轴流式水轮机转轮改造中的关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国有相当一部分轴流式水力机组空蚀破坏严重、运行稳定性差、综合性能指标较低,亟待改造,开展轴流式水轮机转轮改造中的关键问题研究对于改善机组的综合性能、提高低水头水能资源的利用效率以及提高水轮发电机组运行的可靠性具有非常重要的意义。本文结合CFD技术和流固耦合技术,开展了流动分析、动应力分析、流固耦合计算以及改型设计和性能预测等若干轴流式水轮机转轮改造中关键问题的研究工作。
     本文以轴流式水轮机为研究对象,进行了水轮机全过流部件的三维数值模拟,在此基础上,开展了轴流式叶片的动应力问题研究,进行了轴流式叶片的流固耦合分析,最后对湖北陆水水电站的轴流式转轮进行了改型设计和性能预测。
     (1)对轴流式水轮机的内部流动进行了全流道数值模拟,研究了运行工况对轴流式水轮机内部的流场分布的影响,分析了各过流部件表面的压力脉动情况以及非定常流动特性。
     定常流动的研究结果表明:固定导叶出口水流角在周向上分布的不均匀程度随水轮机流量的增大而增加;导叶区的流动要素沿周向分布的均匀性随导叶开度的增大逐渐减弱;大流量工况下,来流不均匀引起的各叶片表面压力分布的差异在轮毂处附近表现得最为明显,轮缘附近次之,各截面叶片间相差较大的地方均位于叶片前半部分。
     非定常流动的研究结果表明:不同工况下,相近时刻的导叶正背面压力分布趋势差异较大;导叶区压力脉动的主频含有与尾水管低频压力脉动相同的频率成分,在底环和中间点的压力脉动中还含有接近机组转频的频率成分;尾水管进口压力脉动的主频成分主要为低频成分,这种低频压力脉动是水轮机中压力脉动的主要脉动源之一;叶片表面的压力脉动频率除了低频成分外,还有机组转频倍数的中频成分,为机组的次要振动源。
     (2)对轴流式转轮和叶片分别进行了强度计算,对单叶片进行了动应力分析,分析了不同工况下轴流式转轮和叶片的应力分布特点及应力集中区,揭示了轴流式叶片动应力与流道内水压力脉动之间的关系。
     研究结果表明:在水压力的作用下,叶片上出现了3个应力集中区;整体转轮的最大应力值随叶片转角增大逐渐减小;随着叶片转角增大,叶片表面从轮毂至轮缘应力变化梯度逐渐增大,叶片表面应力分布不均匀程度增大。
     叶片动应力分析结果表明,叶片上最大应力点随工况和时间的不同在叶片压力面与法兰连接处靠近下游侧和叶片吸力面与法兰连接处靠近下游侧之间变化;叶片与法兰连接处存在高幅动应力明显大于叶片静应力的分析结果;叶片中部的应力波动比轮毂和轮缘严重,出水边比进水边明显;叶片上各点的动应力频率成分与流道内的水压力脉动频率基本一致,说明叶片上的高幅动应力主要由水压力脉动引起。
     (3)对轴流式转轮和叶片进行了振动特性分析,对叶片进行了流固耦合分析,研究了流固耦合作用对叶片区流场以及叶片应力分布的影响。
     研究结果表明,轴流式叶片在水中的固有频率有所降低,具有非线性的特点;考虑流固耦合作用后,叶片正背面压差增大,在一定程度上恶化了叶片的空化性能;考虑流固耦合作用后,叶片上的应力分布和最大应力出现的位置均未发生明显变化;与非定常流动计算结果相比,各时刻最大应力值和最大应变的变化情况各不相同;流固耦合作用不仅改变了叶片区的流场分布,对叶片的应力也有较大影响。
     (4)对湖北陆水水电站的轴流式转轮进行了改型设计与性能预测。
     通过对叶片翼型几何形状的优化,改善了转轮的水力性能;对改型后的转轮进行了性能预测,详细分析了改型后轴流式转轮主要工况的水力性能,绘制了转轮的定桨曲线、转桨的模型综合特性曲线以及最大水头下的导叶水力矩曲线。电站的实际运行情况表明,改型后转轮ZZX30的各项指标达到了改型目标提出的要求,效率高,出力稳定,综合性能有了较大提高,为电站创造了良好的经济效益,也说明了本文采用的改型设计方法和性能预测方法是有效的。
A number of axial flow hydro-generating units suffer from serious cavitation damage, worse operation stability and bad overall performance. Study on the key issues of axial flow turbine runner's transformation, in order to improve hydraulic turbine's overall performance, to enhance the use efficiency of hydropower resources with low water head and reliability as well as economy of hydro-generating unit operation, has the very vital significance. In this paper, by means of CFD technology and fluid-structure interaction method, the research of certain key issues in the transformation of axial flow turbine runner were carried out, such as flow simulation, dynamic stress analysis, fluid-structure interaction calculation modification design and the performance estimate.
     Take the axial flow hydraulic turbine as the object of study; the dynamic stresses on the runner blade were analyzed on the basis of numerical simulation of three dimensional flow in entire hydraulic turbine overflow components. The fluid-structure interaction calculation of axial flow blade was conducted. Then the modification design and the performance estimate to axial flow runner blade of HuBei LuShui power plant were carried on.
     (1) The numerical simulation of the flow in the whole flow passage of axial flow hydraulic turbine was done. The influence of operation condition on the flow field was analyzed, as well as the pressure fluctuation on flow surface and unsteady flow characteristic.
     The results of steady flow simulation show that the nonuniformity of stay vanes out angle along the circumferential distribution becomes serious with increase of flow. With increase in the guide vane opening, the flow elements uniformity along the circumferential distribution in guide vane area gradually weakened. The distribution differences of water pressure on various runner blades caused by flow nonuniformity behaved most obviously nearby the hub, and blade flange took the second place. The distribution differences of cross section behaved more obviously on first half part of blade.
     The results of unsteady flow simulation show that under different operating conditions, the differences of pressure distribution tendency on press face and suction face of the guide vane in the similar moment are quite different; The basic frequency of the pressure fluctuation frequency in guide vane contains the same low frequency component within the draft tube's; The pressure fluctuation frequency of bottom ring and the mid-point includes the close frequency components of rotation frequency. And the low frequency components of the pressure fluctuation frequency in draft tube inlet are one of the main sources in hydraulic turbine pressure fluctuation. Besides low frequency, intermediate frequency components close to multiple rotation frequency are also included in the pressure fluctuation frequency of the blade surface, and the secondary sources in hydraulic turbine pressure fluctuation.
     (2) Strength analysis of the axial flow runner and blade and dynamic stress analysis of single blade were carried on separately. The stress distribution characteristic and stress concentration zone on runner and blade are discussed under different operating conditions. The relationship between dynamic stress on axial flow blade and pressure fluctuation in flow channel was revealed.
     The results indicate that the blade have emerged on three areas of stress concentration under hydraulic pressure function; As the blade angle increases, maximum stress value of the overall runner decreases gradually, and the stress gradient on blade surface increases gradually from the wheel hub to the rim. It also reveals that uneven degree of stress distributes on the blade surface increases.
     The blade dynamic stress analysis results show that maximum stress appears on the junction of blade pressure surface as well as suction surface and the flange near the downstream side, and it changes between them in different time of the different conditions; The high amplitude dynamic stress in the junction of blade and flange is obviously larger than the result of static stress analysis. The stress changes in the central blade more seriously than in wheel hub and rim, and more obviously in outlet of blade than in inlet of blade; The dynamic stress frequency components of blade are basically the same as hydraulic pressure frequency in the flow passage, which indicates that the high amplitude dynamic stress is mainly caused by water pressure fluctuation.
     (3) The vibration characteristics of the axial flow runner blade were analyzed. The fluid-structure interaction calculation of axial flow blade was conducted. The influence of FSI on flow field of blade zone and stress distribution on blade was studied.
     According to calculation results, the natural frequency of blade in the water decrease with the characteristics of non-linear; the pressure difference between press side and suction side increases after considering the FSI, to a certain extent, which will worsen cavitations performance of the blade. Meanwhile, stress distribution on the blades does not change significantly. Comparing with the results of unsteady flow simulation, the change of maximum stress value and maximum strain value after considering the FSI differ from time points. The research demonstrates that the FSI not only changes the distribution of the flow field in blade area, but also have a greater impact on the stress of the blades.
     (4) The modification design and the performance estimate to axial flow runner blade of HuBei LuShui power plant were performed.
     By optimizing the airfoil of blade geometry to improve the hydraulic performance of the runner in the main operating conditions, the performance prediction of the modified runner was carried out, and the characteristic diagram of curves of fixed-blade propeller, the comprehensive characteristic diagram of curves of propeller blade and the hydraulic moment curve of guide vane under the maximal head were drawn up. The actual operation of the station indicates that each performance index of ZZX30 runner modified meets the requirement. And ZZX30 has high efficiency and output stability, as well as better overall performance than before. The power station has obtained good economic efficiency, and it also shows the effectiveness of the methods of modification design and performance estimate used in this paper.
引文
[1]褚云峰.水轮机转轮开裂事故原因分析和经验教训[J].电气技术,2008,(3):73-74
    [2]高梅英.三门峡水电厂水轮机的磨蚀与防护[J].华中电力,1998.11(6):25-27
    [3]饶道群,郑满军.葛洲坝大江电厂水轮机磨蚀探讨[C].水机磨蚀论文集,1993:70-76
    [4]陈凯,陆军,何万成.红石电站水轮机转轮叶片裂纹的分析及处理[J].水力发电,2003.29(1):54-56
    [5]宁淑贤.叙利亚迪仕林电站水轮机叶片裂纹分析及处理[J].水电站机电技术,2007,30(5):53-55
    [6]唐委校.轴流式水轮机叶片裂纹分析与防治[J].大电机技术,2001(4):49-53.
    [7]王志高.我国水机磨蚀的现状和防护措施的进展[C].水机磨蚀论文集,2002-2003:13-18
    [8]邢述彦,闫金忠.我国水机磨蚀研究及防护措施[J].太原理工大学学报,1998,29(3):285-288
    [9]Papailou K D. Boundary Layer Optimization for the Design for High-Turning Axial-Flow Compressor Blades[J]. Journal of Engineering for Power,1971,93(1):25-37.
    [10]J Li and N Satofuka. Optimization design of a compressor cascade airfoil using a navier-stokes solver and genetic algorithms. Journal of Power and Energy,2002, (2):195-207.
    [11]周晓泉,瞿伦富,吴玉林.水轮机蜗壳和固定导叶内部流动的数值模拟[J].清华大学学报,2000,40(8):93-97.
    [12]辛喆,张兰金,常近时.混流式水轮机蜗壳与座环三维中湍流场的数值模拟[J].水动力学研究与进展A辑,2004,19(6):713-718.
    [13]John McCall. Genetic algorithms for modeling and optimization [J]. Journal of Computational and Applied Mathematics,2005,184:205-222.
    [14]刘高联.平面叶栅气动设计的最优化理论[J].力学学报,1982,14(2):122-128.
    [15]刘高联,陶城.任意旋成面叶栅气动反命题及杂交型命题的通用解法[J].动力工程,1981,2(2):20-29.
    [16]华耀南,陈乃兴.平面叶栅叶型的优化设计[J].工程热物理学报,1983,4(3):248-254.
    [17]邹滋祥,袁丁,李晓玲.轴流透平级几何参数与叶片扭曲规律联合优化设计计算方法[J].航空动力学报,1987,2(04):336-341.
    [18]王幼民,唐铃凤.低比速离心泵转轮多目标优化设计[J].机电工程,2001,18(1):52-54.
    [19]周正贵.压气机叶片自动优化设计[J].航空动力学报,2002,17(3):305-308.
    [20]Zubair Islam,朱一锟,朱自强.跨音速翼型气动优化设计方法[J].航空学报,1998,19(1):83-86.
    [21]杨华,谷传纲等.基于CFD紊流计算的离心泵叶型优化设计[J].扬州大学学报,2007,10(3):42-44
    [22]刘文龙,郭加宏等.CFD在双吸式离心泵优化设计中的应用[J].工程热物理学报,2007,28(3):421-423
    [23]张乐福,张亮.三板溪水电站模型水轮机优化设计[J].大电机技术,2006,(3):31-34
    [24]刘胜柱,郭鹏程,纪兴英等.混流式水轮机叶片进出水边外延的方法[J].中国农村水利水电,
    2004,(12):114-118
    [25]赵桂清等.二龙山水电站轴流式水轮机增容改造[J].东北水利水电,2006,(2):20-21
    [26]张慢来,冯进,丁凌云等.一种轴流式转轮的全三维优化设计[J],长江大学学报,2006,3(2):83-86
    [27]Yasuyuki Enomoto, Sadao Kurosawa, Toshiaki Suzuki. Design optimization of a Francis turbine runner using multi-objective genetic algorithm[C]. Proceeding of 22nd IAHR,2004
    [28]Laurent TOMAS, Camille PEDRETTI, Thierry CHIAPPA, Maryse FRANCQIS, Peter STOLL. Automated design of a Francis turbine runner using global optimization algorithms[C]. Proceeding of the XXI IAHR,2002
    [29]Lluis Ferrando, Jean-Louis Kueny, Francois Avellan, Camille Pedretti, Laurent Tomas. Surface parameterization of a Francis runner turbine for optimum design[C]. Proceeding of 22nd IAHR,2004
    [30]肖若富,王正伟.基于组合优化策略的离心泵优化设计[J].清华大学学报,2006,46(5):700-703
    [31]Kenji SHINGAL, Kei KATAYAMA, Katsumasa SHIMMEI. Optimization of the axial turbine runner blade using a simulated annealing algorithm, Proceeding of 23rd IAHR,2006
    [32]陈波,高学林,袁新.基于NURBS的叶片全三维气动设计[J].工程热物理学报,2006,27(5):763-765
    [33]王小翠,候志敏,张新运.基于进化算法和CFD技术的离心泵低稠度导叶的优化设计[J].流体机械,2007,35(3):21-24
    [34]尚仁超,乔渭阳.基于参数法和贝塞尔曲线的涡轮叶片造型及其优化[J].机械设计与制造,2007,(8):16-18
    [35]Vu T C, Shyy W, et al. Recent Developments iii Viscous Flow Analysis for Hydraulic Turbine Components[C]. IAHR Symposium,1986; Montreal.
    [36]Vu T C, Shyy W. Navier-Stokes Computation of Radial Inflow Turbine Distributor[J]. Journal of Fluids Engineering,1988,11(1):29-32.
    [37]Vu T C, Shyy W. Performance Prediction of Viscous Flow Analysis for Francis Turbine Runner[C]. IAHR Symposium,1992, Sao Paulo, Brazil.
    [38]Vu T C, Heon K and Shyy W. An Integrated CFD Tool for Hydraulic Turbine Efficiency Prediction[C]. IAHR Symposium,1993, Paris, France.
    [39]曹树良,吴玉林,杨辅政.混流式水轮机转轮内部三维紊流的数值分析[J].水力发电学报,1997,16(4):52-60.
    [40]高忠信,周先进,张世雄,唐澍.水轮机转轮内部三维粘性流动计算与性能预测[J].水利学报,2001,32(7):30-35.
    [41]任静,吴玉林,杨建明,张伟,曹树良.水力机械转轮内的CFD分析及优化设计[J].工程热物理学报,2000,21(3):316-320.
    [42]周凌九,水轮机转轮流场计算及性能预测[D].北京:中国农业大学,1999.
    [43]Ruprecht, A., Heitele, M., Helmrich, T, Numerical Simulation of a Complete Francis Turbine including unsteady rotor/stator interactions [C]. IAHR,2000.
    [44]刘宇,吴玉林,张梁等.混流式原型水轮机的三维湍流计算[J],水力发电学报,2003,22(3):101-106.
    [45]刘树红,邵奇,杨建明等.三峡水轮机的非定常湍流计算及整机压力脉动分析[J].水力发电学报,2004,23(5):97-101
    [46]马文生.原型水轮机全流道计算及计算精度分析[D],北京:中国农业大学,2005.
    [47]吴墒锋,吴玉林,林琳等.轴流式水轮机三维非定常湍流计算及压力脉动测试[J].工程热物理学报,2006.27(6):956-958
    [48]C. C. Ky3mnhchcrnn(苏联).用能量平衡方程估算水轮机的能量特性[J].国外大电机,1977,(2):95-101.
    [49]Helmut K.用计算流体力学分段模拟方法实现混流式水轮机的数值预测[J].国外大电机,1996,(4):35-39.
    [50]Drtina. P.整体转桨式水轮机性能预测[J].国外大电机,1999,(2):43-46.
    [51]手光太郎.水泵水轮机的性能预测与实验结果[J].国外大电机,2000,(3):74-77.
    [52]Eaxapob AB.水轮机性能特性曲线的预估[J].国外大电机,2001,(4):66-70.
    [53]翟伦富,朱为民,林汝长等.混流式水轮机能量性能预估研究[J].水力发电学报,1994,(2):66-74.
    [54]吴墒锋,何国任,吴玉林等.开敞式蜗壳混流式水轮机湍流计算及性能预估[J].工程热物理学报,2004,25(6):959-961.
    [55]彭国义,郭齐胜,罗兴绮等.水轮机转轮三维边界层计算及性能预估[J].水利学报,1996,27(10):80-87.
    [56]刘胜柱.水轮机内部流动分析与性能优化研究[D].西安:西安理工大学,2005.
    [57]杨琳,陈乃祥,樊红刚.水泵水轮机全流道双向流动三维数值模拟与性能预估[J].工程力学,2006,23(5):151-161.
    [58]侯祎华,齐学义,敏政等.混流式转轮的性能预估和增容优化[J].兰州理工大学学报,2008,34(5):50-54.
    [59]吴墒锋,吴玉林,刘树红.轴流转桨式水轮机性能预测及运行综合特性曲线绘制[J].水力发电学报,2008,27(4):121-125.
    [60]DUPONT PH.混流式转轮空蚀预测(Ⅱ)-模型试验及流动分析[J].国外大电机,1996,(5):55-61.
    [61]R. Simoneau.空蚀的模拟及预测[J].国外大电机,1995,(6):69-73.
    [62]ST-HILAIRE A.用CFD预测水轮机的空化性能[J],国外大电机,2000,(1):68-71.
    [63]NILSSON H. Numerical investigation of turbulent flows in water turbines [D]. Gothenburg: Chalmers University of Technology,2002.
    [64]任静,常近时.混流式转轮内三元空化流场的预测[J].水利学报,1998,29(7):8-11.
    [65]徐宇,吴玉林,刘文俊等.用两相流模型模拟混流式水轮机内空化流动[J].水利学报,2002,33(8):57-62.
    [66]陈庆光,吴墒锋,吴玉林.轴流式水轮机内部空化流动的的数值预测[J].工程热物理学报,2006,27(5):669-771.
    [67]张梁,吴玉林,刘树红.混流式水轮机内部流场的三维空化湍流数值计算[J].工程热物理学报,2007,28(4):598-600.
    [68]张乐福,张亮,张梁.混流式水轮机三维空化湍流数值计算[J].水力发电学报,2008,27(1):135-138.
    [69]水轮机水力振动译文集[M].水利水电科学研究院,1979.3
    [70]王珂崙编.水力机组振动[M],水利电力出版社,1986.10
    [71]T Jacob and E Prenat. Francis Turbine Surge:Discussion and Date Base(A) [C]. E Cabrera, V Espert And F Martinez XV IAHR Symposium. Dordrecht:Kluwer Academic Publishers Incorporatates,1996,855-864
    [72]Wang X M And Nishi M, Swirling Flow With Helical Vortex Core In A Draft Tube Predicted By A Vortex Method, XV IAHR Symposium, Dordrecht.1996,965-974
    [73]Thierry. Jacob等.混流式水轮机脉动的探讨和数据处理[C],18th IAHR Symposium,1996
    [74]Anders Wedmark.尾水管压力脉动,混流式水轮机水力稳定性参考文献,2004.2
    [75]Falvey H T.尾水管压力脉动浅析[J], Hydro Review,1993,(2)
    [76]Kerken V.模型及真机尾水管压力脉动的研究[C],18th IAHR Symposium,1996
    [77]Miehihiro等.尾水管压力脉动的混合控制法[C],21th IAHR Symposium,2002
    [78]H. C. BepeMeemco等,水轮机压力脉动和振动特性的研究及其改善方法的探讨[J].国外大电机,1990(1)
    [79]Thierry CHIAPPA等,固定导叶卡门涡振动的数值分析[J], Hydropower&Dam,1998, (10)
    [80]李启章,付联桂,李志民.三峡机组振动及稳定性问题[J].水利水电技术,1996,(12):10-14,21
    [81]吴培豪,三峡机组稳定性问题,大型水电站机组运行稳定性研究,三峡枢纽质量检查专家工作组编,2002年10月
    [82]张大本,李吉川.混流式水轮机尾水管涡带引起的水力振动[J],广西电力技术,1996,(4):17-21
    [83]韦彩新.水轮机转轮不同泄水锥的特性研究[J],大电机技术,2001,(1):36-39
    [84]于纪幸,徐抱朴,徐国珍.降低水轮机尾水管压力脉动措施的模型试验研究[J].大电机技术,2001,(4):44-48
    [85]吴钢,宋立人.大水头变幅工况下混流式水轮机尾水管水压力脉动分析[J],发电设备,2000,(4):22-27
    [86]石祥钟,杨玉祥,赵林明等.混流水轮机尾水管压力脉动的近似分析方法[J],河北水利水电技术,1998,(1):29-30
    [87]M. FARHAT. Onboard Measurements of Pressure and Strain Fluctuations in a Model of Low Head
    Francis Turbine Part1:Instrumentation[C]. Proceedings of the Hydraulic Machinery and Systems 21st IAHR Symposium, September 9-12,2002, Lausanne
    [88]PY. LOWYS. Onboard Measurements of Pressure and Strain Fluctuations in a Model of Low Head Francis Turbine Part2:Measurements and analysis results[C]. Proceedings of the Hydraulic Machinery and Systems 21st IAHR Symposium, September 9-12,2002, Lausanne
    [89]于纪幸,徐抱朴,孙殿湖.大朝山水电站水轮机转轮制造和质量分析[J].大电机技术,2004,(2):46-51
    [90]胡宝玉,张利新.小浪底转轮裂纹及处理措施[J].水电站机电技术,2002,25(4):43-46
    [91]R. Klinger, D. Oechsle. Mian Hua Tan Runner Cracks Investigation Report[C]. VOITH SIMENS Hydropower generation, June,2002
    [92]A lek sandar G, Branislav I, Zvonim ir P. Stresses of Kaplan turbine runner blade during transients[C]. Proceedings of the ⅩⅪ IAHR Symposium on Hydraulic Machinery and Systems. Lausanne,2002.
    [93]肖若富,王正伟,罗永要.轴流转浆式水轮机叶片的动应力特性[J].清华大学学报(自然科学版),2007,47(11):2014-2017
    [94]陈国强,王乘,姬晋廷.轴流式水轮机叶片刚度和强度有限元分析[J].机械强度,2003,25(6):690-693.
    [95]刘晓波,王依,林家国.基于有限元法的风机叶片裂纹分析及处理[J].机械设计与制造,2007,(3):98-100
    [96]罗永要,王正伟,梁权伟.混流式水轮机转轮动载荷作用下的应力特性[J].清华大学学报(自然科学版),2005,45(2):235-237,257
    [97]Dubas M, Schuch M. Static and dynamic calculation of a Francis turbine runner with some remarks on accuracy [J]. computers and structure,1987,27(5):645-655
    [98]程德林,郑效忠.混流式水轮机转轮水下固有振动的研究[J].大电机技术,1983,(6):36-43
    [99]Zhu Shilin. The dynamic property research for Francis Turbine Runner in water[C]. The 4th Asian International Conference. On fluid machinery,1993,10, Suzhou, china
    [100]王正伟.考虑液固耦合作用的水轮机叶片动力特性分析[D].北京:清华大学,1996
    [101]王正伟、瞿伦富.水力机械转轮内部三维液-固耦合振动的变分原理及有限元方程[J],水动力学研究与进展,1996,11(1):24-34
    [102]瞿伦富,王正伟,周凌九.轴流转桨机组桨叶液固耦合振动特性仿真计算[J].清华大学学报,1998,38(1):15-18.
    [103]谷朝红,姚熊亮,陈起富.水轮机部件流固耦合振动特性研究[J].大电机技术,2001,6:47-52
    [104]于建华,魏泳涛.水轮机组结构-液体系统的动态特性分析[J].西南交通大学学报,2001,36(3):258-263
    [105]肖若富,韦彩新,韩风琴等.混流式水轮机转轮的动力学研究[J].大电机技术,2001,(S1):41-43
    [106]肖若富,陈秋.液固耦合对水轮机固定导叶振频振型的影响[J],华中科技大学学报,2001,29(4):85-87
    [107]梁权伟,王正伟,方源.考虑流固耦合的混流式水轮机转轮模态分析[J].水力发电学报2004,23(3):116-120
    [108]李舜酩,许庆余,程德林.水轮机转轮结构液固耦合振动的广义组合模态综合法[J],农业机械学报,1997,28(1):47-52
    [109]杜建镔,何世江,王黝成.水轮机转轮叶片系统动力分析(Ⅱ)—实例分析[J].清华大学学报(自然科学版),1998,(8):73-76
    [110]曹剑锦,陈昌村.大型水轮机转轮异常振动及叶片裂纹分析[J].西南交通大学学报,2002.37(B 11):68-72
    [111]王少波,刘元杰,梁醒培.大型混流式水轮机转轮叶片结构动力特性分析[J].机械强度,2004,26(1):38-41
    [112]桂利,韦彩新,张双全.大型混流式水轮机转轮振动的有限元分析[J].华中电力,2003,16(3):8-9
    [113]张立翔,陈香林,闫华.混流式水轮机转轮叶片流固耦合振动特性分析[J].水电能源科学,2005.23(2):38-41
    [114]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社.2004
    [115]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,1998.
    [116]Piller M, Nobile E. Thomas J. DNS Study of Turbulent Transport at Low Reynolds Numbers in a Channel Flow[J]. Journal of Fluid Mechanics,2002, (458):419-441
    [117]Wissink J G. DNS of Separating Low Reynolds Number Flow in a Turbine Cascade with Incoming Wakes [J]. International Journal of Heat and Fluid Flow,2003,24 (4):626-635
    [118]崔学明.水轮机转轮内三维湍流流场分析及计算模型比较[D].北京:中国农业大学,2002
    [119]Michelassi V. Wissink J G, Rodi W. Direct Numerical Simulation, Large Eddy Simulation and Unsteady Reynolds-Averaged Navier-Stokes Simulations of Periodic Unsteady Flow in a Low-Pressure Turbine Cascade:A comparison [J]. Journal of Power and Energy.2003,217(4): 403-412
    [120]Stephane V. Local Mesh Refinement and Penalty Methods Dedicated to the Direct Numerical Simulation of Incompressible Multiphase Flows [C]. Proceedings of the ASME/1SME Joint Fluids Engineering Conference.2003,1299-1305
    [121]廖伟丽.水轮机引水部件含导叶端面间隙的三维湍流流动研究[D].西安:西安理工大学,2003.2
    [122]郭鹏程.水力机械内部复杂流动的数值研究与性能预测[D].西安:西安理工大学,2006.9
    [123]陆金甫,关治.偏微分方程的数值解[M].北京:清华大学出版社,1987
    [124]宇波,王秋旺,林明杰等.一种非结构同位网格算法[J].工程热物理学报,1998,19(4): 475-479.
    [125]Patankar S V, Spalding D B. A Calculation Procedure for Heat, Mass and Moment Transfer in three-dimensional Parabolic Flow[J]. International Journal of Heat and Mass Transfer.1972, (15): 1787-1806
    [126]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001
    [127]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,1998.
    [128]刘大恺.水轮机(第三版)[M].北京:中国水利水电出版社,1997
    [129]谢浩.大型汽轮机组长叶片三维有限元静、动力特性研究[D].西安:西安交通大学,1998
    [130]刘东远.汽轮机叶片动力特性、动强度理论及疲劳可靠性研究[D].西安:西安交通大学.1997
    [131]居荣初,曾心传.弹性结构与液体的耦联振动理论[M],北京:地震出版社,1983
    [132]马震岳,董毓新.水轮发电机组动力学[M],大连:大连理工大学出版社,2003,12
    [133]辛喆.混流式水轮机全部通流元件的三维湍流流场分析与性能预测[D].北京:中国农业大学,2005.11
    [134]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700