末敏子弹运动特性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高常规火炮远距离打击装甲目标的能力,达到一两发弹就能毁伤一辆装甲目标的要求,这就要求炮弹能自动探测、搜索装甲目标。末敏弹是把先进的敏感器技术和爆炸成形弹丸技术应用到子母弹领域中的一种新型弹药,在摧毁装甲目标方面有很高效费比,世界上不少国家都优先发展这个弹种。由于末敏子弹系统在空间运动错综复杂,影响因素众多,这将直接影响末敏弹的命中概率。本文的研究将对改善末敏弹的整体性能以及末敏子弹的总体设计提供有力理论依据和技术支持,为完善末敏弹的设计理论、提高末敏弹的命中概率提供有力的帮助。
     本文采用理论分析、数值计算与试验验证相结合的方法,建立了各运动阶段的动力学模型,进行了末敏子弹运动特性分析,并在此基础上给出了影响命中概率的关键因素。本文主要的研究内容包括:
     第一,研究了稳态扫描阶段中扫描角、落速、转速等参数的变化规律以及它们之间的相互依赖关系。同时为了确定末敏子弹初始工作参数,开展了子弹分离技术研究,提出了一种子弹分离方案。
     第二,基于有限元方法建立了减速伞充气模型。针对末敏弹减速装置采用的平面圆伞,利用粒子—弹簧系统构建了减速伞三维模型;在考虑了伞衣结构内力和内部气流运动的基础上,建立充气过程的粒子节点动力学模型,并验证了此模型与实验结果基本一致。
     第三,建立了减速减旋阶段中伞、子弹两刚体的动力学模型与稳态扫描阶段中伞、伞盘、子弹三体的多柔体动力学模型。并对稳态扫描伞进行了模态分析,建立了稳态扫描伞自由振动的基本方程与固有频率计算方法。
     第四,开展了稳态扫描参数验证试验研究。采用热气球投放与炮射两种方法相结合的试验手段得到了末敏子弹的落速、扫描角和转速,并通过与模型计算得的数据比较,验证了模型的正确性。
     第五,建立了末敏子弹各阶段的随机模型。在对战场目标特性分析的基础上,研究了末敏子弹命中概率影响因素,利用蒙特卡罗方法建立了末敏子弹各阶段的随机模型,并在此基础上实现了末敏弹全弹道图形仿真。
     第六,给出了提高目标识别概率的方法。针对末敏子弹采用的毫米波/红外复合敏感体制,开展了把基于模糊数学和D-S证据理论的多传感器数据融合技术应用到末敏子弹的目标识过程中,提高了末敏子弹对目标的识别概率。
     最后指出了下一步需要继续深入研究的问题并进行了展望。
In order to improve the conventional long-range artillery against armored targets, and with the purpose of damaging an armored goal for only one or two shells, the shells are required to be automatically detecting and searching the armored goal. The terminal-sensitive submunitions are satisfied such requirements. It is one kind of cluster ammunition that combined with advanced sensor technology and EFP technology, and it has high cost-effective in destroying armored targets. Nowadays, many countries in the world give priority to develop this kind of ammunition. However, the terminal-sensitive submunitions have a complex space movement and there are many factors, which will directly affect the damage probability. The intensive studies on these subjects would provide strong theoretical basis and technological support to improve the global property, the global design, and the design theory of terminal-sensitive submunition, and increase the damage probability.
     Theoretical analysis, numerical and experimental verification are combined to establish a dynamic model of the different movement stages of the terminal sensitive ammunitions, and the analysis of the characteristics of movement was respectively carried out in this paper. On all of these premises, the major factors which affect the final damageprobability were summarized. And here the major subjects in this paper were listed:
     Firstly, during the process of stable scanning, the parameters such as scan angle, fallvelocity, rotational speed were studied, and the conclusion of the transform law of these parameters were drew, as well as their interdependence. At the same time, in order to determine the initial parameters of the terminal-sensitive submunitions, a bullet separation program was proposed according to the separation laws.
     Secondly, the inflatable model of drogue parachute was established based on the finite element method. According to the flat circular parachute which was used in the decelerator, a three-dimensional model based on the Mass-Spring System was proposed. And taking into account in the canopy structure of the internal forces and internal air movement, the dynamic model of particle nodes during the inflaction process was set up. Then, the model was verified by the experimental results.
     Thirdly, the dynamics model of the drogue parachute and the submunitions during the speed deceleration and spin decreasing stage was established, as well as the Flexible Multi-Body Dynamics model during the stable scanning period. Respectively, the model analysis of the parachute during the steady state was made, on that basis, the basic equation of the free vibration of the parachute was set up, as well as the computing method of the intrinsic frequency.
     Fourthly, the experiments were conducted to verify the parameters during the stable scanning period. By combining the experiments through launching the hot-air balloon and artillery, the dates of the fall velocity, scan angle and the rotate speed of the submunition was got. Then, these dates were compared with the simulation dates, and the accuracy of this model was verified.
     Fifthly, the random model of the submunitions during the various periods was set up in this paper. That is, on the premise of the analysis of the target characteristics in the battlefield, the factors which influence the hit probability were studied, and by using the Monte Carlo method, the random model of the submunitions was constructed, and based on these studies abovementioned, the graphic simulation of the overall trajectory was finally completed.
     Sixthly, the method to improve the identification probability was advanced. Given that the submunitions adopt the technique of millimeter wave/infrared sensor, the Fuzzy Mathematics and D-S theory MSDF(multisensor data fusion) were combined to apply to the process of the target identification, thus improving the identification probaility.
     Finally, the direction for the continuing research of this subject was pointed out.
引文
[1]J.P.Murtha.Army weapons:status of the Sense and Destroy Armor system.AD-A234845[R],1990.
    [2]A.E.Brindley,et al.Millimeter Wave radar for proximity fuzing of smart munition,IEEE1986[C].Nation Radar conference 1986.
    [3]C.A.Weickert.A Computer Program to Caculate the Aerodynamic-stability of a Self-forging Fragment,AD-A179857[R].
    [4]Mike Antreasian etc.SADARM environmental assessment,AD-A257622 1992[R].
    [5]Anthony Dinardo.SADARM status report:Aerojet electronics system division,SPIE Vol.1479.1991.P228-247[C].Surveilance Technologies.
    [6]Mcvey D F,WolfD F.Analysis of Deployment and Inflation of Large Ribbon Parachute[J].A ircraft,1974,1(2):96-103.
    [7]Sundberg W N.Status Report:Parachute System Design,Analysis and Simulation Tool,AIAA 93-120[R].
    [8]Purvis J W.Prediction of LinrSail during Lines-First Deployment,AIAA 83-037[R].
    [9]Moog P D.Aero dynamic Line Bowing Parachute Deployment,A/AA 75-138[R].
    [10]Srinivas E K.Modeling Issues Related to Retrieval Flexibale Tethered Satellite Systems[J].G uidance Control and Dynamics,1995,18(5):1169-1176.
    [11]Huston R L,Kamman J W.A representation of fluid forcesin finite segment cable models[J].C omputer& Struclure,1981,14(4):281-287.
    [12]Banerjee A K,Van N Do.Deployment Control of a Cable Connecting a Ship to an Underwater V ehicle[J].Guidance Control and Dynamics,1994,17(6):1327-1332.
    [13]Djerassi S,Bambergers H.Simultaneous Deployment of a Cable from Two Moving Platforms [J].Guidance Controt and Dynamics,1998,21(2):271-276.
    [14]Geoffrey F,Costello M.Improved Deployment Characteristics of Tether-Connected Munition Systems[J].Guidance Control and Dynamics,2001,24(3):547-554.
    [15]Heinrich H G.Analysis of parachute opening dynamics with supporting wind tunnel experiments,AIAA-68-0924[R].1968.
    [16]McEWAN A J.An investigation of parachute opening loads and a new engineering method for their determination,AIAA-70-1168[R].1970.
    [17]Toni R A.Theory on the dynamics of a parachute system undergoing its inflation process,AIAA-70-1170[R].1970.
    [18]Wolf Dean.A Simplified Dynamic Model of Parachute Inflation[J].Aircraft,1973.
    [19]Macha J M.A simple approximate model of parachute inflation,AIAA-93-1206[R].1993.
    [20]Roberts B W.A contribution to parachute inflation dynamics,AIAA-68-0928[R].1968.
    [21]W R Yu,et al.Drape Simulation of Woven Fabrics by Using Explicit Dynamics Analysis[J].Textile Inst,2000,2:285-301.
    [22]Jinlian Hu.Garment Drape Simulation for a New-generation CAD System[J].Textile Asia,2001,4:25-27.
    [23]D E Breen et al.AParticle-Based Model for Simulating the Draping Behavior of Woven Cloth[J].Textile Research,1994,11:663-685.
    [24]James W,Purvis.Theoretical Analysis of Parachute halation Including Fluid Kinetics,AIAA-81-1925[R].1981,10.
    [25]Hume R G.Two-dimensional Mathematical Model of a Parachute in Steady Descent,RAE-TR-73040[R].1973.
    [26]White F M.A Theory of Three-dimensional Parachute Dynamic Stability[J].Journal of Aircraft 1999,5.
    [27]J Hoschette.Multifunctional electro-optical sensors for precision munitions,SPIE,Vol.782,1987[C].
    [28]H Johari,K Jdesabrais.A Coupled fluid-structure parachute inflation model,AIAA2003-2146[R].2003.
    [29]Guest T.Intelligent Ammunition for land-based system[J].Military Tech,1989,13(9):19-29.
    [30]Bradley Weil.Automatic Ammunition Identification Technology project,DE93-007246[R].1993.
    [31]Sun Le.A Study of Ballistics Characteristics of Target Sensitivity Projectile during the Deceleration and Stable Scanning Phase.16th international Symposium on ballistics,San Francisco CA,USA,1996,9.
    [32]Huston R L.Multi-body Dynamics Formulations via Kane's Equations,AIAA-90-1234-CP:424-430[R].
    [33]Gosselin C.The Optimum Kinematics Design of a Spherical Three-Degree of Freedom Parallel Manipulator[J].Trans.ASME.J.MTAD.1989,June:202-207.
    [34]Meirovitch L.On the Modeling of Flexible Multi-body Systems by the Rayleigh-Ritz Method,AIAA-90-1245-CP:517-526.
    [35]Hughes P C.Modal Identities for Elastic Bodies with Application to Vehicle.Dynamics and Control[J].Applied Mechanics,1980,47(1):177-184.
    [36]Hablani H B.Modal Identities for Multi-body Elastic Spacecraft[J].Guidance,Control and Dynimics,1991,14(2):294-303.
    [37]Petzold L R.Efficient Newton-Type Iteration for the Numerical Solution of Highly Oscillatory Constrained Multi-body Dynamic Systems,AD-A317008[R].1996.
    [38]Keith P Soencksen,Vural Oskay.An investigation into the aerodynamics and structural integrity of the 155-mm M898 projectile,ARL-MR-4fil,AD-A371727[R].1999.
    [39]Mark P Nitzsche.XM898 projectile 155-mm SADARM packaging design and engineering test report,AD-A264522[R].1993.
    [40]Joyce ANagle.SADARM Captive Flight Tests,AD-A252553[R].1992
    [41]P B Fishbum.Design Modification and Calibration of the Picatirmy Activator for Setback Safety Testing of SADARM,AD-A251 858[R].1992.
    [42]Senglaub M.Systems engineering analysis of Kinetic energy weapon concepts,DE96012419JR].1996.
    [43]Eject Device.USP5,210,372.1995.5
    [44]Method and Apparatus for Separating Subcombat Units.USP5,398,615.1995.3
    [45]J Sahu.Computational Modeling of Sense and Destroy Armor(SADARM) Submunitions Separation/Collision,AD-A327516[R].1997.
    [46]王颂康.现代弹箭与装甲防护技术[M].北京:兵器工业出版社,1994
    [47]《末敏弹译文集》编委会组编,马成华主编.末敏弹译文集(第一集)[C].西安:《弹箭技术》编辑部,1995.
    [48]王儒策,刘荣忠.灵巧弹药的构造及应用[M].北京:兵器工业出版社,2001.
    [49]潘承泮.武器系统射击效力分析(第一版)[M].北京:国防工业出版社,1985
    [50]田隶华,马宝华,范宁军.兵器科学技术总论[M].北京:北京理工大学出版社,2003.
    [51]洪昌仪.兵器工业高新技术[M].北京:兵器工业出版社,1994.
    [52]炮兵装备技术研究所.炮兵武器装备论证与参考(上、下)[M].1986,6.
    [53]赵玉菱.外军弹道导弹发展综述(下)[J].外军炮兵,2001,9.
    [54]何喜营.国外末敏弹药的发展现状[J].弹箭技术,1995(2):P1-11.
    [55]美军现役陆军战术导弹概况[J].外军炮兵,2002,9.
    [56]罗健编译.明天的灵巧坦克弹药[J].弹箭技术,1996(1):P33-39.
    [57]陆欣.末敏弹系统外弹道的分析研究[M].北京:解放军出版社,2000.
    [58]杨启仁.子母弹飞行动力学[M].北京:国防工业出版社,1999.
    [59]康新中,吴三灵,马春茂,等编.火炮系统动力学[M].北京:国防工业出版社,1999,5.
    [60]肖业伦.航空航天器运动的建模-飞行动力学的理论基础[M].北京:北京航空航天大学出版社,2003.
    [61]徐明友.弹箭飞行动力学[M].北京:国防工业出版社,2003,1.
    [62]回返技术翻译组译.气动力减速器原理及设计[M].北京:国防工业出版社,1976.
    [63]钱翼稷.空气动力学[M].北京:北京航天航空大学出版社,2004,9.
    [64]李质明.炮兵射击理论[M].长沙:国防科技大学出版社,2003
    [65]张延教编.高等动力学[M].南京:华东工学院,1986,3.
    [66]刘延柱.多刚体系统动力学[M].高等教育出版社,1987.
    [67]袁士杰,吕哲勤编.多刚体系统动力学[M].北京:北京理工大学出版社,1992,3.
    [68]黄文虎,邵成勋,等.多柔体系统动力学[M].北京:科学出版社,1996.
    [69]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996.
    [70]洪嘉振.计算多体系统动力学[M].高等教育出版社,2000.
    [71]成详生.板壳理论[M].山东科学技术出版社,1989,8.
    [72]倪振华.振动力学[M].西安:西安交通大学出版社,1989.
    [73]T R凯恩,P W莱金斯,D A李文森著,黄克累,张安厚译.航天飞行器动力学[M].北京:科学出版社,1988.
    [74]刘荣忠.末敏弹结构动态响应和效能分析[D].南京理工大学博士论文,1996.
    [75]孙乐.机载布撒器及其子弹药气动力数值计算与弹道研究[D].南京理工大学博士论文,1998.
    [76]郭锐.导弹末敏子弹总体相关技术研究[D].南京理工大学博士论文,2006.
    [77]王建军.导弹末敏弹控制系统设计与仿真[D].南京理工大学硕士论文,2004.
    [78]舒敬荣.非对称末敏子弹大攻角扫描特性研究及应用[D].南京理工大学博士论文,2004.
    [79]王福海.伞降末敏子弹运动特性研究[D].南京理工大学硕士论文,2007.
    [80]沈雁飞.末敏弹稳态扫描平台动态数字仿真[D].南京理工大学硕士论文,2004.
    [81]卢春梅.末敏弹系统的多刚体力学分析及动画模拟仿真[D].南京理工大学硕士论文,2002.
    [82]王宝贵.末敏弹系统弹道规律的计算分析[D].南京理工大学硕士学位论文,1999.
    [83]敖勇.柔性多体系统动力学和动态子结构方法及其在自行火炮动力学仿真中的应用研究[D].南京理工大学博士论文,1997,11.
    [84]杨国来.多柔体系统参数化模型及其在火炮中的应用研究[D].南京理工大学博士论文,1999.
    [85]施高萍.多柔体系统动力学模型的降阶研究[D].浙江工业大学硕士论文,2004,4.
    [86]华新.新一代末敏子弹引战配合系统分析[D].南京理工大学硕士论文,2004.
    [87]黄鹍.末敏弹效能分析与灵敏度分析[D].南京理工大学硕士论文,2001.
    [88]郭锐,刘荣忠.末敏弹刚柔耦合系统动力学模型及仿真[J].兵工学报,2007,28,01.
    [89]舒敬荣,张邦楚,韩子鹏,刘昌源,魏靖彪.单翼末敏弹扫描运动研究[J].兵工学报,2004,25,04:415-420.
    [90]刘世平.末敏弹四自由度质点弹道计算方法[J].弹道学报,1995(3):68-74.
    [91]孙乐,韩子鹏,李奉昌,刘世平.末敏弹减速运动和稳态扫描段运动特性的研究[J].航空学报,1998,19(2):147-151.
    [92]舒敬荣.伞-弹系统三体运动分析[J].航空学报,2001,22(6):481-485.
    [93]韩子鹏,刘昌源,王宝贵.旋转伞弹系统扫描角变化特性分析[J].中国兵工学会弹道学术交流会论文集,1999:132-136.
    [94]陈超,王志军.智能雷攻击坦克顶甲时的刚体扫描运动方程[J].华北工学院学报,2001,22(3):173-175.
    [95]黄鲲.末敏弹敏感器占空比优化与捕获命中概率计算.中国兵工学会第27届弹药学术年会论文集[J].1998:21-27.
    [96]刘世平,韩子鹏,余劲天,宋太阳.末敏弹系统弹道模拟实验数据处理[J].弹道学报,1997(3):70-73.
    [97]李凤珍,戴晓宁.伞弹的外弹道实验研究[C].中国兵工学会弹道学术交流会论文集.1990.
    [98]李军营.子母弹弹道模型建立及仿真[J].飞行力学,2003,21(1):39-42.
    [99]李大耀.利用刚体.质点模型法计算物-伞系统运动轨迹的基本方程[J].航天返回与遥感,1995,16(3):4-45.
    [100]刘正平.空投鱼雷雷伞系统五自由度运动的研究[J].舰船科学技术,1996,5.
    [101]从明煜.低空伞弹外弹道动力学模型[J].弹道学报,2000,12(1):31-36.
    [102]金友兵.鱼雷和伞的空中运动模型[J].弹道学报.,1998,10(2):87-92.
    [103]康凤举.现代仿真技术与应用[M].北京:国防工业出版社,2001,9.
    [104]张全伙,张俭达.计算机图形学[M].北京:机械工业出版社,2003,8.
    [105]潘云鹤.计算机图形学-原理、方法及应用[M].北京:高等教育出版社,2001,1.
    [106]郜宪林.子母弹子弹散布模型及其仿真研究[J].兵工学报,1989(2):12-18.
    [107]刘丽荣,王军波,黄景德.基于Matlab的滑翔增程弹道的计算机仿真[J].计算机仿真,2004,21(2):32-35.
    [108]毕兰金.Matlab在导弹控制系统设计和仿真中的应用[J].情报指挥控制系统与仿真技术,2004,26(4):59-61.
    [109]程云门.平定设计效率原理[M].北京:解放军出版社,1986.
    [110]贾希辉.概率论与应用统计[M].北京:科学出版社,2000.
    [111]徐钟济.蒙特卡洛法[M].上海:科学技术出版社,1989.
    [112]肖刚,李天陀.动态系统可靠性仿真的五种蒙特卡洛方法[J].计算物理,2001,18(2):172-176.
    [113]尹增谦,管景峰.蒙特卡洛方法及应用[J].物理与工程,2002,12(3):45-49.
    [114]魏选平,卞树檀.蒙特卡洛法仿真实例及其结果分析[J].上海航天,2002,2:33-36.
    [115]陈超,王志军.蒙特卡洛法在武器系统毁伤概率计算中的应用[J].弹箭与制导学报,2002,22(1):48-59.
    [116]殷克功,刘荣忠,齐爱东.蒙特卡罗法在末敏弹发射中仿真应用[J].弹箭与制导,2005,2.
    [117]张小超,王精业,梁强.基于Direct3D的虚拟战场环境中动态地形的实现方法[J].系统仿真学报,2005,17(5):1145-1148.
    [118]薛文通,宋建社.子母弹对复杂形状目标毁伤效果的计算机仿真[J].计算机仿真,2003,20(4):16-18.
    [119]杨伯忠,刘怡昕.火炮发射子母弹时目标毁伤效率的评定[J].南京理工大学学报,1999,23(5):434-437.
    [120]傅建平,杨明华.动能子母弹对自行火炮毁伤概率分析与计算[J].装甲兵工程学院学报,2002,14(2):40-43.
    [121]黄鲲.末敏弹毁伤概率计算及其影响因素分析[J].弹道学报,1999(11):37-42.
    [122]张旗,张安.武装直升机装备子母弹作战效能分析[J].火力指挥与控制,1997,2:55-59.
    [123]黄鹍,陈森发,刘荣忠.基于神经网络和遗传算法的末敏弹系统效能参数优化设计[J].兵工学报,2004,25,03:257-260.
    [124]寇保华,杨涛,张晓今.末修子母弹设计概率的CADET应用研究[J].弹道学报,2004,16(3):1-5.
    [125]唐建,秦子增.攻击大目标子母弹设计效率的分析与估算[J].国防科技大学学报,1997,19(6):25-30.
    [126]韩松臣.用随机模型改进作战效能分析的纯概率模型[J].航空学报,1999,20(2):174-176.
    [127]佚名.炮射末敏弹后抛式子弹抛撒分离技术研究[D].北京理工大学硕士学位论文,2000.
    [128]钱华梅.多用途航空子母弹二次抛撒系统结构设计与计算机仿真[D].南京理工大学硕士论文,2003.
    [129]朱维亮,张文峰.一种新型导弹级间分离机构研究[J].航天返回与遥感,2005(1):53-57.
    [130]屈容生.122mm榴弹炮杀伤破甲子母弹总体结构设计的技术关键及解决措施[J].子母弹论文集,1990(7)
    [131]郝太吉.国外二次抛射开伞照明弹发展状况[J].弹箭技术,1983(4).
    [132]杨启仁,耿茂盛.子母弹抛撒动力学模型[C].中国兵工学会弹道学术交流会论文集,1992:498-502.
    [133]徐文旭,唐雪梅.导弹子母弹子弹抛撒弹道模型及数字仿真[J].宇航学报,2001,22(2):71-78.
    [134]付淑娟编译.翅果型减速装置[J].弹箭技术,1995(1):39-45.
    [135]王利荣.降落伞理论与应用[M].北京:宇航出版社,1997.
    [136]Ewing E G,Bixby H W,Knacke T W.回收系统设计指南[M].北京:航空工业出版社,1988.
    [137]林斌.我国航天降落伞技术的发展[J].航天返回与遥感,1999,20(3):1-5.
    [138]高大全.航天器回收技术在兵器上的应用[J].航天返回与遥感,1998,19(3):16-20.
    [139]赵祖虎.小型空间有效载荷回收系统[J].航天返回与遥感,1995,16(3):17-27.
    [140]付淑娟编译.子弹药旋转降落伞的研究[J].弹箭技术,1996(2):23-30.
    [141]孙乐.TSP系统全充满旋转减速伞运动特性的研究[J].南京理工大学学报,1996(10):425-428.
    [142]孙乐,韩子鹏,李奉昌,刘世平.末敏弹二体运动模型计算中伞绳张力的求解[J].兵工学报,1997,18(2):111-115.
    [143]张青斌,程文科,彭勇,秦子增.降落伞拉直过程的多刚体模型[J].中国空间科学技术,2003(2):45-49.
    [144]张青斌,彭勇,程文科,秦子增,张晓今.系绳力对降落伞拉直过程的影响[J].航天返回与遥感,2002,23(2):9-13.
    [145]彭勇,程文科,宋旭民,张青斌.降落伞充气过程研究方法综述[J].中国空间科学技术,2004,6(3):38-44.
    [146]彭勇,张青斌,程文科,秦子增.降落伞初始充气阶段数值模拟[J].中国空间科学技术,2003(6),7-11.
    [147]刘世平,韩子鹏,等.末敏弹系统开伞过程的模拟试验方法及应用分析研究[J].兵工学报,1998,19(2):171-175.
    [148]余莉,明晓,胡斌.降落伞开伞过程的试验研究[J].南京航空航天大学学报,2006,38(2):176-180.
    [149]廖前芳.物伞系统回收过程动力学仿真与分析[D].国防科技大学硕士论文,2005.
    [150]刘欣,李保军.密实织物伞形状和应力计算研究[J].南京航空航天大学学报,1996,28(5):631-637.
    [151]杨惠珍,康风举.水下航行器制导仿真的校核、验证和确认技术[J].系统工程与电子技术,2002,24(9):56-59.
    [152]龚文轩.一种计算开伞动载的实用方法[J].中国空间科学技术,1995(1):36-46.
    [153]刘世平,韩子鹏.末敏弹旋转伞-弹系统阻力模型研究[J].兵工学报,1997(3):221-225.
    [154]韩子鹏,孙乐.末敏弹刚柔二体相互作用力学模型探讨[J].弹道学报,1997(4):45-49.
    [155]马吉胜,王瑞林.弹炮耦合问题的理论模型[J].兵工学报,2004,25(1):73-79.
    [156]程文科.物伞系统动力特性研究[J].国防科技大学学报,1998,20(4):27-30.
    [157]李兴国.毫米波近感技术及其应用[M].北京:国防工业出版社,1991.
    [158]陈玻若.红外系统[M].北京:国防工业出版社,1998.
    [159]杨靖宇.战场数据融合技术[M].北京:兵器工业出版社,1992.
    [160]刘同明.数据融合技术与应用[M].西安:西安电子科技大学出版社,1998.
    [161]曾庆勇.微弱信号检测[M].杭州:浙江大学出版社,1994.
    [162]黄忠华.末敏弹系统的目标识别[D].南京理工大学硕士论文,2002.
    [163]张祖荫,郭伟.无源毫米波末敏弹[J].华中理工大学学报,1994,5.
    [164]殷克功,刘荣忠,史争军,黄中华.数据融合技术在末敏弹目标识别中的应用[J].弹道学报,2003,15(1):55-60.
    [165]王建军.红外毫米波复合探测技术在末敏弹中的应用.微计算机信息,2007,23(29):275-277.
    [166]王京鸣,齐建文,殷培江.求解末敏弹毁伤概率的一种解析模型[J].弹道学报,2006,18(2):94-96.
    [167]中国人民解放军总装备部军事训练教材编辑委员会.国防系统分析方法(上、下)[M].北京:国防工业出版社,2003,2.
    [168]程云鹏.矩阵论(第二版)[M].西安:西北工业大学出版社,2000.
    [169]周长发.科学与工程数值算法[M].北京:清华大学出版社,2002,11.
    [170]陆君安,尚涛,等.偏微分方程的MATLAB解法[M].武汉:武汉大学出版社,2001,8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700