声呐波束形成鲁棒性及算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高声呐基阵系统在复杂多变水声环境中和强干扰背景下对目标信号的检测和参数估计性能,本文根据波束形成技术的最新发展趋势,结合实际的应用环境,分别针对波束形成器在抗基阵模型误差的鲁棒性和抗运动强干扰的鲁棒性两方面,进行了深入系统的理论和实验研究,本文的主要研究内容包括:
     1.针对标准Capon波束形成算法对基阵模型误差敏感的缺点,提出了一种基于双因子对角加载的自适应波束形成算法。该算法融合了线性回归模型中的岭估计思想和协方差矩阵修正法中的广义线性组合估计思想,不需要用户指定参数,能够根据阵列接收数据自动确定对角加载因子,因此可以避免因参数设置不当而导致算法性能的下降。数值仿真实验结果验证了新算法的有效性和抗基阵模型误差的鲁棒性。
     2.针对现有的一些矢量阵自适应波束形成鲁棒性提升算法只是将标量阵中的算法做了简单移植、以至性能难以达到最优的缺点,提出了一种基于双重范数约束的矢量阵波束形成算法。矢量水听器中的声压传感器和振速传感器在信息拾取方面有着完全不同的物理机理,具有不同的响应模式和噪声特性,对基阵模型误差的敏感程度亦不一致。因此新算法充分考虑了矢量水听器的特点,区别对待声压分量和振速分量,分别给予不同的范数约束值,以便做到按需分配鲁棒性大小。数值仿真实验结果表明,该算法在抗基阵模型误差中的通道幅相误差、阵元位置误差、阵元姿态误差、波束指向误差以及协方差矩阵误差等方面都表现出较强的鲁棒性。
     3.针对常规宽带自适应波束形成算法只能在干扰方向上形成窄零陷,对运动强干扰抑制能力有限的缺点,提出了三种具有拓展零陷的宽带波束形成算法,即基于Mailloux思想的宽带波束形成算法、基于Zatman思想的宽带波束形成算法以及基于Chebyshev准则的宽带波束形成算法。前两种算法能够自适应地在干扰方向左右附近生成拓展零陷,后一种算法则需要预先已知干扰的大致方位,才能在该方位左右附近设计拓展零陷,不过利用后一种方法设计出的波束图具有恒定的主瓣宽度,可以避免宽带信号通过波束形成系统后波形出现失真。数值仿真实验结果验证了三种新算法的有效性和抗运动强干扰的鲁棒性。
     4.针对利用聚焦波束形成测量声图时运动强干扰源的存在会影响弱目标源检测和定位的问题,提出了一种基于矩阵预滤波的聚焦波束形成算法。该算法利用了远场平面波中带阻矩阵滤波器的设计思想,可在扫面范围内设置多个阻带区,能够抑制这些区域内的运动强干扰。数值仿真实验对比分析了常规聚焦波束形成算法、MVDR聚焦波束形成算法、零点约束权聚焦波束形成算法和新算法之间的性能,结果显示新算法在抗运动强相干干扰方面有着更强的鲁棒性。
The detection and estimation performance of a sonar array system would degrade whenit works in formidable acoustic conditions or there exist strong interferences. To improve theperformace, theoretical and experimental researches on the robustness of beamformers arecarried out according to the latest trends of beamforming technique and the practical acousticsituations. The robustness mentioned in this dissertion is for the array model errors and themoving strong interferences. The key contributions are:
     1. For standard Capon beamforming algorithm is sensitive to array model errors, a novelapproach of adptive beamforming based on double factors diagonal loading technology isproposed. This approach combines the idea of ridge estimation in linear regression model andthe idea of general linear combination in covariance matrix estimation, needs no parameterspecified by users, and automatically computes the diagonal loading factors according to thedata received by the array. Numerical simulation results show effectiveness of the proposedapproach and its robustness against the array model errors.
     2. Lots of robust adaptivie beamforming algorithms have been designed for the arrays ofomnidirectional sensors. Some of them are migrated straightforwardly to the application ofvector-sensor array but only result in suboptimal performance. To resolve this problem, avector-sensor array adaptive beamforming approach based on double norm constraints ispresented. Vector sensor consists of omnidirectional sensor and particle motion sensor whichhave different response and noise characteristics and are inconsistent in sensitivity to arraymodel errors. According to characteristics of vector sensor, the proposed approach specifiesdifferent values of norm constraint for pressure component and particle velocity component tomeet their own need of robustness. It is can be seen from the numerical simulation results thatthe new approach show its robustness against channel amplitude and phase errors, sensorposition error, sensor attitude errors, beam pointing error and covariance matrix error.
     3. For conventional broadband adaptive beamforming algorithms can only provide sharpnulls in the direction of interferences and are lack of robustness against moving stronginterferences, three broadband beamforming approaches with broad nulls are proposed,namely Mailloux-based approach, Zatman-based approach and Chebyshev-criteron-basedapproach. Unlike the first two approaches that can produce adaptively broad nulls arounddirections of interferences, the third approach needs to know approximate directions ofinterferences. But the beam pattern designed with the third approach has a constant width of main lobe which can avoid the distortion of signals after beamforming. Numerical simulationresults show the effectiveness of these three new approaches and their robustness againstmoving strong interferences.
     4. Influenced by moving strong interferences, the measurement precision of weak targetsources would decrease in underwater image measurement. A novel approach of near fieldfocused beamforming is proposed. This approach is based on matrix spatial prefilteringtechnology. By using the idea of designing stop-band matrix filter in plane-wave condition,this new approach can set multiple stop-band regions in the scanning area to suppress themoving strong interferences. Comparison of conventional focused beamforming, MVDRfocused beamforming, null-weight focused beamforming and the new approach throughnumerical simulation shows the superior robustness of the new approach against movingstrong coherent interferences.
引文
[1] J.F. Tressler. A comparison of the underwater acoustic performance of single crystalversus piezoelectric ceramic-based "cymbal" projectors. J. Acoust. Soc. Am.,2006,119(2):879-889P
    [2]林书玉,许龙.一种新型Cymbal换能器的研究.声学学报,2011,36(1):27-36页
    [3]栾桂冬,王光灿.新型换能器技术的进展.哈尔滨工程大学学报,2004,25(3):323-326页
    [4] R.V. Raj, C. Padmanabhan, S.M. Sivakumar, et al. Design and testing of a PVDFhydrophone. International Journal of COMADEM,2007,10(2):20-29P
    [5] M.B. Moffetta, H.C. Robinson, J.M. Powersb, et al. Single-crystal lead magnesiumniobate-lead titanate (PMN/PT) as a broadband high power transduction material. J.Acoust. Soc. Am.,2007,121(5):2591-2599P
    [6] K Reiner. New piezoelectric polymer for air-borne and water-borne sound transducers. J.Acoust. Soc. Am.,2001,109(4):1412-1416P
    [7] G. Uma, M. Umapathy, S. Jose, et al. Design and simulation of PVDF-MOSFET basedMEMS hydrophone. Instrumentation Science and Technology,2007,35(3):329-339P
    [8]孙贵青,李启虎,杨秀庭等.第五讲——新型光纤水听器和矢量水听器.物理,2006,35(8):645-653页
    [9]孙贵青,李启虎.声矢量传感器研究进展.声学学报,2004,29(6):481-490页
    [10] O. Kilic, M.J.F. Dignonnet, G.S. Kino, et al. Miniature photonic-crystal hydrophoneoptimized for ocean acoustics. J. Acoust. Soc. Am.,2011,129(4):1837-1850P
    [11] J.C. Shipps, K. Deng. A miniature vector sensor for line array applications. Proc ofIEEE Oceans,2003,5:2367-2370P
    [12]刘梦庵.拖曳线列阵声呐技术发展综述.声学与电子工程,2006,3:1-5页
    [13] A. Dandridge, G.B. Cogdell. Fiber optic sensors for Navy applications. IEEE LCS,1991,2(1):81-89P
    [14] H.L. Van Trees. Optimum Array Processing: Part IV of Detection, Estimation, andModulation Theory. John Wiley&Sons,2002
    [15] J. Capon. High resolution frequency–wavenumber spectrum analysis. Proc. of IEEE,1969,57(8):1408-1418P
    [16] J. Li, P. Stoica. Robust Adaptive Beamforming. John Wiley&Sons,2005
    [17] R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Trans. onAntennas and Propagation,1986,34(3):276-280P
    [18] P. Stoica, A. Nehorai. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEETrans. on Acoustic Speech and Signal Processing,1989,37(5):720-741P
    [19] R Roy, T. Kailath. ESPRIT-estimation of signal parameters via rotational invariancetechniques. IEEE Trans. on Acoustic, Speech and Signal Processing,1989,37(7):984-995P
    [20] P. Stoica. R.L. Moses. Spectral Analysis of Signals, Prentice Hall,2005
    [21] M. Viberg, B. Ottersten, T. Kailath. Detection and estimation in sensor arrays usingweighted subspace fitting. IEEE Trans. on Signal Processing,1991,39(11):2436-2449P
    [22] J. Li, P. Stoica, Z.S. Wang. On robust Capon beamforming and diagonal loading. IEEETrans. on Signal Processing,2003,51(7):1702-1715P
    [23] J. Li, P. Stoica, Z.S. Wang. Doubly constrained robust Capon beamformer. IEEE Trans.on Signal Processing,2004,52(9):2407-2423P
    [24] A.K Steele. Comparison of directional and derivative constraints for beamformerssubject to multiple linear constraints. Proc of IEE on Communications, Radar andSignal Processing,1983,130(1):41-45P
    [25] J.C. Preisig. Robust maximum energy adaptive macthed field processing. IEEE Trans.on Signal Processing,1994,42(7):1585-1593P
    [26] A.B. Gershman. Robust adaptive beamforming in sensor arrays. International Journal ofElectronics and Communications,1999,53(6):305-314P
    [27] K.L. Bell, Y. Ephraim, H.L. Van Trees. A Bayesian approach to robust adaptivebeamforming. IEEE Trans. on Signal Processing,2000,48(2):386-398P
    [28] S.A. Vorobyov, A.B. Gershman, Z.Q. Luo. Robust adaptive beamforming usingworst-case performance optimization: a solution to the signal mismatch problem. IEEETrans. on Signal Processing,2003,51(2):313-324P
    [29] R.G. Lorenz, S.P. Boyd. Robust minimum variance beamforming. IEEE Trans. onSignal Processing,2005,53(5):1684-1696P
    [30] O.L. Frost. An algorithm for linearly constrained adaptive array processing. Proc. ofIEEE,1972,60(8):926-935P
    [31] K.M. Buckley, L.J. Griffths. An adaptive generalized sidelobe canceller with derivativeconstraints. IEEE Trans. on Antennas and Propagation,1986,34(3):311-319P
    [32] S.T. Zhang, I.L.J. Thng. Robust presteering derivative constraints for braodband antennaarrays. IEEE Trans. on Signal Processing,2002,50(1):1-10P
    [33] D.D. Feldman, L.J. Griffiths. A projection approach for robust adaptive beamforming.IEEE Trans. on Signal Processing,1994,42(64):867-876P
    [34] C.C. Lee, J.H. Lee. Robust adaptive array beamforming understeering vector errors.IEEE Trans. on Antennas and Propagation,1997,45(1):168-175P
    [35] H. Cox, R.M. Zeskind, M.M. Owen. Robust adaptive array beamforming. IEEE Trans.on Acoustic, Speech and Signal Processing,1987,35(10):1365-1376P
    [36] B.D. Carlson. Covariance matrix estimation errors and diagonal loading in adaptivearrays. IEEE Trans. on Aerospace and Electronic Systems,1988,24(10):397-401P
    [37] O. Besson, F. Vincent. Performance analysis for a class of robust adaptive beamformers.IEEE International Conference on Acoustic, Speech and Signal Processing,2004,2:169-172P
    [38] A. Elnashar, S.M. Elnoubi, H.A. El-Mikati. Further study on robust adaptivebeamforming with optimum diagonal loading. IEEE Trans. on Antennas andPropagation,2006,45(1):3647-3658P
    [39] P. Stoica, Z.S. Wang, J. Li. Robust Capon beamforming. IEEE Signal Processing Letters,2003,10(6):172-175P
    [40] S. Shahbazpanahi, A. Gershman, Z.Q. Luo et al. Robust adaptive beamforming usingworst-case SINR optimization: a new diagonal loading-type solution for general-ranksignal models. IEEE International Conference on Acoustic, Speech and SignalProcessing,2003,5:333-336P
    [41] Y. Selen, R. Abrahamsson, P. Stoica. Automatic Robust Adaptive Beamforming viaRidge Regression. Signal Processing,2008,88(1):33-49P
    [42] L. Du, J. Li, P. Stoica. Fully Automatic Computation of Diagonal Loading Levels forRobust Adaptive Beamforming. IEEE Trans. on Aerospace and Electronic System,2010,46(1):449-458P
    [43] Y. Zhang, D. Sun, D. Zhang. Robust adaptive acoustic vector sensor beamforming usingautomated diagonal loading. Applied Acoustic,2009,70(8):1029-1033P
    [44]涂英,魏玉华,徐俊华.宽容自适应波束形成在矢量阵上的应用.声学技术,2007,26(4):696-700页
    [45] A.J. Poulsen, R.R. Nadakuditi, A.B. Baggeroer. Robust adaptive vector sensorprocessing in the presence of mismatch and finite sample support. Fifth IEEE SensorArray and Multichannel Signal Processing Workshop,2008:473-477P
    [46] A.B. Gershman, G.V. Serebryakov, L.F. Bohme. Constrained Hung-turner adaptivebeamforming with additional robustness to wideband and moving jammers. IEEE Trans.on Antennas and Propagation,1996,44(3):361-367P
    [47] S.D. Hayward. Effects of motion on adaptive arrays. Proc. of IEE on Radar, Sonar andNavigation,1997,144(1):15-20P
    [48] A.B. Gershman, U. Nickel, L.F. Bohme. Adaptive beamforming algorithms withrobustness against jammer motion. IEEE Trans. on Signal Processing,1997,45(7):1878-1885P
    [49] R.J. Mailloux. Covariance matrix augmentation to produce adaptive array patterntroughs. Electronics Letters,1995,31(10):771-772P
    [50] M. Zatman, Production of adaptive array troughs by dispersion synthesis. ElectronicsLetters,1995,31(25):2141-2142P
    [51] J.R. Guerci. Theory and application of covariance matrix tapers for robust adaptivebeamforming. IEEE Trans. on Signal Processing,1999,47(4):977-985P
    [52]李荣锋,王永良,万山虎.自适应天线方向图干扰零陷加宽方法研究.现代雷达,2003,2:42-45页
    [53]武思军,张锦中,张曙.阵列波束的零陷加宽算法研究.哈尔滨工程大学学报,2004,25(5):658-661页
    [54] M.H. Er. Linear antenna array pattern synthesis with prescribed broad nulls. IEEE Trans.on Antennas and Propagation,1990,38(9):1496-1498P
    [55] K. Hugl, J. Laurila, E. Bonek. Downlink performance of adaptive antennas with nullbroadening. IEEE49th Vehicle Technology Conference,1999,1:872-876P
    [56] Z. Xu, Y. Zakharov. Modified null broadening adaptive beamforming: constrainedoptimization approach. Electronics Letters,2007,43(3):145-146P
    [57] X. Lian, H. Nikookar, L.P. Ligthart. Adaptive Beamforming for Cognitive Radio withNull Broadening. Wireless Technoligy Conference,2010:133-136P
    [58] H.C. Song, W.A. Kuperman, W.S. Hodgkiss, et al. Robustness of broadening againstsource motion. Proc. Sensor Array and Multichannel Signal Processing Workshop,2002:470-474P
    [59] H.C. Song, W.A. Kuperman, W.S. Hodgkiss, et al. Null broadening with snapshot-deficient covariance matrices in passive sonar. IEEE Journal of Oceanic Engineering,2003,28(2):250-261P
    [60] J.S. Kim, W.S. Hodgkiss, W.A. Kuperman. Null-broadening in a waveguide. J. Acoust.Soc. Am.,2002,112(1):189-197P
    [61] R.J. Vaccaro, B.F. Harrison. Optimal matrix-filter design. IEEE Trans. on SignalProcessing,1996,44(3):705-709P
    [62] R.J. Vaccaro, A. Chhetri, B.F. Harrison. Matrix filter design for passive sonar interfe-rence suppression. J. Acoust. Soc. Am.,2004,115(6):3010-3020P
    [63] R.J. Vaccaro, B.F. Harrison. Matrix filters for passive sonar. IEEE InternationalConference on Acoustic, Speech and Signal Processing,2001,5:2921-2924P
    [64] Z. Zhu, S. Wang, H. Leung, et al. Matrix filter design using semi-infinite programmingwith application to DOA estimation. IEEE Trans. on Signal Processing,2000,48(1):267-271P
    [65] E. Polak. Optimization: Algorithms and Consistent Approximations, Springer-Verlag,1996
    [66] C.S. Macinnes. Source localization using subspace estimation and spatial filtering.IEEE Journal of Oceanic Engineering,2004,29(2):488-497P
    [67] S.A. Stotts. A robust spatial filtering technique for multisource localization andgeoacoustic inversion. J. Acoust. Soc. Am.,2005,118(1):139-162P
    [68] T.B. Neilsena. Localization of multiple acoustic sources in the shallow ocean. J. Acoust.Soc. Am.,2005,118(1):2944-2953P
    [69]鄢社锋,马远良.二阶锥规划方法对于时空域滤波器的优化设计与验证.中国科学E辑:信息科学,2006,36(2):153-171页
    [70]鄢社锋,马远良.匹配场噪声抑制:广义空域滤波方法.科学通报,2004,49(18):1909-1912P
    [71]鄢社锋,侯朝焕,马晓川.矩阵空域预滤波目标方位估计,声学学报,2007,32(2):151-157页
    [72] A. Hassanien, S.A. Elkader, A.B. Gershman et al. Convex optimization based beam-space preprocessing with improved robustness against out-of-sector sources, IEEETrans. on Signal Processing,2006,54(5):1587-1595P
    [73]冯杰,杨益新,孙超.自适应空域矩阵滤波器设计和目标方位估计.系统仿真学报,2007,19(20):4798-4802页
    [74] A. Hassanien, S.A. Vorobyovy. New results on robust adaptive beamspace prepro-cessing. IEEE Sensor Array and Multichannel Signal Processing Workshop,2008:315-319P
    [75] A. Hassanien, S.A. Vorobyovy. A robust adaptive dimension reduction technique withapplication to array processing. IEEE Signal Processing Letters,2009,16(1):22-25P
    [76]韩东,章新华,康春玉.零点约束矩阵滤波设计.声学学报,2010,35(3):353-358页
    [77] A.A. Ksienski, R.B. Mcghee. Radar signal processing for angular resolution beyond therayleigh limit. Radio and Electronic Engineer,1967,34(3):161-174P
    [78]张贤达.矩阵分析与应用.清华大学出版社,2004
    [79] I.S. Reed, J.D. Mallett, L.E. Brennan. Rapid convergence rate in adaptive arrays. IEEETrans. on Aerospace and Electronic Systems,1974,10(6):853-863P
    [80] B. Widrow, K.M. Duvall, R.P. Gooch, et al. Signal cancellation phenomena in adaptiveantennas-causes and cures. IEEE Trans. on Antennas and Propagation,1982,30(3):469-478P
    [81] H. Cox. Resolving power and sensitivity to mismatch of optimum array processors. J.Acoust. Soc. Am.,1973,54(3):771-785P
    [82]鄢社锋,马远良.传感器阵列波束优化设计及应用.科学出版社,2009
    [83]张建军,吴晓平.线性回归模型系数岭估计的改进研究.海军工程大学学报,2005,17(1):54-57页
    [84]贾志富.全面感知水声信息的新传感器技术-矢量水听器及其应用.物理,2009,38(3):157-168页
    [85] A. Nehorai, E. Paldi. Acoustic vector-sensor array processing. IEEE Trans. on SignalProcessing,1994,42(9):2481-2491P
    [86] M Hawkes, A. Nehorai. Acoustic vector-sensor beamforming and Capon directionestimation. IEEE Trans. on Signal Processing,1998,46(9):2291-2304P
    [87] K.T. Wong, M.D. Zoltowski. Extended-aperture underwater acoustic multisourceazimuth/elevation direction-finding using uniformly but sparsely spaced vectorhydrophones. IEEE Journal of Oceanic Engineering,1997,22(4):659-672P
    [88] K.T. Wong, M.D. Zoltowski. Root-MUSIC-based azimuth-elevation angle-of-arrivalestimation with uniformly spaced but arbitrarily oriented velocity hydrophones. IEEETrans. on Signal Processing,1999,47(12):3250-3260P
    [89] K.T. Wong, M.D. Self-initiating MUSIC-based direction finding in underwater acousticparticle velocity-field beamspace. IEEE Journal of Oceanic Engineering,2000,25(2):262-673P
    [90] J.P. Kitchens. Acoustic vector-sensor array processing. Thesis(Ph. D.) of MassachusettsInstitute of Technology,2010
    [91] G.C. Lauchle, J.F. McEachern, A.R. Jones, et al. Flow-induced noise on pressuregradient hydrophones. Acoustic Particle Vecity Sensor: Design, Performance andApplications,1996,368:202-225P
    [92] M Hawkes, A. Nehorai. Acoustic vector-sensor processing in the presence of areflecting boundary. IEEE Trans. on Signal Processing,2000,48(11):2981-2993P
    [93] G. Liang, K Liu, W. Sheng. A new beam-forming algorithm based on flank acousticvector-sensor array sonar. International Conference on WCSP,2009:1-5P
    [94] A.J. Poulsen. Robust vector sensor array processing and performance analysis. Thesis(Ph. D.) of Massachusetts Institute of Technology,2009
    [95]杜学武.求解约束优化问题的增广拉格朗日函数法.上海大学博士论文,2005
    [96] J. Yao. Visual motion estimation via second order cone programming. InternationalConference on Image Processing,2000,3:604-607P
    [97] L. Faybusovich, T. Mouktonglang. Multi-target linear quadratic control problem andsecond-order cone programming. American Control Confrence,2003,6:4549-4554P
    [98] J.F. Sturm. Using SeDuMe1.02, a Matlab toolbox for optimization over symmetriccones. Optimization Methods and Software,1999,11(1):625-653P
    [99]王晓晨,赵辉,马克茂等.一种新型全姿态飞行仿真转台的运动学分析.中国科学:信息科学,2010,40(4):549-560页
    [100]孙进才.宽带水声阵列信号处理的原理及方法研究.西北工业大学博士论文,2003
    [101] L.C. Godara. Application of the fast Fourier-transform to broadband beamforming. J.Acoust. Soc. Am.,1995,98(1):230-240P
    [102] O.L. Frost. An algorithm for linearly constrained adaptive array processing. Proceedingsof IEEE,1972,60(8):926-935P
    [103]鄢社锋,马晓川.宽带波束形成器的设计与实现.声学学报,2008,33(4):316-326页
    [104] R.T. Compton. The relationship between tapped delay-line and FFT processing inadaptive array. IEEE Trans. on Antennas and Propagation,1988,36(1):15-26P
    [105]梅继丹.水声声图测量技术研究.哈尔滨工程大学博士论文,2010
    [106]梅继丹,王新勇,惠俊英等.近场声聚焦波束形成与波束零陷研究.大连海事大学学报,2009,35(3):21-24页
    [107]惠娟,胡丹,惠俊英.聚焦波束形成声图测量原理研究.声学学报,2007,32(4):356-361页
    [108]余赟,梅继丹,翟春萍等.声图测量及定位海试研究.声学学报,2009,34(2):103-109页
    [109] K. Kim, I. Yang, S. Chun et al. Passive-range estimation using dual focusedbeamformers. IEEE Journal of Oceanic Engineering,2002,27(3):638-641P
    [110] J. Kesler, S. Haykin. An adaptive interference canceller using Kalman filtering. IEEEInternational Conference on Acoustics, Speech and Signal Processing,1981,6:546-549P
    [111] P. Forster, G. Vezzosi. Application of spheroidal sequences to array processing.International Conference on Acoustics, Speech and Signal Processing,1987,12:2268-2271P
    [112] C.H. Knapp, G.C. Carter. The generalized correlation method for estimation of timedelay. IEEE Trans. on Acoustic, Speech and Signal Processing,1976,24(4):320-327P
    [113] M. Wax, Y Anu. Performance analysis of the minimum variance beamformer in thepresence of steering vector errors. IEEE Trans. on Signal Processing,1996,44(4):938-947P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700