交流电动机二极管箝位三电平逆变器PWM控制策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在对二极管箝位三电平SVPWM算法充分论证的基础上,提出一种无电流传感器的中点电位控制和窄脉冲消除方法,并同时进行了死区的补偿。仿真和实验结果表明,该方法实现简单,输出波形谐波含量小,中点电位得到很好的控制,同时解决了窄脉冲问题。由于同时进行了死区补偿,使逆变器在低频输出时波形明显改善。在用TMS320LF2407A DSP为平台的二极管箝位三电平实验样机上取得了良好的效果。
     抽象出开环无载波PWM过调制策略的设计指导思想,并以此为指导提出了4种新的过调制策略。其中SMN1方法极简单,并能够精确地控制输出电压的基波大小。将双模式极限轨迹的过调制方法推广到单模式(SMLT),获得了在全部非线性区参考电压矢量的以调制度为变量的一种统一解析式,利用该解析式能够由调制度直接计算出使得输出基波准确跟踪给定所需的参考电压矢量,无论对于实践还是理论研究都是有重大的意义。对文献中已有的5种和本文新提出的4种共9种开环无载波PWM过调制策略进行了统一的分析和比较。将这9种过调制方法推广应用于二极管箝位三电平SVPWM,并在二极管箝位三电平平台上通过了全部方法的实验验证。
     提出利用PWMVECTOR矩阵进行与PWM波形谐波有关的精确数值计算。对PWM波形的评价指标体系进行了系统的研究。指出WTHD指标的物理含义实际上直接反映谐波电流的总畸变率。推广了加权THD的概念,提出了反映电机谐波损耗的新指标LWTHD,并提出了WTHD指标集的概念。最后提出了反映谐波转矩的新指标TTHD。
     利用谐波解析表达式和数值计算对HDDF的合理性与普遍性进行了阐释,找到了WTHD与HDDF的解析关系。指出当开关频率足够高时,PWM波形的频谱满足“迁移”和“聚散”特性,就可以使用HDDF从谐波电流的角度对PWM方法做出评价和比较。
     用本文开发的谐波数值计算方法计算了本文的三电平SVPWM方法所产生的PWM波形的除了TTHD以外的所有指标,并与两种典型的两电平PWM波形进行了指标比较。
     利用HDDF指标对本文的三电平SVPWM方法和两种典型两电平PWM方法进行了定量的比较和分析,最后给出了不同方法在相同条件下的开关频率对应关系。
On the basis of sufficient argumentation of the three-level SVPWM algorithm, a neutral-point potential balancing with narrow-pulse elimination algorithm without current sensor is proposed, and dead time is compensated at the same time. The result of simulation and test verified that this algorithm is simple to be carried out, harmonics in output waveform are small, neutral-point potential can be controlled fairly well, and narrow pulse problem is solved as well. Furthermore, output torque is strengthened in low frequency for the successful dead-time compensation. All of these were achieved on a diode-clamped three-level model inverter developed with TMS320LF2407A DSP.
    The directed ideal for designation of feed-forward carrier-less PWM over-modulation is abstracted. On the basis of this ideal, 4 new over-modulation schemes were developed. Among of them, SMN1 is the simplest one and characteristic of accurate control of fundamental component of output. Over-modulation based on two mode limit trajectory method is extended to single mode. And by doing this, a uniform expression for calculation of reference vector, which can produce an output with the desired fundamental component, is obtained in the whole nonlinear region. This is valuable for both practice and theory. 9 over-modulation schemes, 4 of which are developed by this paper, were analyzed and compared uniformly. All of these 9 schemes were extended to diode-clamped three-level inverter, and experiment was carried out on it.
    Methods for accurate calculation of various index associated with harmonic characteristic of PWM waveform is developed with PWMVECTOR matrix. Indexes for evaluation of PWM waveform are studied systematically. A fact that the physical meaning of WTHD is just current THD is point out. By extending the ideal of WTHD, new harmonic-loss reflecting index LWTHD is brought forward. In addition, a new harmonic-torque reflecting index TTHD is brought forward too.
    The reasonable and universality of HDDF are explained with the aid of analytical expression and numerical calculation of harmonic of PWM waveform, and the relationship between HDDF and WTHD is find. It is clarified that PWM method can be evaluated and compared with regard to harmonic current if only the frequency spectrum satisfy the "shift" and "disperse" phenomenon.
    All of indexes mentioned in this paper except TTHD are calculated for the developed three-level SVPWM, and the result is compared with that of two popular two-level PWM methods.
    The three-level SVPWM method is compared with two popular two-level PWM methods with the aid of HDDF, and the relationships of switching frequency of them under same condition are calculated.
引文
[1] 吴洪洋.高功率多电平变换器的研究和应用.电气传动[J],2000,2:7~12
    [2] 雄健,张凯,康勇,陈坚.空间矢量脉宽调制的统一形式.第七届中国电力电子与传动控制学术会议CPED’2001论文集[C],2001:199~204
    [3] D. W. Chung. Unified Voltage Modulation Technique for Real-Time Three-Phase Power Conversion. IEEE. Trans. Applicat[J], 1998, Vol. 34: 374~380
    [4] 高永军.基于空间电压矢量PWM的三电平逆变器的研究[D].硕士学位论文,西安:西安理工大学,1998.6
    [5] Nikola Celanovic. A Comprehensive Study of Neutral-Point Voltage Balancing Problem in Three-Level Neutral-Point-Clamped Voltage Source PWM Inverters. IEEE. Trans.Power Electron[J], 2000, Vol. 15: 242~249
    [6] 段龙.应用TMS320F240DSP的变频调速器的研究[D].硕士学位论文,西安:西安理工大学,2001.3
    [7] Yo-Han Lee,Rae-Young Kim,Dong-Seok Hyun. A Novel SVPWM Strategy Considering DC-link Balancing for a Multi-level Voltage Source Inverter. APEC'99[C], 1999: 509~514
    [8] Y. H. Lee. A Novel SVPWM Strategy Considering DC-link Balancing for a Multi-level Voltage Source Inverter. APEC'99[C], 1999: 509~514
    [9] J. S. Sheng. Multilevel Converters—A New Breed of Power Converters. IEEE. Trans. Applicat[J], 1996, Vol. 32: 509-517
    [10] Y. H. Lee. A Novel PWM Scheme for a Three-Level Voltage Source Inverter with GTO Thyristors. IEEE. Trans. Applicat[J], 1996, Vol. 32: 260-268
    [11] 钟彦儒,高勇军.采用空间电压矢量PWM方法三电平逆变器研究.电力电子技术[J],2000,34(1):10~13
    [12] 庄朝晖,熊有伦.一种简单的三电平逆变器PWM控制算法.电工技术学报[J],2001,16(2):47~50
    [13] Bose.电力电子学与变频传动技术和应用.中国矿业大学出版社[M],徐州:中国矿业大学出版社,1999
    [14] 吴峻,李圣怡,潘孟春,单庆晓.空间电压矢量过调制技术的应用与研究.国防科技大学学报[J],2001,vol.23:111~114
    [15] Hyo L, Liu, Gyu H. Cho. Three-Level Space Vector PWM in Low Index Modulation Region Avoiding Narrow Pulse Problem. IEEE. Trans. Power Elcetron[J], 1994, Vol. 9: 481~485
    [16] Jurgen K. Steinke. Switching Frequency Optimal PWM Control of a Three-Level Inverter. IEEE. Trans. Power Electron[J], 1992, Vol. 7: 487~496
    [17] B. Kaku, L. Miyashita, S. Sone. Switching loss minimized space vector PWM method for IGBT three-level inverter. IEE.Proc.Electr.Power.Appl[J], 1997, Vol.144: 182-190
    [18] A. R. Beig etc. Space Vector Based Bus Clamped PWM Algorithms for Three Level Inverters: Implementation, Performance Analysis and Application Considerations. Applied Power Electronics Conference and Exposition(APEC03)[C], 2003, 1: 569-575
    [19] J. Rodriguez, J. S. Lai and F. Z. Peng. Multilevel Inverters: A Survey of Topologies, Control, and Applications. IEEE. Transactions on industrial electronics[J], 2002, Vol.49, NO.4 : 724-738
    [20] Jae-Hyeong Suh,Chang-Ho Choi,Dong-Seok Hyun. A New Simplified Space-Vector PWM Method for Three-Level Inverters. APEC'99[C], 1999: 515-520
    [21] Roberto Rojas,Tokuo Ohnishi . An Improved Voltage Vector Control Method for Neutral-Point-Clamped Inverters. IEEE.Trans.Power.Electron[J], 1995, Vol,10: 666-672
    [22] Satoshi Ogasawara,Hirofumi Akagi. A Vector Control System Using a Neutral-Point-Clamped Voltage Source PWM Inverter. IEEE IAS Annual Meeting[C], USA, 1991: 422-427
    [23] Sidney R.,Bowes. The Relationship Between Space-Vector Modulation and Regular-Sampled PWM. IEEE Trans on Ind. Electronics[J], 1997, 44(5): 670-679
    [24] Vladimir Blasko. Analysis of a Hybrid PWM Based on Modified Space-Vector and Triangle-Comparison Methods. IEEE trans on IA[J], 1997, 35(3): 756-764
    [25] Hyo L.Liu,Nam S.Choi,Gyu H.Cho . DSP BASED SPACE VECTOR PWM FOR THREE-LEVEL INVERTER WITH DC-LINK VOLTAGE BALANCING. IECON'91[C], 1991: 197-203
    [26] Xiaoming Yuan, Ivo Barbi. A New Diode Clamping Multilevel Inverter. IEEE Proc. of PESC[C], 1999: 495-501
    
    [27] 黄俊,王兆安. 电力电子变流技术[M]. 北京:机械工业出版社. 1995
    [28] Andrzej M Trzynadlowski. An overview of modern PWM techniques for three - phase, voltage - controlled , voltage - source inverters. Proceedings of the IEEE International Symposium Industrial Electronics[C], 1996, 1: 25-39
    [29] X. Xu and D. W. Novotny. Bus utilization of discrete CRPWM inverters for field-oriented drives. IEEE Trans. Ind. Applicat[J], 1991, vol.27: 1128-1135
    [30] J. Holtz. Pulse width modulation—A survey. IEEE Trans. Ind. Electron.[J], 1992, vol.38: 410-420.
    [31] Holtz J. On Continuous Control of PWM Inverters in the Over-Modulation Range Including the Six-Step Mode. IEEE Trans. on PE.[J], 1993, 8(4): 546-553
    [32] A. Tripathi, A. M. Khambadkone, and S. K. Panda. Direct Method of Overmodulation With Integrated Closed Loop Stator Flux Vector Control. IEEE Trans. Power Electron[J], 2005, vol. 20, NO.5: 1161-1168
    [33] Hava A M, Kerkman R, Lipo T A. Carrier based PWM VSI OverModulation Strategies: Analysis, Comparison, and Design. IEEE Trans. Power Electron[J], 1998, 13 (4): 674~689
    [34] A. M. Hava. Carrier Based PWM-VSI overmodulation strategies[D]. Ph.D. dissertation, Univ. Wisconsin, Madison, 1997
    [35] Bolognani S. Novel Digital Continuous Control of SVM Inverters in the Overmodulation Range. IEEE Trans. on Industry Application[J], 1997, 33(2): 525~530
    [36] N ho N V. Two-Mode Overmodulation in Two-Level Voltage Source Inverter Using Principle Control Between Limit Trajectories. Proceedings of PEDS2003[C], 2003, 1274~1279.
    [37] S. K. Mondal, B. K. Bose, V. Oleschuk and J. O. P. Pinto. Space Vector Pulse Width Modulation of Three-Level Inverter Extending Operation Into Overmodulation Region. IEEE Trans. Power Electron[J], 2003, vol. 18, NO. 2: 604~611
    [38] Lee D C. A Novel Overmodulation Technique for Space Vector PWM Inverters. IEEE trans, on PE.[J], 1998, 13(6): 1144~1151
    [39] Seok J K. A New Overmodulation Strategy for Induction Motor Drive Using Space Vector PWM. Proceedings of APEC95[C], 1995, 211~216
    [40] Bakhshai A R. Incorporating the Overmodulation Range in Space Vector Pattern Generators Using A Classification Algorithm. IEEE Trans. on PE.[J], 2000, 15(1): 83~91
    [41] Kauto V, Blasko V. Operation of voltage source converter at increased utility voltage. IEEE Trans on Power Electronics[J], 1997, 12 (1): 132~137
    [42] Vikram Kaura and Vladimir Blasko. A new method to extend linearity ofa sinusoidal pwm in the overmodulation region. IEEE Transactions on Industry Applications[J], 1997, Vol. 32, NO.5: 1115~1121
    [43] Houldworth J A, Grant D A. The Use of Harmonic Distortion to Increase the Output Voltage of aThree phase PWM Inverter. IEEE Trans. Ind. Applicat[J], 1984, 20(5): 1224~1228
    [44] R. J. Kerkaman, T. M. Rowan, D. Leggate, and B.J. Seibel. Control of PWM voltage inverters in the pulse dropping region. IEEE Trans Power Electron[J], 1995, Vol. 10, No5: 559~565.
    [45] S. Bolognani, M. Zigliotto. Space Vector Fourier Analysis of SVM Inverters in The Overmodulation Range. Proceedings of PEDES'96[C], New Delhi, India, January 1996: 319-324
    [46] S. Halasz, I. Varjasi, A, Zacharov. Overmodulation Strategies Of Inverter-Fed Ac Drives. PCC-Osaka[C], 2002: 1346~1351
    [47] 金舜,钟彦儒,等.一种控制中点电位并消除窄脉冲的三电平PWM方法.中国电机工程学报[J],2003,23(10).:114~118
    [48] 金舜,钟彦儒.一种新颖的同时考虑中点电位平衡和窄脉冲消除及死区补偿的三电平空间电压矢量脉宽调制方法.中国电机工程学报[J],2005,25(6):60~66
    [49] 陈伯时,陈敏逊.交流调速系统[M].北京:机械工业出版社,2000
    [50] BENNETT, W. R. New results in the calculation of modulation products. Bell Syst. Tech. J.[J], 1933, 12: 228~243
    [51] BLACK, H. S. Modulation theory[M], Van Nostrand, 1953
    [52] BOWES, S. R. New sinusoidal pulse width-modulated inverter. ZEE Proc.[C], 1975, 122(11): 1279~1285
    [53] BOWES, S. R., and BIRD, B. M. Novel approach to the analysis and synthesis of modulation processes in power converters, IEE in Proc.[J], 1975, 122(5): 507~513
    [54] FRANZO, G., MAZZUCCHELLI, M., PUGLISI, L., and SCIUTTO, G. Analysis of PWM techniques using uniform sampling in variable-speed electrical drives with large speed range. IEEE Trans Ind. Appl. [J], 1985, IA-21(4): 966~974
    [55] D. G. Holmes. A General Analytical Method for Determining the Theoretical Harmonic Components of Carrier Based PWM Strategies. IEEE Industry Applications Conference[C], St.Louis, MO, USA, 1998, 2(10): 1207~1214
    [56] G. Carrara, S.Gardela, M. Marchesoni. A New Multilevel PWM Method: A Theoretical Analysis. IEEE Trans. P. E.[J], 1992, Vol. 7, NO. 3: 497~505
    [57] C. M. Wu, W. H. Lau, H. Chung. Generic Analytical Solution for Calculating the Harmonic Characteristics of Multilevel Sinusoidal PWM Inverter. ISCAS'99[C], USA, 1999, Vol5: 184~187
    [58] B. P. McGrath, D. G. Holms. A comparison of multi-carrier PWM strategies for cascaded and neutral point clamped multilevel inverters. Power Electronics Specialists Conference, 2000(PESC00)[C], 2000, 2: 674~679
    [59] B. P. McGrath, D. G. Holmes. An Analytical Technique for the Determination of Spectral Components of Multilevel Carrier-Based PWM Methods. IEEE. Transaction on Industrial Electronics[J], 2002, VOL. 49, NO. 4: 847~857
    [60] W. H. Lau, B. Zhou, H. S. H. Chung. Compact Analytical Solutions for Determining the Spectral Characteristics of Multicarrier-Based Multilevel PWM. IEEE. Transactions on Circuits and Systems[J], 2004, VOL. 51, NO. 8: 1577~1585
    [61] 周京华.多电平逆变器拓扑结构及调制策略的研究[D],博士学位论文,西安:西安交通大学,2005
    [62] T. O'Gorman. Discrete Fourier Transform Harmonic Analysis of Digitally-Generated PWM Waveforms Which are Distorted by Switch Dead Time. IEEE IAS[C], 2000: 2197~2204
    [63] H. W. van der Broeck. Analytical calculation of the harmonic effects of single phase multilevel PWM inverters. IECON'03[C], 2003: 243~248
    [64] T. M. Undeland, N. Mohan. Overmodulation and Loss Consideration in High-Frequency Modulated Transistorized Induction Motor Drives. IEEE, Transactions on Power Electronics[J], 1988, VOL. 3 NO. 4: 447-452
    [65] S. Halasz, B. T. Huu. Generalized Harmonic Loss-Factor as a Novel Important Quality Index of PWM Techniques. IEEE. PCC-Nagaoka'97[C], 787-792
    [66] V. Kinnares, A. Jangwanitlert, S. Potivejkul. Evaluation of PWM Strategies Based on Practical Findings and Experimental Facts for VSI-Fed Induction Motors. Proceeding of the IEEE Asia-Pacific Conference on Circuits and System[C], Chiangmai,, 1998: 185-188
    [67] V. Kinnares, S. Potivejkul, B. Sawetsakulanond. Modified Harmonic Loss Model in PWM Fed Induction Machines. IEEE APCCAS[C], Chiangmai, Thailand , 1998: 535-538
    [68] P. Indarack, S. Douangsyla, C. Joochim, A. Kunakorn, etc. A Harmonic Loss Calculation of PWM-Fed Induction Motors Using Loss Factor Characteristics. IEEE TENCON 2004[C], 2004, Vol3: 236-239
    [69] L. Tong, etc. Influence of the Inverter Characteristics on the Harmonic Losses in PWM Fed Traction Motors. Proceedings of 2005 international symposium on electrical insulating materials[C], June 5-9, 2005, Kitakyushu, Japan, 379-381
    [70] J. C. Clare, etc. Additional loss due to operation of machines from inverters. Testing of Electrical Machines, IEE Half Day Colloquium on[C], Nottingham, UK , 1999: 5/1-5/8
    [71] J. M. D. Murphy, M. G. Eagan. A comparison of PWM strategies for inverter-fed induction motors. IEEE. IAS. Annual Meeting Conf. Rec[C], 1982: 569-573
    [72] S. Fukuda, Y. Iwaji. Introduction of the Harmonic Distortion Determining Factor and Its Application to Evaluating Real Time PWM Inverters. IEEE. Transactions on Industry Applications[J], 1995, VOL.31, NO.1: 149-154
    [73] S. Fukuda, K. Suzuki. Harmonic evaluation of an NPC PWM inverter employing the harmonic distortion determining factor. IEEE. IAS[C], 1995: 2417-2421
    [74] S. Fukuda, K. Suzuki. Using Harmonic Distortion Determining Factor for Harmonic Evaluation of Carrier-Based PWM Methods. IEEE. Industry Application Society Annual Meeting[C], 1997: 1534-1541
    [75] S. Fukuda, K. Suzuki. Harmonic Evaluation of Carrier-Based PWM Methods Using Harmonic Distortion Determining Factor. IEEE. PCC-Nagaoka'97[C], 1997: 259-264
    [76] J. F. Moynihan etc. Theoretical spectra of space-vector-modulated waveforms. IEE. Proc. Electr. Power Appl[J], 1998, Vol.145, No. 1: 17-24
    
    [77] TI. TMS320F/C24x DSP ControllersCPU and Instruction Set Rererence Guide.2000
    [78] TI. TMS320LF/LC240xA DSP Controllers_System and Peripherals Reference Guide.2001
    [79] TI. TMS320C2x/C2xx/C5x Optimizing C Compiler User's Guide. 1999
    [80] TI. TMS320C1x/C2xx/C5x Assembly Language Tools.1995
    [81] 吴守箴,臧英杰.电气传动的脉宽调制控制技术[M].北京:机械工业出版社,2000
    [82] 李岚.异步电动机直接转矩控制[M].北京:机械工业出版社,2001
    [83] 马晓亮.大功率交.交变频调速及矢量控制技术[M].北京:机械工业出版社,1999
    [84] 陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,1992
    [85] 王季秩,曲家骐.执行电动机[M].北京:机械工业出版社,2001
    [86] 龚剑,朱亮.MATLAB5.x入门与提高[M].北京:清华大学出版社,2000
    [87] 张志涌,等.精通MATLAB6.5[M].北京:机械工业出版社,2003
    [88] 吴汉森.电子设备结构与工艺[M].北京:北京理工大学出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700