旋机头[J].塑料工业,1991,(4): 30-34
    [134]张文明,许乾慰,薛平.螺旋式管材机头内熔体流动的计算机模拟[J].塑料工业,2006,34(增刊):184-189
    [135]杨海龙.螺旋式管材机头的结构参数分析及流动模拟[D].北京:北京化工大学,2005
    [136]周殿明,张丽珍.塑料管挤出成型简明技术手册[M].北京:化学工业出版社,2006:97-158
    [137]申长雨.塑料模具计算机辅助工程[M].郑州:河南科学技术出版社,1998:110-231
    [138]杨广军,黄醒春,申长雨等.塑料型材挤出模CAE技术的研发状况[J].塑料科技,2004,(4):35-41
    [139]唐志玉.塑料挤塑模与注塑模优化设计[M].北京:机械工业出版社,2000:1-12
    [140] W.迈切里.塑料橡胶挤出模头设计[M].第二版,李吉,王淑香译.北京:中国轻工业出版社,2000:45-73
    [141]陈晋南,吕静,胡冬冬.数值模拟在挤出机头中的应用[J].中国塑料,2003,17(1):19-24
    [142]刘芳.基于三次准均匀B样条理论的异向双螺杆元件设计新方法的研究与开发[D].北京:北京化工大学,2005
    [143] Fluent Inc. POLYFLOW 3.10 User’s Guide[M]. Chapter 1: 1-10; Chapter 24: 1-11, 2003
    [144]马文琦,孙红镱.塑料成型模拟软件技术基础与应用[M].北京:中国铁道出版社, 2006:148-273
    [145]文劲松,麻向军,刘斌等.塑料成型加工模拟技术及软件应用[J].计算机辅助工程,2003,(4):56-62
    [146]文劲松,麻向军,刘斌.塑料成型加工模拟软件POLYFLOW的应用[J].广东塑料,2004,(3):7-9
    [147]麻向军,彭响方,文劲松.POLYFLOW软件在挤出成型中的应用[J].塑料加工, 2005,40(6):42-45
    [148] GB/T 10798-2001,热塑性塑料管材通用壁厚表[S].北京:中国标准出版社,2002
    [149]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997:3-22
    [150]刘小平,张敏,刘晶等.商用软件GAMBIT的解析和应用[J].南京工业大学学报(自然科学版),2008,30(1):101-104
    [151]庄楚强,吴亚森.应用数理统计基础[M].第二版.广州:华南理工大学出版社,2005:427-446
    [152]申开智.塑料成型模具[M].北京:中国轻工业出版社,2000:315-323
    [153]曾幸荣,吴振耀.高分子近代测试分析技术[M].广州:华南理工大学教材供应中心, 2007:89-118
    [154]张美珍.聚合物研究方法[M].北京:中国轻工业出版社,2006:25-122
    [155]徐僖,王琪.聚合物在加工过程中预期结构化、可视化、在线检测和计算机模拟-第13届国际聚合物加工会议述评[J].塑料工业,1998,26(1):69-71,80
    [156] Ibar J.P. Control of Polymer Properties by Melt Vibration Technology: a Review[J]. Polymer Engineering and Science, 1998, 38(1): 1-20
    [157]吴宏武.脉动压力诱导聚合物注射成型熔体行为、聚集态结构与性能研究[D].广州:华南理工大学,2007
    [158]傅强.聚烯烃注射成型—形态控制与性能[M].北京:科学出版社,2007:1-35
    [159] Zhang J., Zhu J., Lei Y.W., et al. Mechanical Property, Thermal Property and Crystal Structure of Isotactic Polypropylene Samples Prepared by Vibration Injection Molding[J]. Polymer Bulletin, 2008, 59(6): 855-864
    [160] Li Y.B., Shen K.Z. Effect of Low-frequency Melt Vibration on HDPE Morphology[J]. Polymer International, 2009, 58(5): 484-488
    [161] Chen K.Y., Zhou N.Q., Liu B., et al. Effect of Vibration Extrusion on the Structure and Properties of High-Density Polyethylene Pipes[J]. Polymer International, 2009, 58(2): 117-123
    [162] Chen K.Y., Zhou N.Q., Liu B., et al. Improved Mechanical Properties and Structure of Polypropylene Pipe Prepared under Vibration Force Field[J]. Journal of Applied Polymer Science, 2009, 114(6): 3612-3620
    [163]吴国贞.塑料管材[M].北京:中国轻工业出版社,1996:1-4
    [164]吴世见.在特殊外场下挤出HDPE自增强管的性能与结构[D].成都:四川大学,2002
    [165]史新妍,刘光烨.塑料材料及制品的高性能化技术进展[J].橡塑技术与装备,2001,27(5):1-7
    [166]郭建明.在复合外场下获取高性能聚烯烃片材及其形态结构与性能的研究[D].成都:四川大学,2003
    [167]郑伟.剪切拉伸应力场中挤出聚烯烃多组分体系管材结晶行为及其他结构性能变化的研究[D].成都:四川大学,2007
    [168] Li Z.M., Qian, Z.Q., Yang M.B., et al. Anisotropic Microstructure-Impact Fracture Behavior Relationship of Polycarbonate/Polyethylene Blends Injection-Molded at Different Temperatures[J]. Polymer, 2005, 46(23): 10466-10477
    [169]瞿金平.振动力场作用下聚合物熔体输送和挤出过程及其行为与响应研究[D].成都:四川大学,1999
    [170] Du Y.X., Qu J.P. Phase Morphology Control of Immiscible Polymer Blends under Vibration Force Field[J]. Journal of Applied Polymer Science, 2006, 102(3): 2299-2307
    [171]董孝理.对承压塑料管的50a使用寿命的理解[J].中国塑料,2000,14(11):85-89
    [172]董孝理.塑料压力管的力学破坏和对策[M].北京:化学工业出版社,2006:43-89
    [173]杨文涛.HDPE管材行业的发展[J].合成树脂及塑料,2006,23(3):80-83
    [174]唐岩,毕丽景,李延亮.PE管材发生慢速裂纹扩展的影响因素[J].合成树脂及塑料,2003,20(3):52-54
    [175]赵启辉.聚乙烯承压管道及原料耐慢速裂纹增长测试标准及实验要求[J].中国塑料,2008,22(10):90-94
    [176] Lu X.C., Ishikawa N., Brown N. The Critical Molecular Weight for Resisting Slow Crack Growth in a Polyethylene[J]. Journal of Polymer Science, Part B(Polymer Physics), 1996, 34(8): 1809-1813
    [177] Hubert L., David L., Seguela R., et al. Physical and Mechanical Properties of Polyethylene for Pipes in Relation to Molecular Architecture,Ⅰ: Microstructure and Crystallization Kinetics[J]. Polymer, 2001, 42(20): 8425-8434
    [178] Hubert L., David L., Seguela R., et al. Physical and Mechanical Properties of Polyethylene for Pipes in Relation to Molecular Architecture,Ⅱ: Short-Term Creep of Isotropic and Drawn Materials[J]. Journal of Applied Polymer Science, 2002, 84(12): 2308-2317
    [179] Huang Y.L., Brown N. The Dependence of Butyl Branch Density on Slow Crack Growth in Polyethylene: Kinetics[J]. Journal of Polymer Science, Part B(Polymer Physics), 1990, 28(11): 2007-2021
    [180] Huang Y.L, Brown N. Dependence of Slow Crack Growth in Polyethylene on Butyl Branch Density: Morphology and Theory[J]. Journal of Polymer Science, Part B (Polymer Physics), 1991, 29(1): 129-137
    [181] Bohm L.L., Enderle H.F, Fleibner M. High-Density Polyethylene Pipe Resins[J]. Advanced Materials, 1992, 4(3): 234-238
    [182]曹胜先,孟凡瑞,郭仕莲.双峰PE80级管材专用树脂的开发[J].现代塑料加工应用,2005,17(5):25-27
    [183]唐岩,王群涛,石志俭等.PE100级管材专用树脂的开发[J].合成树脂及塑料,2005,22(5):5-8
    [184]唐伟家.Borealis推出压力管材级PE新牌号[J].现代塑料加工应用,2008,20(1):36-36
    [185]柴永庆,王群涛,何雪莲等.管材树脂耐慢速裂纹增长性能快速评价方法[J].合成树脂及塑料,2009,26(4):81-84
    [186]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990:34-102
    [187] Li Z.M., Li L.B., Shen K.Z., et al. Transcrystalline Morphology of an in situ Microfibrillar Poly(ethylene terephalate)/Poly(propylene) Blend Fabricated through a Slit Extrusion Hot Stretching-Quenching Process[J]. Macromolecular Rapid Communications, 2004, 25(4): 553-558
    [188] Lu X., Mcghie A., Brown N. The Dependence of Slow Crack Growth in Polyethylene Copolymer on Test Temperature and Morphology[J]. Journal of Polymer Science, Part B(Polymer Physics), 1992, 30(11): 1207-1214
    [189] Zhou Z., Brown N., Crist B. Slow Crack Growth in Blends of HDPE and Model Copolymers[J]. Journal of Polymer Science, Part B(Polymer Physics), 1995, 33(7): 1047-1051
    [190] Soares J.B.P., Abbott R.F., Kim J.D. Environmental Stress Cracking Resistance of Polyethylene: the Use of CRYSTAF and SEC to Establish Structure-Property Relationships[J]. Journal of Polymer Science, Part B(Polymer Physics), 2000, 38(10):1267-1275
    [191]林师沛,赵洪,刘芳华.塑料加工流变学及其应用[M].北京:国防工业出版社,2008:62-71
    [192]张娟.振动力场作用下聚合物熔体本构方程的研究[D].广州:华南理工大学,2003
    [193] Xue S.C., Tanner R.I. and Phan-Thien N. Three-Dimensional Numerical Simulations of Viscoelastic Flows-Predictability and Accuracy[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 180(3): 305-331
    [194] Rasmussen H.K. Time-Dependent Finite-Element Method for the Simulation of Three-Dimensional Viscoelastic Flow with Integral Models[J]. Journal of Non-Newtonian Fluid Mechanics, 1999, 84(2): 217-232
    [195] Debbaut B. Non-Isothermal and Viscoelastic Effects in the Squeeze Flow between Infinite Plates[J]. Journal of Non-Newtonian Fluid Mechanics, 2001, 98 (1): 15-31
    [196] Oliveira P.J., Miranda A.I.P. A Numerical Study of Steady and Unsteady Viscoelastic Flow Past Bounded Cylinders[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 127 (1): 51-66
    [197] Boutabaa M., Helin L., Mompean G., etc. Numerical Study of Dean Vortices in Developing Newtonian and Viscoelastic Flows through a Curved Duct of Square Cross-Section[J]. Comptes Rendus Mecanique, 2009, 337 (1): 40-47
    [198]潘映雪.毛细管脉动挤出过程中聚合物熔体幂律定律的修正[D].广州:华南理工大学,2006
    [199] Qu J. P., Zhang X. M. Modeling of Coat-Hanger Die Under Vibrational Extrusion[J]. Journal of Applied Polymer Science, 2008, 107(2): 1006-1019
    [200]张杰.聚合物熔体在振动场中注塑行为和试样性能与凝聚态结构的研究[D].成都:四川大学,2002
    [201]张娟,瞿金平.振动剪切场对聚合物熔体缠结密度的影响机理[J].华南理工大学学报(自然科学版),2003,31(4):1-5
    [202]张娟,瞿金平.振动力场下聚合物熔体缠结密度理论研究[J].塑料科技,2002,(4):1-5
    [203]王贵恒.高分子材料成型加工原理[M].北京:化学工业出版社,2002:67-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700