灯泡贯流式水轮机协联关系及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小水电约占我国水电装机及发电量的30%,其中灯泡贯流式水轮机占一定份额。在设计阶段考虑到少弃水的因素,使灯泡贯流式水轮机的临界弃水点向低水头侧移动,导致运行偏离最优工况。另外其桨叶与导叶在运行中的均可调性,以及其低水头、大流量的特点,常常使真机协联不能最优,从而使得水轮机效率低、稳定性差。一直以来,灯泡贯流水轮机协联关系的科研是从设计角度出发、基于水轮机模型试验的研究,而从实际运行角度出发,基于真机协联关系的研究,在理论上一直没有得到很好的解决,而且在真机协联关系发生变化的过程中,水轮机内部流场的运动特性、动力特性、内部漩涡变化机理,以及与灯泡贯流水轮机协联关系外特性性能的内在规律,很少有人做过深入研究,实际上这些问题时刻影响着水轮机效率及稳定性,故研究灯泡贯流式水轮机的协联关系及性能对于提高机组效率及稳定性具有非常重要的意义。本文以灯泡贯流机组为研究对象,进行了7-9m水头区间的水轮机协联关系及其性能研究。
     本文主要研究工作:首先,在原水轮机模型试验成果的基础上,进行了协联工况的计算策略研究,得到计算真机协联关系。然后,对协联工况的水轮机内部流场的运动特性、动力特性、内部漩涡变化机理进行研究,针对流场不稳定流动进行水轮机流固耦合计算。最后,通过真机协联试验,对计算与分析结论进行验证,并在此基础上对水轮机协联工况及优化运行进行预测及应用。
     通过研究得到求取灯泡贯流式水轮机真机协联关系的理论研究方法,解决了设计协联失真的缺陷;得到7-9m水头灯泡贯流式水轮机协联关系、出力、效率、流量等特性曲线;通过对协联工况的动力特性研究发现:在定常流场下,叶片根部流动分离的程度、全流道流场速度、以及其叶片正背面压差均随协联外特性参数按规律变化,非定常流场下,得到前流道、转轮、尾水管内流向涡涡核Hn随协联工况的变化规律,其规律也是外特性参数变化的内部机理;通过协联工况的运动特性研究发现:非定常流场下全流道不同部位流向涡演变周期不同,导致了水轮机各部位的不同振型,此为水轮机协联工况振动的内部变化机理;依据以上研究成果准确预测了灯泡贯流水轮机7-9m水头的全协联工况,设计了灯泡贯流式水轮机基于协联工况的机组优化运行方案,试验验证此优化设计正确、可行。
Small hydropower accounts for about30%of installed and power generation capacity of China's hydropower. Among them, the share of the bulb tubular turbine is considerable. Considering of less abandoned water in the design,it prefer to move the critical abandoned water point of bulb turbine to the low head side, which leads to the deviation from optimal conditions. In addition, the blades and guide vanes are adjustable in operation, and the characteristics of the low water head and large flow, which often make the real machines combination is not optimal, so as to the turbine's low efficiency and poor stability. For a long time, the study of the combination relationship of bulb turbine is based on the design and the research of turbine model test. While from the practical operation, the research of the association relationship of real machine research has not been solved very well in theory. And there has no in-depth research in the change process of association relationship of real machine, the internal flow field movement characteristics, the dynamic characteristics and internal vortex change mechanism of the turbine, as well as the Inherent law of the external characteristics of the association relationship of bulb turbine. In fact, these problems affects the turbine's efficiency and stability, therefore, it is significant to study the association relationship of bulb tubular turbine and its performance to enhance the efficiency and stability. This paper researches the bulb tubular turbine combination relationship and its performance at the head of7-9m.
     The main research work of this paper: At first, it on the basis of the original water turbine model's test results, researches the Computing strategy of the combination conditions, and got the association relationship of real machine. Then, it studies the internal flow field movement characteristics, dynamic characteristics and the internal vortex change mechanism. And it calculates turbine's coupled fluid-structure in unstable flow. At last, it verifies this calculation and analysis of the results which associated with real machine test, and forecasts the turbine combination conditions and its optimizing operation and then applies it.
     This paper gets the research methods of the relationship of bulb tubular turbine, and solves the universal defect of the combination design. And it also obtained the bulb tubular turbine combination relationship, output, efficiency, flow characteristic curves at the head of7-9m.Through the study of dynamic characteristics it has found the flow separation in blade root, full port flow velocity, and the differential pressure of the blade were changed with external characteristic parameters of combination in the steady flow. And in the unsteady flow, the internal mechanism of the change of combination conditions in the front runners, runner and flow vortex Hn of draft tube has got. Besides, through the research on motion characteristics, it has been found that the evolution cycle of flow vortex is different at different positions of the full port in unsteady flow field, which leads to the different modes of vibration in different parts, this is the internal change mechanism of turbine vibration in combination conditions. Moreover, the water turbine full combination condition of7-9m head has predicted successfully based on the above research results, and optimizing operation scheme of combination conditions has got,as well as great benefit.
引文
[1]史丹.全球能源格局变化及对中国能源安全的挑战[J].中外能源,2013,18(2):1-5
    [2]史丹.冯永晟.深化中国能源管理体制改革[J].中国能源,2013,35(1):6-11
    [3]温鸿钧.核电与水电结合发展是能源可持续发展的核心[J].中国三峡,2013,5
    [4]张超,陈武.关于我国2050年水电能源发展战略的思考[J].北京理工大学学报(社会科学版),2002,51(4):63-66
    [5]郑守仁.我国水电能源开发利用及环境与生态保护问题探讨[J].中国工程科学,2006,06
    [6]景春梅.中国能源环境政策最新进展[J].国际石油经济,2013,4
    [7]江毅.“十二五”水电发展规划评述[J].东方电气评论,2013,27,36-39
    [8]吴蕴臻.优先发展我国水电能源的思考[J].水利经济,2011,29(3):28-33
    [9]马一太,邢英丽.我国水力发电的现状与前景[J].能源工程,2003,4:1-3
    [10]胡永平.水力发电前景与趋势[J].科技天地,2005:44
    [11]陆佑楣.我国水电开发与可持续发展[J].水力发电,2005,31(2):1-4
    [12]高季章.中国水力发电现状问题和政策建议[J].中国能源,2002,8:4-6
    [13]中国科学技术协会、中国能源研究会、能源科学技术学科发展报告[R].北京:中国科学技术出版社,2008
    [14]崔民选.中国能源发展报告[R].北京:社会科学文献出版社,2007
    [15]游赞培.灯泡贯流式水电站[M].北京:中国水利水电出版社,2009,1-5
    [16]田树堂.贯流式水轮发电机组实用技术[M].北京:中国水利水电出版社,2010,61-69
    [17]彭泽元.国外灯泡水轮机发展概况[J].河海科技进步,1991,6
    [18]Asano s. Vertical bulb uint commissioned in Japan [J]. International Journal on Hydropower and Dams,2004,11 (3):44-46
    [19]何国任.贯流式机组的国外发展情况[J].水电站机电技术,1993,增刊
    [20]Raschl M.Large bulb turbine installed at Wang Fu Zhou[J].International Journal on Hydropower and Dams,2001,8 (1):31-33
    [21]梁章堂,胡斌超.贯流式水轮机的应用与技术发展探讨[M].中国农村水利水电,2005,(6):89-93
    [22]沙锡林.贯流式水电站[M].北京:中国水利水电出版社,1999,80-81
    [23]田树棠.贯流水轮发电机组及其选择方法[M].北京:中国电力出版社,2000:1-38
    [24]王正伟.灯泡贯流式水轮机水力损失分析[J].大电机技术,2004(5)
    [25]李正贵,杨逢瑜.基于运行工况的低水头水轮发电机不圆度分析[J].农业工程学报,2013,29(24),79-83
    [26]Zhenggui LI,Fengyu YANG.Repair analysis for low head hydraulic generator cracking and rupture[J]. Sensors & Transducers Journal,2013.12
    [27]Zhenggui LI,Fengyu YANGApplication of ANSYS in the hydraulic generator rotor bracket crack[J]. Applied Mechanics and Materials,2011,10
    [28]刘强.灯泡贯流式水轮机运行稳定性分析[J].水力发电,2007(7)
    [29]田树堂.改善协联关系是提高轴流转桨式水轮机运行经济性与可靠性的有效途径[J].东方电机,1989(1)
    [30]李正贵.协联曲线修改对灯泡贯流式水轮机组的影响[J].甘肃科学学报,2010,22(4),145-149
    [31]吴家声,韩凤琴.贯流式水轮机协联工况数值预测[J].水电能源科学,2009,27(3):141-143
    [32]赵林明.考虑水力振动特性求取转桨式水轮机的协联关系[J].河北工程大学学报(自然科学版),2007,24(4):74-75
    [33]马启锋.大流量低水头贯流式水轮机协联工况性能预测[D].[硕士论文],广州:华南理工大学,2010
    [34]杨栗晶.反转双涡轮灯泡贯流水轮机设计及流动干涉控制[D].[博士论文],广州:华南理工大学,2011
    [35]Siebert Etter, John H. Gummer, U. Seidel.Measurements of the forces on the shaft of a model hydraulic turbine and their application to the prototype. Proceedings of the 20ndIAHR Symposium, Charlotte, United States,2000
    [36]Monica Sanda Iliescu, Gabriel Dan Ciocan.Experimental study of the runner blade to blade shear flow turbulent mixing in the cone of Francis turbine scale model. 22nd IAHR Symposium, Stockholm-Sweden, 2004
    [37]Conny Larson. Experimental investigation of the transient inlet flow field of a Francis turbine runner.22nd IAHR Symposium, Stockholm-Sweden,2004
    [38]Carvalho, I.S, Heitor. M.V. Visualization of vortex breakdown in turbulent unconfined jet flows[J].Journal Optical Diagnostics in Engineering, 1996, Vol.1 (2), P22-30
    [39]B.Rikard, L.Hakan, I.Karlsson, Report from Turbine 99-Workshop on draft tube flow. Proceedings of the 20nd IAHR Symposium, Charlotte, United States,2000
    [40]Abdel-Ilah RHRICH, Morten KJEKDSEN, Hermod BREKKE.Frequency response measurements and theoretical analysis of the conduit/turbine system at Tonstad Power Plant (Norway).21ndIAHR Symposium, Lausanne, Switzerland, 2002
    [41]韦彩新,韩凤琴,陈贞石.水轮机转轮不同泄水锥的特性研究[J].大电机技术,2001(1):P36-39
    [42]Goede E,Ryhming.I.L.3-D Computation of the Flow in a Francis Runner, Suler Technical Review 4,1987, PP:31-35
    [43]曹树良.混流式水轮机转轮内部三维紊流的数值分析[J].水力发电学报,1997
    [44]Erikisson.L.E,Rizzi A. Numerical of the Steady Incompressible Euler Equation Applied toWater Turbines ALAA Appl Aerodyn. Conf. Seattle,1984
    [45]Hamed A, Baskharone.E, Analysis of the three-dimensional flow in a turbine scroll. ASME, J.of Fluids,2001
    [46]R.Schilling, S.Thum.Design Optimization of Hydraulic Machinery Blade by MultiLevel CFD-technique.CFD-Technique.Proceedings of 22nd IAHR Symposium, Lausanne, Switzerland, 2002
    [47]朱云,郭伟.CFD技术在水轮机设计及改造中的应用[J].陕西师范大学学报(自然科学版),2001(5):P45-48
    [48]Kalatnis et al Ues of Abritrary Quasi-Orthogonal Line for Calculating Flow Distribution in the Meridional Plane of Turbomachine[J].1964, NASA TND-2546
    [49]Hisch c,Wargee GA Finite Elmenet Method of Through Flow Calculaiton inT'urbomachines[J].ASME Journal of Fluids Engineering,1976,98(3):404421
    [50]Senno Y, Nakase.Y A Bldae Theory of an Impellre with an Arbitrary surface of Revoluiton[J].ASME Journal of Engineering for Power,1971,93(3):454—460
    [51]Wu C H.A general theory of three dimensional flow in subsonic and supersonic tur-machines of axial-and mixed-flow types[R].1952, NACATN2604
    [52]Krimerman Y,Alder D.The Complete Three-Dimensional Caluclation of the Comperssble Flow Field in Turbo Impeller [J]. Journal of Mechanical Engineering Seienee,1978,102 (3):149.158
    [53]Alder D, Krimenrman.Y.On the relevance of inviscid subsonic flow calculations to Real centrifugal impeller flow[J], ASME Journal of Fluids Engineer-ing, 1980,102(3):728-737
    [54]梁在潮.工程湍流[M].武汉:华中理工大学出版社,1999
    [55]Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics[M]. British: Longman Group Ltd,1995
    [56]Marzio Piller, Enrico Nobile, J.Thomas. DNS study of turbulent transport at low prandtl numbers in a channel flow[J]. Journal of Fluid Mechanics, (458):419-441, 2002
    [57]J.G Wissink. DNS of separating low Reynolds number in a turbine cascade with incoming wakes[J]. International Journal of Heat and Fluid Flow, 2003, Vol. 24(4):623-635
    [58]Y.Bazilevsa, V.M.Calo.Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows[J].Computer Methods in Applied Mechanics and Engineering,2007,197(1):173-211
    [59]Wolfgang Rodi .DNS and LES of some engineering flows [J].Fluid Dynamies Research.2006,38(2-3):145-173
    [60]Wen-quan WANG, Li-xlang ZHANGLarge-eddy simulation of turbulent flow considering inflow wakes in a Francis turbine blade[J] Journal of Hydrodynamics,2007,19
    [61]GAO G, Yong Y. Unilateral-Statistical-Average Based Analysis of Flat-Plate Turbulent Flow [C].MCME'99, Florida (USA), July 25,1999
    [62]Patrick E.低水头混流式水泵水轮机改造.国外大电机.2003(3):43-54
    [63]Matthias Heil. An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems, Computer Methods In Applied Mechanics And Engineering, January 2003
    [64]Weatherdill N.P, Hassan O. Compressible flow field solutions with unstructured grids generated by Delaunay triangulation. AIAA Journal,1995,33(7):1196-1204
    [65]Ruprecht A.Numerical analysis of three-dimention flow through turbine spiral case,stay vanes and wicket gates. Proc.of 17th IAHR Symp, Beijing,2004,71-82
    [66]Rollet-Miet P, Laurence D, Ferziger J. LES and RANS of turbulent flow in tube bundles[J]. International Journal of Heat and Fluid Flow,1999,20(3):241-254
    [67]高殿荣,吴晓明.工程流体力学[M].北京:机械工业出版社,1999
    [68]刘导治.计算流体力学基础[M].北京:北京航空航天大学出版社,1989
    [69]张兆顺.湍流[M].北京:国防工业出版社,2002
    [70]FLUENT Theory Documentation, Version 6.0,2002
    [71]T.H. Shin, W.W. Liou, A. Shabbir, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent fiows[J]. Compute Fluid.1995,24(3):227-228
    [72]Thompson J F, Weatherill N P. Aspects of numerical grid generation:current and art. AIAA 93-3539
    [73]Gupta R N, Yos J M, Thompson R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal no equilibrium calculations to 30000K. N9027064
    [74]张楚华,谷传纲.NS方程的非结构化网格方法及其差分格式[J]. 西安交通大学学报,1999,33(9):58-61
    [75]周嘉元.水轮机特性对机组的性能的影响[J].水电能源科学,2006,24(4):83-85
    [76]成立.泵站水流运动特性及水力性能研究[D].南京:[博士论文],河海大学,2006.
    [77]Vu T C, Shyy W. Performance Prediction by viscous flow analysis for Francis turbine runner. Journal of Fluids Engineering, Transaction of the ASME,1994, 116:116-120
    [78]Drtina P, Sebestyen A.Numerical predietion of hydraulic losses in the spiral casing of a Francis turbine.In:Hydraulic machinery and cavitation.Netherlands, 1996:101-110
    [79]郭鹏程,罗兴琦,基于计算流体动力学的混流式水轮机性能预估[J].中国电机工程学报2006,26(17):132-13
    [80]吴玉林.水轮机叶轮内三维紊流计算及效率预估[J].工程热物理学报.1996,17(3):313-325
    [81]马文生.原型水轮机全流道计算机计算精度分析[D].[博士论文],北京:中国农业大学,2010
    [82]金燕.贯流泵内部流动数值模拟与三维LDV测量研究[D].[博士论文],扬州:扬州大学,2010
    [83]杨建明,曹树良.水轮机尾水管三维湍流数值模拟[J].水力发电学报,1998(1)
    [84]颜士杰.高效灯泡贯流水轮机开发[D].[硕士论文],华南理工大学,2011
    [85]Kuppuswamy N, Rudramoorthy R. Deformation of outer distributor cone in bulb turbine due to cavitation-A case study [J]. Journal of Scientific and Industrial Research,2005,64(4):256-261
    [86]Andrej Lipej, Dragica Jost, Zoran Markov. Numerical prediction of cavitation in water turbines[C]. Proceedings of the 21th IAHR Symposium on Hydraulic Machineryand Systems,2002, Lausanne
    [87]Necker J, Aschenbrenner T. Model test and CFD calculation of a cavitating bulb turbine[C].25th IAHR Symposium on Hydraulic Machinery and Systems,2010
    [88]Haithacha Sudsuansee, Udomkiat Nontakaew, Yodchai Tiaple. Simulation of leading edge cavitation on bulb turbine[J]. Songklanakarin J Sci Techno, 2011, 33(1):51-60
    [89]Andrej Lipej, Dragica Jost, Zoran Markov. Numerical prediction of cavitation in water turbines[C].Proceedings of the XXIst IAHR Symposium on Hydraulic Machinery and Systems,2002, Lausanne
    [90]HelmutE Jaberg, Prof D R. Numerical methods for fluid dynamical simulation of hydro power plants[C].Proceedings of the 3rd WSEAS Int. Conf. on Renewable Energy Sources,2009, Greece
    [91]Kuppuswamy N, Rudramoorthy R. Deformation of outer distributor cone in bulb turbine due to cavitation-A case study [J]. Journal of scientific & Industrial Research,2005,64(4):256-261
    [92]Jorg Necker, Thomas Aschenbrenner, Winfried Moser. Cavitation in a bulb turbine [C]//Proceedings of the 7th International Symposium on Cavitation,2009, Michigan
    [93]颜世杰,韩凤琴,王幼青,杨栗晶,久保田乔.可调节叶片灯泡贯流式水轮机协联工况的数值预测[J].工程热物理学报,31,2010.12:137-140
    [94]吴晓晶,吴玉林,张乐福,刘树红.混流式水轮机转轮的涡量场分析[J].水力发电学报,2008,27(3):132-137
    [95]张梁,刘树红,张乐福等.混流式转轮内部流场的涡动力学分析[J].水力发电学报,2007,26(6):106-110
    [96]吴玉林,吴晓晶,刘树红.水轮机内部涡流与尾水管压力脉动相关性分析[J].水力发电学报,2007,26(5):122-127.
    [97]侯红梅.贯流式水轮机全流道流场计算及轴向力研究[D].北京:中国农业大学,2010
    [98]赵亚萍,廖伟丽,李志华,阮辉,罗兴锜.C型及S型叶片的贯流式水轮机流场特性[J].农业工程学报,2013,29(17):47-51
    [99]彭玉成,张克危,占梁梁,张双全.三峡左岸电厂6F机组小开度异常振动问题研究-Part Ⅱ[J].水力发电学报,2007
    [100]Yucheng Peng, Xiyang Chen, Kewei Zhang, Guoxiang Hou. Numerical Research on Water Guide Bearing of Hydro-Generator Unit Using Finite Volume Method [J]. Journal of Hydrodynamics. 2007
    [101]H.J.Lugt.Vortex Flow in Nature and Technology[M]. NewYork: John Wiley & Sons,1983
    [102]P.GSaffman.Vortex Dynamics[M].NewYork:Cambridge Universitypress,1992
    [103]L.M.portela.Identication and Characterization of Vortices in the Turbulent Boundary Layer[D].Stanford:Stanford University,1997
    [104]S.K.Robinson.Coherent.Motions in the Turbulent Boundary Layer[J].Ann. Rev. Fluid Mechanics,1991,23:601-639
    [105]童乘纲,尹协远,朱克勤.涡运动理论[M].合肥:中国科技人学出版社,2009
    [106]Wu Jiezhi, Tramel R W. A Vorticity Dynamics Theory of Three-dimensional Flow Separation. Physics of Fluids,2000(8):1932-1954 [108] Charles D.Hansen, Chris R Johnson The Visualization Handbook[M].Academic
    [107]尹协远,孙德军.漩涡流动的稳定性[M].北京:国防工业出版社,2003:1-258
    press,2004 [109] Y.Levy, D.Degani,and A.Seginer Graphical Visualization of Vortical Flows by
    Means of Helicity [J].AL AAJ,1990(28),8:1347-1352 [110] J.Jeong, EHussain.On the Identification of a Vortex[J].J.Fluid Mechanics,1995,
    285:69-94 [111] D.Sujudi, R.Haimes.Identification of Swirling Flow in 3D Vector Fields [C]. In
    AIAA 12th Computational Fluid Dynamics Conference,1995:Paper 95-1715 [112] Yakhot, Victor, Orszag, Steven A. Renormalization group analysis of turbulence
    basic theory[J]. Journal of Scientific Computing. 1986,1(1):3-51 [113] M.Jiang, R.Maehiraju,and D.S.Thompson.A Novel Approach to Vortex Core
    Region Detection[C].Joint EurograPhics-IEEE TCVG Symposium on Visualization,2002:217-225.
    [114]徐朝晖.高速离心泵内全流道二维流动及其流体诱发压力脉动研究[D].北京: 清华大学,2004
    [115]吴介之.涡动力学引论[M].北京:高等教育出版社,1993.3
    [116]ANSYS, Ine.ANSYS CFX-Solver Modeling Guide[M].Canonsburg: ANSYS, Inc,2009
    [117]Fraser WH.Recirculation in centrifugal pumps[C].ASME Winter Annual Meeting, 1981:65-86
    [118]张克危.流体机械原理[M]. 北京:机械工业出版社.2000
    [119]Schiavello B, Sen M.On the predietion of the reverse flow onset at the centrifugal pump inlet[C].ASME 22nd Annual Fluids Engineering Conf, 1980
    [120]Y Krimmerman and D Adler. The Three Dimensional Flow Field in Turbo Impellers[J]. Journal of Mechanics Engineering Science, 1978,20
    [121]Gulieh JF, Egger R.part load flow and hydraulic stability of centrifugal pumps[R], EPRI Report TR-100219,1992
    [122]李启章,付联桂,李志民.三峡机组振动及稳定性问题[J].水利水电技术,1996,27(12):10:12
    [123]Kirtley K R, Warfield M,Lakshminarayana B.Comparison of computationalmethods for three-dimensional turbulent turbomachinery flows[J].Journal ofPropulsion and Power,1988,4(3):207-208
    [124]黎义斌.冲压焊接离心泵叶轮及蜗壳特性准非定常数值模拟[D].[硕士论文],镇江:江苏大学2006
    [125]王正伟等,尾水管涡带引起的不稳定流动计算与分析[J].清华大学学报,2003
    [126]Choudhury Dipankar, Kim Sung-Eun, Flannery William S. Calculation of Turbulent Separated Flows Using A Renormalization Group Based k-ε Turbulence Model. American Society of Mechanical Engineers:Fluids Engineering Division,1993,149(6):177
    [127]王珂嵛.水力机组振动[M].水利电力出版社,1986.
    [128]吴培豪.三峡水电站运行条件前特点与水轮机优选问题[J].水利水电技术,1996,4:25:27
    [129]诸葛伟林等.弯肘型尾水管非定常涡旋流动数值模拟[J].水动力学研究与进展,2003
    [130]李秋实.基于涡动力学的叶轮机诊断与设计方法初探[博士后研究报告].北京:北京航空航天大学能源与动力工程学院,2002
    [131]Zhang Rikui, Cai Qingdong, Wu Jiezhi. The Physical Origin of Severe Low-frequency Pressure Fluctuations in Giant Francis Turbines. Modern Physics Letters B,2005(28):1527-1530
    [132]Wu Jiezhi, Wu Jianming. Boundary Vorticity Dynamics since Lighthill's 1963 Article:Review and Development. Theoretical and Computational Fluid Dynamics,1998 (4):459-474
    [133]肖若富,韦彩新.混流式水轮机转轮的动力学研究[J].大电机技术,2001,7:41-42
    [134]Rodriguez C G, Equsquiza E, Escaler X, et al. Experimental investigation of added mass effects on a Francis turbine runner in still water[J]. J. Fluids and Structures,2006,22(5):699-712
    [135]张立翔.混流式水轮机转轮叶片流固耦合振动特性分析[J].水电能源科学,2005,23(2):38-41
    [136]肖若富,陈秋.液固耦合对水轮机固定导叶振频振型的影响[J].华中科技大学学报,2001,29(4):85-87
    [137]Zhang Lixiang, Guo Yakun, Wang Wenquan. FEM simulation of turbulent flow in a turbine blade passage with dynamical fluid-structure interaction[J]. Int. J. Numer. Meth. Fluids,2009
    [138]Zhang Lixiang, Guo Yakun, Wang Wenquan. Large eddy simulation of turbulent flow in a true 3D Francis hydro turbine passage with dynamical fluid-structure interaction[J]. Int. J. Numer. Meth. Fluids,2007,54(5):517-541
    [139]桂利,韦彩新,张双全.大型混流式水轮机转轮振动的有限元分析[J].华中电力,2003,16(3):8-9
    [140]梁权伟,王正伟,方源.考虑流固耦合的混流式水轮机转轮模态分析[J].水力 发电学报,2004,230):116-120
    [141]沈惠明,赵德有.流固耦合振动问题的特征值解法[J].大连理工大学学报,1990,3:15-19
    [142]王正伟,瞿伦富.水力机械转轮内部三维流固耦合振动变分原理及有限元方程[J].水动力学研究与进展,1996,11(1):24-34
    [143]刘德民,刘小兵,李娟.基于流固耦合的水轮机振动分析[J].流体传动与控制,2008,26:21-25
    [144]瞿伦富,王正伟.轴流转浆机组桨叶液固耦合振动特性仿真计算[J].清华大学学报,1998,38(1):15-18
    [145]裴吉.离心泵瞬态水力激振流固耦合机理及流动非定常强度研究[D].[博士学位论文],镇江:江苏大学,2013
    [146]王学.基于ALE方法求解流固耦合问题[D].[硕士学位论文].长沙:国防科学技术大学,2006
    [147]ANSYS Inc. Theory Reference. ANSYS Inc,2004
    [148]赵耀,刘秀良,董开松.应用MATLAB求取转桨式水轮机的最优协联关系[J].甘肃水利水电技术,2012,48(11):28-31
    [149]黄中华.水轮发电机组检修的必然趋势—状态检修[J].西北电力技术,1999,(2):27-30
    [150]GB/T 17189-1997水力机械振动和脉动现场测试规程[S].中国标准出版社,1997
    [151]柴家峡3号机启动试验大纲[R].中国水电顾问集团西北勘察设计院,2007
    [152]GB/T 8564-2003水轮发电机组安装技术规范[S].中国标准出版社,2003
    [153]DL/T 827-2002灯泡贯流式水轮发电机组启动试验研规程[S].中国标准出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700