一类潜在的抗生素药物靶点蛋白NDH-2的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子传递链,又称呼吸链,由五个蛋白质复合物组成,是将代谢过程中产生的电子从NADH向氧分子传递的系统,是生物体最重要的能量来源。其中的复合物I,即NADH:泛醌氧化还原酶,是电子进入电子传递链的入口。在多种低等生物中,复合物I可以被一类称为二型NADH脱氢酶(NDH-2)的蛋白所取代。NDH-2附着在细胞膜或线粒体内膜上,以FAD为辅基,催化电子从NADH传递给泛醌(UQ)。NDH-2在疟原虫、结核杆菌等多种病原微生物中高度保守,而且已被证明是一类潜在的药物靶点。同时,在人体细胞中异源表达Ndi1蛋白(酿酒酵母的NDH-2),被认为可以作为一种基因治疗手段应用于复合物I缺陷引起的多种人类疾病,尤其是帕金森氏病等神经退行性疾病的治疗中。
     本文以NDH-2家族的典型代表——酿酒酵母的Ndi1蛋白为研究对象,解析了其高分辨率晶体结构及Ndi1与NADH、UQ以及NADH-UQ三种底物复合物的晶体结构。在所有晶体结构中,Ndi1均以同源二聚体的形式存在。结构分析和序列比对发现,Ndi1具有一个独特的并且在NDH-2家族中序列高度保守的C端结构域(CTD),该结构域介导了Ndi1二聚体化,进而使其形成一个广泛的疏水区域,该区域赋予了Ndi1附着在线粒体内膜上的能力。后续的生物化学和细胞生物学实验都证实了CTD对于Ndi1功能的重要性。同时,三种Ndi1-底物复合物结构的解析揭示了Ndi1与底物的结合方式,并证明了Ndi1中同时存在两个泛醌结合位点。电子顺磁共振实验的结果首次鉴定出在Ndi1介导的电子传递过程中有半醌自由基的出现,同时功率饱和实验支持有两个半醌自由基参与电子传递反应的理论。据此,本论文提出了Ndi1介导电子传递的模型。
     本文的研究成果为探讨NDH-2介导电子传递的详细机制、针对NDH-2的药物设计以及更好地将Ndi1应用于基因治疗奠定了良好的基础。本论文综合运用了结构生物学、生物化学与分子生物学、细胞生物学以及物理学等多个学科的实验方法系统地研究了NDH-2家族最具代表性的蛋白Ndi1的多方面特性,全方位地揭示了该蛋白发挥呼吸链电子传递入口这一重要生物学功能的机理。
The electron transport chain, or the respiratory chain, comprising of complexes I-V,transports the electrons derived from metabolic processes from NADH to the oxygenmolecule, and is the most important energy source for living organisms. Complex I, orNADH-ubiquinone oxidoreductase, is thus the entry point for these electrons. In manyorganisms, however, complex I could be replaced by type-II NADH dehydrogenases(NDH-2s), which catalyze the electron transfer from NADH to ubiquinone (UQ), withFAD as a prosthetic group. NDH-2s are highly conserved in many pathogenicmicroorganisms including Mycobacterium tuberculosis and Plasmodium falciparum,and have been recognized as potential drug targets. Meanwhile, heterologous expressionof Ndi1(an NDH-2in Saccharomyces cerevisiae) in human cells has been proposed totreat human diseases caused by complex I defects as typified by Parkinson’s diseases.
     In this study, we have solved the high-resolution crystal structures of Ndi1and itsthree types of enzyme-substrate complexes with NADH, UQ and NADH-UQ,respectively. Ndi1formed a homodimer in all the structures. Structural analysis andsequence alignment identified that Ndi1possesses a C-terminal domain (CTD) which ishighly conserved among NDH-2s. The CTD mediates the homodimerization of Ndi1,thus generating an extensive hydrophobic region in the protein to facilitate itsmembrane attachment, which has been confirmed by the subsequent biochemical andcell biological experiments. At the same time, the structures of the three Ndi1-substratecomplexes revealed the substrate binding modes in Ndi1, and demonstrated theexistence of two UQ binding sites. EPR (electron paramagnetic resonance) experimentsidentified for the first time the existence of semiquinone radicals, and the powersaturation experiments suggested that two semiquinone radicals are involved in electrontransport. Finally, a model was raised for the mechanism of electron transfer fromNADH to UQ catalyzed by Ndi1.
     These results laid the foundation for the studies into the detailed mechanisms ofNDH-2-mediated electron transfer, NDH-2-targeted drug designs, and the application ofNdi1in gene therapy. This study incorporated research approaches from multiple disciplines including structural biology, biochemistry, molecular biology, cell biology,and physics. The research comprehensively revealed the mechanism how Ndi1functions as an entry point for electrons to traverse the respiratory chain.
引文
[1] Kerscher, S., S. Drose, V. Zickermann, et al. The three families of respiratory NADHdehydrogenases. Results Probl Cell Differ,2008.45: p.185-222.
    [2] Saraste, M. Oxidative phosphorylation at the fin de siecle. Science,1999.283(5407):p.1488-93.
    [3] Melo, A.M., T.M. Bandeiras, and M. Teixeira. New insights into type IINAD(P)H:quinone oxidoreductases. Microbiol Mol Biol Rev,2004.68(4): p.603-16.
    [4] Efremov, R.G., R. Baradaran, and L.A. Sazanov. The architecture of respiratorycomplex I. Nature,2010.465(7297): p.441-5.
    [5] Sun, F., X. Huo, Y. Zhai, et al. Crystal structure of mitochondrial respiratorymembrane protein complex II. Cell,2005.121(7): p.1043-57.
    [6] Cecchini, G. Function and structure of complex II of the respiratory chain. Annu RevBiochem,2003.72: p.77-109.
    [7] Bernardi, P. and G.F. Azzone. Cytochrome c as an electron shuttle between the outerand inner mitochondrial membranes. J Biol Chem,1981.256(14): p.7187-92.
    [8] Carroll, J., I.M. Fearnley, J.M. Skehel, et al. Bovine complex I is a complex of45different subunits. J Biol Chem,2006.281(43): p.32724-7.
    [9] Carroll, J., R.J. Shannon, I.M. Fearnley, et al. Definition of the nuclear encodedprotein composition of bovine heart mitochondrial complex I. Identification of twonew subunits. J Biol Chem,2002.277(52): p.50311-7.
    [10] Sharma, L.K., J. Lu, and Y. Bai. Mitochondrial respiratory complex I: structure,function and implication in human diseases. Curr Med Chem,2009.16(10): p.1266-77.
    [11] Bellance, N., P. Lestienne, and R. Rossignol. Mitochondria: from bioenergetics to themetabolic regulation of carcinogenesis. Front Biosci,2009.14: p.4015-34.
    [12] Yagi, T., T. Yano, and A. Matsuno-Yagi. Characteristics of the energy-transducingNADH-quinone oxidoreductase of Paracoccus denitrificans as revealed bybiochemical, biophysical, and molecular biological approaches. J Bioenerg Biomembr,1993.25(4): p.339-45.
    [13] Moller, I.M. PLANT MITOCHONDRIA AND OXIDATIVE STRESS: ElectronTransport, NADPH Turnover, and Metabolism of Reactive Oxygen Species. Annu RevPlant Physiol Plant Mol Biol,2001.52: p.561-591.
    [14] Friedrich, T. and D. Scheide. The respiratory complex I of bacteria, archaea andeukarya and its module common with membrane-bound multisubunit hydrogenases.FEBS Lett,2000.479(1-2): p.1-5.
    [15] de Vries, S. and L.A. Grivell. Purification and characterization of arotenone-insensitive NADH:Q6oxidoreductase from mitochondria of Saccharomycescerevisiae. Eur J Biochem,1988.176(2): p.377-84.
    [16] Bjorklof, K., V. Zickermann, and M. Finel. Purification of the45kDa, membranebound NADH dehydrogenase of Escherichia coli (NDH-2) and analysis of itsinteraction with ubiquinone analogues. FEBS Lett,2000.467(1): p.105-10.
    [17] Gomes, C.M., T.M. Bandeiras, and M. Teixeira. A new type-II NADH dehydrogenasefrom the archaeon Acidianus ambivalens: characterization and in vitro reconstitutionof the respiratory chain. J Bioenerg Biomembr,2001.33(1): p.1-8.
    [18] Weiss, H., G. von Jagow, M. Klingenberg, et al. Characterization of Neurosporacrassa mitochondria prepared with a grind-mill. Eur J Biochem,1970.14(1): p.75-82.
    [19] Barquera, B., W. Zhou, J.E. Morgan, et al. Riboflavin is a component of theNa+-pumping NADH-quinone oxidoreductase from Vibrio cholerae. Proc Natl AcadSci U S A,2002.99(16): p.10322-4.
    [20] Steuber, J. Na(+) translocation by bacterial NADH:quinone oxidoreductases: anextension to the complex-I family of primary redox pumps. Biochim Biophys Acta,2001.1505(1): p.45-56.
    [21] Kitajima-Ihara, T. and T. Yagi. Rotenone-insensitive internal NADH-quinoneoxidoreductase of Saccharomyces cerevisiae mitochondria: the enzyme expressed inEscherichia coli acts as a member of the respiratory chain in the host cells. FEBS Lett,1998.421(1): p.37-40.
    [22] Yamashita, T., E. Nakamaru-Ogiso, H. Miyoshi, et al. Roles of bound quinone in thesingle subunit NADH-quinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae.J Biol Chem,2007.282(9): p.6012-20.
    [23]王镜岩,朱圣庚,徐长法.生物化学(下).高等教育出版社,2002.
    [24] Dawson, A.G. Oxidation of cytosolic NADH formed during aerobic metabolism inmammalian cells. Trends Biochem. Sci,1979: p.171–176.
    [25] Yagi, T. Bacterial NADH-quinone oxidoreductases. J Bioenerg Biomembr,1991.23(2): p.211-25.
    [26] Wierenga, R.K., P. Terpstra, and W.G. Hol. Prediction of the occurrence of theADP-binding beta alpha beta-fold in proteins, using an amino acid sequencefingerprint. J Mol Biol,1986.187(1): p.101-7.
    [27] Finel, M. Does NADH play a central role in energy metabolism in Helicobacter pylori?Trends Biochem. Sci,1998.23: p.412-413.
    [28] Moller, I.M., J.P. Schwitzguebel, and J.M. Palmer. Binding and screening by cationsand the effect on exogenous NAD(P)H oxidation in Neurospora crassa mitochondria.Eur J Biochem,1982.123(1): p.81-8.
    [29] Bandeiras, T.M., C.A. Salgueiro, H. Huber, et al. The respiratory chain of thethermophilic archaeon Sulfolobus metallicus: studies on the type-II NADHdehydrogenase. Biochim Biophys Acta,2003.1557(1-3): p.13-9.
    [30] Bandeiras, T.M., C. Salgueiro, A. Kletzin, et al. Acidianus ambivalens type-II NADHdehydrogenase: genetic characterisation and identification of the flavin moiety asFMN. FEBS Lett,2002.531(2): p.273-7.
    [31] Fang, J. and D.S. Beattie. Novel FMN-containing rotenone-insensitive NADHdehydrogenase from Trypanosoma brucei mitochondria: isolation and characterization.Biochemistry,2002.41(9): p.3065-72.
    [32] Melo, A.M., M. Duarte, and A. Videira. Primary structure and characterisation of a64kDa NADH dehydrogenase from the inner membrane of Neurospora crassamitochondria. Biochim Biophys Acta,1999.1412(3): p.282-7.
    [33] Pereira, M.M., T.M. Bandeiras, A.S. Fernandes, et al. Respiratory chains from aerobicthermophilic prokaryotes. J Bioenerg Biomembr,2004.36(1): p.93-105.
    [34] Rasmusson, A.G., A.S. Svensson, V. Knoop, et al. Homologues of yeast and bacterialrotenone-insensitive NADH dehydrogenases in higher eukaryotes: two enzymes arepresent in potato mitochondria. Plant J,1999.20(1): p.79-87.
    [35] Kerscher, S.J. Diversity and origin of alternative NADH:ubiquinone oxidoreductases.Biochim Biophys Acta,2000.1459(2-3): p.274-83.
    [36] Miramar, M.D., P. Costantini, L. Ravagnan, et al. NADH oxidase activity ofmitochondrial apoptosis-inducing factor. J Biol Chem,2001.276(19): p.16391-8.
    [37] Bragg, P.D. and C. Hou. Reduced nicotinamide adenine dinucleotide oxidation inEscherichia coli particles. II. NADH dehydrogenases. Arch Biochem Biophys,1967.119(1): p.202-8.
    [38] Young, I.G., B.L. Rogers, H.D. Campbell, et al. Nucleotide sequence coding for therespiratory NADH dehydrogenase of Escherichia coli. UUG initiation codon. Eur JBiochem,1981.116(1): p.165-70.
    [39] Jaworowski, A., G. Mayo, D.C. Shaw, et al. Characterization of the respiratory NADHdehydrogenase of Escherichia coli and reconstitution of NADH oxidase in ndh mutantmembrane vesicles. Biochemistry,1981.20(12): p.3621-8.
    [40] Owen, P. and H.R. Kaback. Immunochemical analysis of membrane vesicles fromEscherichia coli. Biochemistry,1979.18(8): p.1413-22.
    [41] Bertsova, Y.V., A.V. Bogachev, and V.P. Skulachev. Two NADH:ubiquinoneoxidoreductases of Azotobacter vinelandii and their role in the respiratory protection.Biochim Biophys Acta,1998.1363(2): p.125-33.
    [42] Bertsova, Y.V., A.V. Bogachev, and V.P. Skulachev. Noncoupled NADH:ubiquinoneoxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at highoxygen concentrations. J Bacteriol,2001.183(23): p.6869-74.
    [43] Howitt, C.A., P.K. Udall, and W.F. Vermaas. Type2NADH dehydrogenases in thecyanobacterium Synechocystis sp. strain PCC6803are involved in regulation ratherthan respiration. J Bacteriol,1999.181(13): p.3994-4003.
    [44] Nakamura, Y., T. Kaneko, S. Sato, et al. Complete genome structure of thethermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res,2002.9(4): p.123-30.
    [45] Deckert, G., P.V. Warren, T. Gaasterland, et al. The complete genome of thehyperthermophilic bacterium Aquifex aeolicus. Nature,1998.392(6674): p.353-8.
    [46] Kawarabayasi, Y., Y. Hino, H. Horikawa, et al. Complete genome sequence of anaerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res,2001.8(4): p.123-40.
    [47] Kawarabayasi, Y., Y. Hino, H. Horikawa, et al. Complete genome sequence of anaerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res,1999.6(2): p.83-101,145-52.
    [48] Kawashima, T., N. Amano, H. Koike, et al. Archaeal adaptation to highertemperatures revealed by genomic sequence of Thermoplasma volcanium. Proc NatlAcad Sci U S A,2000.97(26): p.14257-62.
    [49] Lemos, R.S., A.S. Fernandes, M.M. Pereira, et al. Quinol:fumarate oxidoreductasesand succinate:quinone oxidoreductases: phylogenetic relationships, metal centres andmembrane attachment. Biochim Biophys Acta,2002.1553(1-2): p.158-70.
    [50] Luttik, M.A., K.M. Overkamp, P. Kotter, et al. The Saccharomyces cerevisiae NDE1and NDE2genes encode separate mitochondrial NADH dehydrogenases catalyzing theoxidation of cytosolic NADH. J Biol Chem,1998.273(38): p.24529-34.
    [51] Marres, C.A., S. de Vries, and L.A. Grivell. Isolation and inactivation of the nucleargene encoding the rotenone-insensitive internal NADH: ubiquinone oxidoreductase ofmitochondria from Saccharomyces cerevisiae. Eur J Biochem,1991.195(3): p.857-62.
    [52] Jin, Y.S., J.M. Laplaza, and T.W. Jeffries. Saccharomyces cerevisiae engineered forxylose metabolism exhibits a respiratory response. Appl Environ Microbiol,2004.70(11): p.6816-25.
    [53] Small, W.C. and L. McAlister-Henn. Identification of a cytosolically directed NADHdehydrogenase in mitochondria of Saccharomyces cerevisiae. J Bacteriol,1998.180(16): p.4051-5.
    [54] Fang, J. and D.S. Beattie. External alternative NADH dehydrogenase ofSaccharomyces cerevisiae: a potential source of superoxide. Free Radic Biol Med,2003.34(4): p.478-88.
    [55] Melo, A.M., M. Duarte, I.M. Moller, et al. The external calcium-dependent NADPHdehydrogenase from Neurospora crassa mitochondria. J Biol Chem,2001.276(6): p.3947-51.
    [56] Svensson, A.S., F.I. Johansson, I.M. Moller, et al. Cold stress decreases the capacityfor respiratory NADH oxidation in potato leaves. FEBS Lett,2002.517(1-3): p.79-82.
    [57] Michalecka, A.M., A.S. Svensson, F.I. Johansson, et al. Arabidopsis genes encodingmitochondrial type II NAD(P)H dehydrogenases have different evolutionary originand show distinct responses to light. Plant Physiol,2003.133(2): p.642-52.
    [58] Oliveira, P.J., D.J. Santos, and A.J. Moreno. Carvedilol inhibits the exogenous NADHdehydrogenase in rat heart mitochondria. Arch Biochem Biophys,2000.374(2): p.279-85.
    [59] Susin, S.A., H.K. Lorenzo, N. Zamzami, et al. Molecular characterization ofmitochondrial apoptosis-inducing factor. Nature,1999.397(6718): p.441-6.
    [60] Wu, M., L.G. Xu, X. Li, et al. AMID, an apoptosis-inducing factor-homologousmitochondrion-associated protein, induces caspase-independent apoptosis. J BiolChem,2002.277(28): p.25617-23.
    [61] Matsushita, K., T. Ohnishi, and H.R. Kaback. NADH-ubiquinone oxidoreductases ofthe Escherichia coli aerobic respiratory chain. Biochemistry,1987.26(24): p.7732-7.
    [62] Kerscher, S.J., J.G. Okun, and U. Brandt. A single external enzyme confers alternativeNADH:ubiquinone oxidoreductase activity in Yarrowia lipolytica. J Cell Sci,1999.112(Pt14): p.2347-54.
    [63] Velazquez, I. and J.P. Pardo. Kinetic characterization of the rotenone-insensitiveinternal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomycescerevisiae. Arch Biochem Biophys,2001.389(1): p.7-14.
    [64] Bracey, M.H., B. F. Cravatt, and R. C. Stevens. Structural commonalities amongintegral membrane enzymes. FEBS Lett.,2004.567: p.159-165.
    [65] Green, J., M.F. Anjum, and J.R. Guest. Regulation of the ndh gene of Escherichia coliby integration host factor and a novel regulator, Arr. Microbiology,1997.143(Pt9):p.2865-75.
    [66] Wackwitz, B., J. Bongaerts, S.D. Goodman, et al. Growth phase-dependent regulationof nuoA-N expression in Escherichia coli K-12by the Fis protein: upstream bindingsites and bioenergetic significance. Mol Gen Genet,1999.262(4-5): p.876-83.
    [67] Tran, Q.H., J. Bongaerts, D. Vlad, et al. Requirement for the proton-pumping NADHdehydrogenase I of Escherichia coli in respiration of NADH to fumarate and itsbioenergetic implications. Eur J Biochem,1997.244(1): p.155-60.
    [68] Spiro, S. and J.R. Guest. FNR and its role in oxygen-regulated gene expression inEscherichia coli. FEMS Microbiol Rev,1990.6(4): p.399-428.
    [69] Duarte, M., M. Peters, U. Schulte, et al. The internal alternative NADHdehydrogenase of Neurospora crassa mitochondria. Biochem J,2003.371(Pt3): p.1005-11.
    [70] De Vries, S., R. Van Witzenburg, L.A. Grivell, et al. Primary structure and importpathway of the rotenone-insensitive NADH-ubiquinone oxidoreductase ofmitochondria from Saccharomyces cerevisiae. Eur J Biochem,1992.203(3): p.587-92.
    [71] Teh, J.S., T. Yano, and H. Rubin. Type II NADH: menaquinone oxidoreductase ofMycobacterium tuberculosis. Infect Disord Drug Targets,2007.7(2): p.169-81.
    [72] Torrentino-Madamet, M., J. Desplans, C. Travaille, et al. Microaerophilic respiratorymetabolism of Plasmodium falciparum mitochondrion as a drug target. Curr Mol Med.10(1): p.29-46.
    [73] Rodrigues, T., F. Lopes, and R. Moreira. Inhibitors of the mitochondrial electrontransport chain and de novo pyrimidine biosynthesis as antimalarials: The presentstatus. Curr Med Chem,2010.17(10): p.929-56.
    [74] Eschemann, A., A. Galkin, W. Oettmeier, et al. HDQ(1-hydroxy-2-dodecyl-4(1H)quinolone), a high affinity inhibitor for mitochondrialalternative NADH dehydrogenase: evidence for a ping-pong mechanism. J Biol Chem,2005.280(5): p.3138-42.
    [75] Lin, S.S., U. Gross, and W. Bohne. Type II NADH dehydrogenase inhibitor1-hydroxy-2-dodecyl-4(1H)quinolone leads to collapse of mitochondrialinner-membrane potential and ATP depletion in Toxoplasma gondii. Eukaryot Cell,2009.8(6): p.877-87.
    [76] Lin, S.S., S. Kerscher, A. Saleh, et al. The Toxoplasma gondii type-II NADHdehydrogenase TgNDH2-I is inhibited by1-hydroxy-2-alkyl-4(1H)quinolones.Biochim Biophys Acta,2008.1777(11): p.1455-62.
    [77] Tuppen, H.A., E.L. Blakely, D.M. Turnbull, et al. Mitochondrial DNA mutations andhuman disease. Biochim Biophys Acta,2010.1797(2): p.113-28.
    [78] Greaves, L.C. and R.W. Taylor. Mitochondrial DNA mutations in human disease.IUBMB Life,2006.58(3): p.143-51.
    [79] Taylor, R.W. and D.M. Turnbull. Mitochondrial DNA mutations in human disease.Nat Rev Genet,2005.6(5): p.389-402.
    [80] Seo, B.B., A. Matsuno-Yagi, and T. Yagi. Modulation of oxidative phosphorylation ofhuman kidney293cells by transfection with the internal rotenone-insensitiveNADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae. BiochimBiophys Acta,1999.1412(1): p.56-65.
    [81] Maas, M.F., C.H. Sellem, F. Krause, et al. Molecular gene therapy: overexpression ofthe alternative NADH dehydrogenase NDI1restores overall physiology in a fungalmodel of respiratory complex I deficiency. J Mol Biol,2010.399(1): p.31-40.
    [82] Seo, B.B., T. Kitajima-Ihara, E.K. Chan, et al. Molecular remedy of complex I defects:rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomycescerevisiae mitochondria restores the NADH oxidase activity of complex I-deficientmammalian cells. Proc Natl Acad Sci U S A,1998.95(16): p.9167-71.
    [83] Bai, Y., P. Hajek, A. Chomyn, et al. Lack of complex I activity in human cellscarrying a mutation in MtDNA-encoded ND4subunit is corrected by theSaccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene. J Biol Chem,2001.276(42): p.38808-13.
    [84] Barber-Singh, J., B.B. Seo, E. Nakamaru-Ogiso, et al. Neuroprotective effect oflong-term NDI1gene expression in a chronic mouse model of Parkinson disorder.Rejuvenation Res,2009.12(4): p.259-67.
    [85] Richardson, J.R., W.M. Caudle, T.S. Guillot, et al. Obligatory role for complex Iinhibition in the dopaminergic neurotoxicity of1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Sci,2007.95(1): p.196-204.
    [86] Barber-Singh, J., B.B. Seo, A. Matsuno-Yagi, et al. Protective Role of rAAV-NDI1,Serotype5, in an Acute MPTP Mouse Parkinson's Model. Parkinsons Dis,2011.2011:p.438370.
    [87] Schmid, R. and D.L. Gerloff. Functional properties of the alternativeNADH:ubiquinone oxidoreductase from E. coli through comparative3-D modelling.FEBS Lett,2004.578(1-2): p.163-8.
    [88] Villegas, J.M., S.I. Volentini, M.R. Rintoul, et al. Amphipathic C-terminal region ofEscherichia coli NADH dehydrogenase-2mediates membrane localization. ArchBiochem Biophys,2011.505(2): p.155-9.
    [89] Yang, Y., T. Yamashita, E. Nakamaru-Ogiso, et al. Reaction mechanism of singlesubunit NADH-ubiquinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae:evidence for a ternary complex mechanism. J Biol Chem,2011.
    [90] Fisher, N. and P.R. Rich. A motif for quinone binding sites in respiratory andphotosynthetic systems. J Mol Biol,2000.296(4): p.1153-62.
    [91] Murai, M., T. Yamashita, M. Senoh, et al. Characterization of the ubiquinone bindingsite in the alternative NADH-quinone oxidoreductase of Saccharomyces cerevisiae byphotoaffinity labeling. Biochemistry,2010.49(13): p.2973-80.
    [92]王镜岩,朱圣庚,徐长法.生物化学(上).高等教育出版社,2002.
    [93] Yano, T., L.S. Li, E. Weinstein, et al. Steady-state kinetics and inhibitory action ofantitubercular phenothiazines on mycobacterium tuberculosis type-IINADH-menaquinone oxidoreductase (NDH-2). J Biol Chem,2006.281(17): p.11456-63.
    [94]呼延霆,张辰艳,马晓亮,等.膜蛋白结晶方法学研究进展.生物化学与生物物理进展,2012(02): p.126-136.
    [95]李晓淳.膜内蛋白酶S2P的调控及果蝇细胞凋亡的结构生物学研究[博士学位论文].北京:清华大学生命科学学院,2011.
    [96]杨铭.结构生物学与药学研究.北京:科学出版社,2003.
    [97] Morth, J.P., T.L. Sorensen, and P. Nissen. Membrane's Eleven: heavy-atomderivatives of membrane-protein crystals. Acta Crystallogr D Biol Crystallogr,2006.62(Pt8): p.877-82.
    [98]梁毅.结构生物学.北京:科学出版社,2005.
    [99] Garman, E.F. and R.L. Owen. Cryocooling and radiation damage in macromolecularcrystallography. Acta Crystallogr D Biol Crystallogr,2006.62(Pt1): p.32-47.
    [100] Dauter, Z. Data-collection strategies. Acta Crystallogr D Biol Crystallogr,1999.55(Pt10): p.1703-17.
    [101] Otwinowski Z, M.W. Processing of X-ray diffraction data collected in oscillationmode. Macromolecular Crystallography, Pt A,1997(276): p.307-326.
    [102] The CCP4suite: programs for protein crystallography. Acta Crystallogr D BiolCrystallogr,1994.50(Pt5): p.760-3.
    [103] Schneider, T.R. and G.M. Sheldrick. Substructure solution with SHELXD. ActaCrystallogr D Biol Crystallogr,2002.58(Pt10Pt2): p.1772-9.
    [104] Terwilliger, T.C. Rapid automatic NCS identification using heavy-atom substructures.Acta Crystallogr D Biol Crystallogr,2002.58(Pt12): p.2213-5.
    [105] McCoy, A.J., R.W. Grosse-Kunstleve, P.D. Adams, et al. Phaser crystallographicsoftware. J Appl Crystallogr,2007.40(Pt4): p.658-674.
    [106] Cowtan, K.D. and K.Y. Zhang. Density modification for macromolecular phaseimprovement. Prog Biophys Mol Biol,1999.72(3): p.245-70.
    [107] Emsley, P. and K. Cowtan. Coot: model-building tools for molecular graphics. ActaCrystallogr D Biol Crystallogr,2004.60(Pt12Pt1): p.2126-32.
    [108] Adams, P.D., R.W. Grosse-Kunstleve, L.W. Hung, et al. PHENIX: building newsoftware for automated crystallographic structure determination. Acta Crystallogr DBiol Crystallogr,2002.58(Pt11): p.1948-54.
    [109] Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and highthroughput. Nucleic Acids Res,2004.32(5): p.1792-7.
    [110] Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysisprogram for Windows95/98/NT. Nucleic Acids Symp. Ser.,1999.41: p.95–98.
    [111] Guindon, S. and O. Gascuel. A simple, fast, and accurate algorithm to estimate largephylogenies by maximum likelihood. Syst Biol,2003.52(5): p.696-704.
    [112] Gietz, R.D. and R.H. Schiestl. Applications of high efficiency lithium acetatetransformation of intact yeast cells using single-stranded nucleic acids as carrier.Yeast,1991.7(3): p.253-63.
    [113] Ohnishi, T. Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta,1998.1364(2): p.186-206.
    [114] Ohnishi, T., S.T. Ohnishi, K. Shinzawa-Itoh, et al. EPR detection of twoprotein-associated ubiquinone components (SQ(Nf) and SQ(Ns)) in the membrane insitu and in proteoliposomes of isolated bovine heart complex I. Biochim Biophys Acta,2012.1817(10): p.1803-9.
    [115] van den Heuvel, R.H., A.H. Westphal, A.J. Heck, et al. Structural studies on flavinreductase PheA2reveal binding of NAD in an unusual folded conformation andsupport novel mechanism of action. J Biol Chem,2004.279(13): p.12860-7.
    [116] Ohnishi, T. and B.L. Trumpower. Differential effects of antimycin on ubisemiquinonebound in different environments in isolated succinate. cytochrome c reductasecomplex. J Biol Chem,1980.255(8): p.3278-84.
    [117] Ohnishi, T., V.D. Sled, T. Yano, et al. Structure-function studies of iron-sulfurclusters and semiquinones in the NADH-Q oxidoreductase segment of the respiratorychain. Biochim Biophys Acta,1998.1365(1-2): p.301-8.
    [118] Magnitsky, S., L. Toulokhonova, T. Yano, et al. EPR characterization ofubisemiquinones and iron-sulfur cluster N2, central components of the energycoupling in the NADH-ubiquinone oxidoreductase (complex I) in situ. J BioenergBiomembr,2002.34(3): p.193-208.
    [119] Bebendorf, J., H.B. Burgi, E. Gamp, et al. Temperature Dependence of the CrystalStructure and EPR Spectrum of Bis(1,3,5-Trihydroxycyclohexane)copper(II) Tosylate.A Unified Interpretation Using a Model of Dynamic Vibronic Coupling. Inorg Chem,1996.35(25): p.7419-7429.
    [120] Misra, S.K., S.I. Andronenko, P. Chand, et al. A variable temperature EPR study ofMn(2+)-doped NH(4)Cl(0.9)I(0.1) single crystal at170GHz: zero-field splittingparameter and its absolute sign. J Magn Reson,2005.174(2): p.265-9.
    [121] Ingledew, W.J., T. Ohnishi, and J.C. Salerno. Studies on a stabilisation ofubisemiquinone by Escherichia coli quinol oxidase, cytochrome bo. Eur J Biochem,1995.227(3): p.903-8.
    [122] Adelroth, P., M.L. Paddock, L.B. Sagle, et al. Identification of the proton pathway inbacterial reaction centers: both protons associated with reduction of QB to QBH2share a common entry point. Proc Natl Acad Sci U S A,2000.97(24): p.13086-91.
    [123] Okamura, M.Y., M.L. Paddock, M.S. Graige, et al. Proton and electron transfer inbacterial reaction centers. Biochim Biophys Acta,2000.1458(1): p.148-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700