铺设木质坪地的木块加工刀具参数优化方法与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统的刀具设计中,一般先进行材料研制,再制成刀具,而后切削试验,反复修改数次,才能推出一个刀具品种。这不仅要耗费大量时间和财力,而且效率往往很低,预见性不强。有限元法产生后,使得刀具研究的效率和精度有所提高,但早期的有限元法研究刀具多是先数学建模再编程计算,这种思路不仅费时而且精度不易控制。为了解决上述问题,本文将数值模拟技术引入到木材切削的研究中来,通过仿真模拟,分析切削时木材力学性能的变化规律及对刀具强度进行校核,确定刀具几何参数。本文还将基于模糊自适应卡尔曼滤波的径向基函数神经网络应用到木工刀具的优化设计中,这是本文的一大创新点,使高效、高精度地研制刀具成为可能。
     本课题的总体思路是通过大型有限元软件ANSYS来模拟切削初始阶段中木材的应力场变化,进而得出刀具受力的边界条件,依此为基础求出木材受切时的剪应力及最大等效应力,同时通过变化刀具前角分别对受切工件的变形及应力场进行有限元比较分析,从而确定刀具的优化前角;优化前角确定后,再通过对刀具进行强度校核确定后角优化值。
     木质材料材性不同,所需刀具几何参数也不同。对于不同的木质材料,如果能使用与之相适应的不同参数的刀具则会大大提高木质材料加工速度、加工质量及刀具的使用寿命。本文应用ANSYS、MATLAB及基于模糊自适应卡尔曼滤波的径向基函数神经网络对刀具进行虚拟优化设计,可为刀具优化设计提供一种值得参考的方法。
     本文所开展的主要工作如下:
     (1)通过试验测定不同木材的12个弹性常数及顺纹抗剪强度和顺纹抗拉强度。
     (2)在理论分析的基础上,应用ANSYS的前处理器建立木材切削的有限元模型,通过施加载荷,计算分析,完成对木材切削初始阶段的数值模拟。用SOLID95单元代替SOLID45单元,把数值模拟方法运用于木材切削的研究中是本文的一大创新点。
     (3)应用ANSYS后处理器提取计算结果并与试验结果进行比较,说明用本文所提出的方法进行木材切削过程分析是可行的。
     (4)由于木质材料性质的特殊性,切削必须要考虑树种、弹性常数、抗拉强度、含水率、切削方向等因素,这也使得木工刀具几何参数的选择具有较强的针对性。本文在ANSYS分析的基础上,通过对木材切削过程进行模拟、对刀具强度进行校核确定加工不同木材时所对应刀具的优化几何参数。
     (5)在MATLAB环境下,应用基于模糊自适应卡尔曼滤波的径向基函数神经网络编制刀具优化设计程序,应用该程序可高效、高精度地设计刀具。将基于模糊自适应卡尔曼滤波的径向基函数神经网络应用到木工刀具优化设计中是本文的又一大创新点。
The traditional design of wood cutting tools is making of material,molding of cutting tools,cutting experiment,optimazing of structure and gemetry parameter and final product of cutting tools.This always takes us a lot of time and money and it also needs lots of manpower. After finite-element method was brought out,research efficiency and precision have been improved.However,the early finite-element method often processes mathematical modeling first and then programming computation when researching cutting tools,which not only wasted time but also being difficult in precision control.In order to solve above problem,numerical simulation techniques is introduced to the research of wood cutting process.Through analogue simulation to analyze changing rule of wood mechanics behavioural and verificate intensity of cutting tool when cutting,its geometric parameter is determined.This paper also applies radial basis function neural network based on blur self adapting Kallman filter to optimize design of wood cutting tools,which is a big innovation and makes development cutting tool in high precision possible.
     General clue of this paper is simulating wood stress field change in initial cutting stage and working out weighted boundary condition of cutting tools first,and then based on which, finding out shear stress and maximal effective stress when wood cut-ted.Meanwhile,finite element comparative analysis is proceeded on distortion and stress field by changing tool orthogonal rake.Finally the cutting tool geometric parameter can be determined.
     For woodiness material,different properties need different geometric parameter of cutting tools.Processing velocity,working quality and service life will be improved greatly if material properties is correspondent with parameter of cutting tool.In this paper,virtual optimum design for cutting tool is proceeded by ANSYS,MATLAB and radial basis function neural network based on blur self adapting Kallman filter,which can supply a sort of deservable referenced means.
     Main research in this paper is as follows:
     (1)Twelve elastic constants,shearing-strength of wood along the grain and tensile strength parallel to grain are measured by test.
     (2) The preprocessor of ANSYS is applied to set up fmite element model for wood cutting based on theoretical anylysis and by applying load,numerical simulation at initial stage when wood cutting is accomplished.Substituting solid45 with solid95 and applying numerical simulation to the research on cutting is a innovation point.
     (3) By applying postprocessor of ANSYS to abstract result and compare it with test result. it is shown clearly that the method presented in this paver is feasible in analysis of w(?)d cutting procedure.
     (4)Due to the particularity of woodiness material,tree species,elastic constant,strength of extension,water ratio,cutting direction etc.should be considered,which makes the selection of geometric parameter of wood cutting tools possess strong pertinence.In this paper,optimized geometric parameter corresponding to different wood is determined by simulating cutting procedure and verificating intensity of cutting tool based on ANSYS.
     (5) Optimum design program for cutting tools is set up by radial basis function neural network based on blur self adapting Kallman filter,which could develop cutting tools with high efficiency and high precision.Applying radial basis function neural network based on blur self adapting Kallman filter to optimum design of wood cutting tools is another big innovation point.
引文
[1]John A.Barboutis,John L.Philippou.Evergreen Mediterranean hardwoods as particleboard raw material.Building and Environment,12(2003):150-161
    [2]Athanasios H.Grigoriou,Georgios A.Ntalos.The potential use of Ricinus communis L.(Castor) stalks as a lignocellulosic resource for particleboards.Industrial Crops and Products,13(2001):209-218
    [3]Ra aele Spinelli,Bruce Hartsough.A survey of Italian chipping operations.Biomass and Bioenergy,21(2001):433 - 444
    [4]Erik Fljgaard Kristensen,Pieter D.Kofman and Peter Daugbjerg Jensen.Counter pressure on ventilation of different types of wood chip and chunkwood.Biomass and Bioenergy,25(2003):399-408
    [5]吴强,吴天昊,耿丙森.应用正交设计确定盘式削片机进料槽的最佳工作位置.东北林业大学学报,2004,32(3):78-79
    [6]顾正平,沈瑞珍.盘式短刀枝桠削片机设计参数的影响因素.北京林业大学学报,2002,24(5/6):183-186
    [7]陈少娟.木片制备系统削片机传动的电气设计与控制.中华纸业,2001,22(5):26-30
    [8]冯树强.木材削片机飞刀激光强化工艺及切削性能试验.广西工学院学报,2000,11(3):24-27
    [9]安珍.沙生灌木削片机仅疗机构设计.林产工业,2004,31(6):36-39
    [10]郭秀荣,陆怀民,杜丹丰等.利用城市绿化木质废料加工小木块坪地技术的发展.林业机械与木工设备,2007(1)
    [11]郭秀荣,陆怀民,赵震宇等.小木块坪地物理性能及绿化效果研究.林业科技,2008(5):
    [12]崔杏园,钱桦.虚拟现实及其演变发展.机械工程师,2006(2):22-23
    [13]曾丽霞.木质材料高速加工刀具研究[D].广东工业大学硕士论文,2007
    [14]崔杏园.木材材性的试验研究及切削过程的数值模拟[D].北京林业大学硕士论文,2006
    [15]陈琦,徐林林.产品开发与虚拟设计制造技术.机械产品开发与创新,2002(3):20-23
    [16]将中秋,方兴.数字时代的设计观念与技术.武汉理工大学学报,2002,24(4):91-93
    [17]张卫波,王占礼等.虚拟环境下产品的开发技术[J].吉林工学院学报,2000,21(1):23-25
    [18]蒋工亮.郭代仪.面向ISO9000的虚拟设计支持系统[J].工程设计CAD及其自动化,1998(5):17-19
    [19][日]臼井英治.金属加工力学[M].北京:国防工业出版社,1984
    [20][苏]В.А奥斯塔费耶夫著,喻怀仁译.刀具动态强度计算[M].北京:机械工业出版社,1982
    [21]Lajczokt MR(1980).A study of some aspects of metal machining using the finite element method[D].PhD dissertation,North Carolina State University.
    [22]Iwata K.Osakada K and Ierasaka Y(1984).Process modeling of orthogonal cutting by the rigid-plastic finite element method[J].AS ME J Engng Marl and Iech 106:132-138
    [23]Strenkowski JS and Carroll JT(1985).A finite element method of orthogonal metal cutting[J],ASME J Engng Tnd 107:346-354
    [24]Strenkowski JS and Mitchum GL(1987).An improved finite element model of orthogonal metal cutting[C].Proc.North American Manufacturing Res conf.Bethlehem,Pa,PP 506-509
    [25]Komvopoulos K and Erpenbeck S(1991).Finite element modeling of orthogonal metal Cutting[J].ASME J Engng Ind 113:253-267
    [26]Lin ZC and Lin SY(1992).A coupled finite element model of thermal elastic-plastic large deformation for orthogonal Cutting[J].ASME J Engng Tnd 114:218-226
    [27]Lin ZC and pan WC(1993).A thermoelastic-plastic large deformation model for orthogonal cutting with tool frank wear.Part1:Computational Procedures[J].Tnt J Mech Sci35(10):829-840
    [28]Moriwaki T.Sugimura N and Luan S(1993).Combined stress material,flow and heat analysis of orthogonal micromachining of copper[C].Ann CTRP 42:75-78
    [29]Kim KW and Sin HC(1996).Development of a thermo-viscoplastic cutting model using finite element method[J].Tnt J mach Tools Manufact 36(3):379-397
    [30]Lin and Liu CC(1996).Analysis of orthogonal finish machining using tungsten carbide and diamond tools of different heat transfer coefficients[J].Tnt J.Mach Tools Manufact 36(1):73-81
    [31]E-G.Ng and D.k.Aspinwall(1999).Modelling of temperature and forces when orthogonally maching hardened steel[J].Tnt J.Mach Tools Manufact 39(1):885-903
    [32]黄志刚,柯映林,王立涛.金属切削加工有限元模拟的相关技术研究[J].中国机械工程,2003,14(10):846-849
    [33]Tugrul Ozel.Taylan Altan(2000).Determination of workpiece flow stress and friction at the chip-toolcontact for high-speed cutting[J].Tnt J Mach Tools Manufact 40(7):713-718
    [34]孟庆午.木工铣刀角度刃磨机理初探.木材加工机械,1996(3)
    [35]曹平祥.木工刀具抗磨技术进展.林业科技开发,1997(3)
    [36]曹平祥,华毓坤,周之江.金刚石涂层木工刀具的研究.南京林业大学学报,1997(3)
    [37]缪宗华.木工刀具的显微组织与性能.福建林学院院报,1997,17(3):241-245
    [38]李传信,刘庆民.木工园锯片CAM技术.吉林林学院,1997(7)
    [39]刘庆民,杨中兴.木工圆锯片CAD系统.吉林林学院,1999(15)
    [40]王蓝,潘天丽等.木工成型铣刀片廓形的计算机辅助参数化设计.林业机械与木工设备,2000(10)
    [41]何荣跃,罗勇.AutoCAD、Autolisp在木工成型铣刀设计中的应用.工具技术,2001
    [42]肖正福.木工刀具硬质合金化及其应用.设计与研究,2002
    [43]周兆兵,曹平祥。浅谈声发射的小波分析与木工刀具磨损检测.木材加工机械,2002(6)
    [44]郑超,张志军等.我国金刚石木工刀具发展评述.金刚石与磨料磨具工程,2003(2)
    [45]曹平祥,王毅等.木工刀具磨损机理及抗磨技术.林产工业,2003(4)
    [46]马岩.国外木材切削刀具设计理论研究新进展.林业机械与木工设备,2007(3):4-8
    [47]孙艳玲.木材裂纹尖端区域应力场的数值分析和测试[D].北京:北京林业大学材料学院,2004
    [48]中国林科院.木材物理力学试验方法(GB1972-1943-80),技术标准出版社,1980
    [49]杨敏娟,吴定新.林产学概论.中国林业出版社,1987年2月,19-23
    [50]白桦材12个弹性常数的研究.北京林业大学学报,2003,25(6):64-67
    [51]徐曼琼,鹿振友.数字散斑面内相关法测量了木材抗压弹性模量.林业科学,2003,39(2):174-176
    [52]GB 1927-1943-91.中华人民共和国国家标准:木材物力力学性质试验法方法
    [53]李维秸.木材弹性及木材干燥应力.南京林产工业学院学报,1983,6(1):115-122
    [54]Florent Eyma,Pierre-Jean M(?)ausoone.Strainsand curing forces involved in the solid wood rotating cuttingprocess.Journal of Materials Processing Technology,148(2004) 220-225
    [55]肖正福,刘淑琴,胡宜萱.木材切削刀具学.哈尔滨:东北林业大学出版社,1992:37-57
    [56]南京林产工业学院主编.木材切削原理与刀具,北京:中国林业出版社,1983:17-37
    [57]张朝晖主编.ANSYS8.0结构分析及实例解析.北京:机械工业出版社,2006(2)
    [58]张朝晖主编.ANSYS工程应用范例入门与提高.北京:清华大学出版社,2004(10)
    [59]王庆五,左昉,胡仁喜等.ANSYS10.0机械设计高级应用实例.北京:机械工业出版社,2006(1)
    [60]赵辉.基于Ansys的木材弯曲仿真研究.林业科技,2005(1):40-42
    [61]张春来,黄斌.ANSYS软件中优化技术在刀具切削中的应用.安徽水利水电职业技术学院学报,2006,6(1):70-72
    [62]刘晓刚.剪切机刀片在剪切过程中刀刃部分应力分布的ANSYS分析,桂林航天工业高等专科学校学报,2002(3):1-3
    [63]赵先琼,杨晓红.ANSYS有限元分析与20节点块单元.岳阳师范学院学报,2001,14(3):29-31
    [64]王毅,吴立言,韩冰.ANSYS的两种有限元单元应用研究.科学技术与工程,2007,7(6):955-958
    [65]邢静忠,王永岗,陈晓霞等.ansys7.0分析实例与工程应用.机械工业出版社.2004
    [66]杨俊茹,于涛.刀具几何参数对刀具可靠性影响的研究.煤矿机械,2003(7):17-19
    [67]李兆前.金属切削刀具可靠性的研究[D].济南:山东工业大学,1992(11)
    [68]高雷,陈文亮,翟建军.数控铣削刀具参数的优化.机械制造与自动化,2001(5):11-14
    [69]孙振梅.智能化CAD系统中刀具几何参数优化与强度分析.西华大学硕士学位论文,2006
    [70]孟少龙.机械加工工艺手册(第一卷).北京:机械工业出版社,1992
    [71]宁仲良,张广军.刀具强度的有限元数值模拟分析.工具技术,2003,37(8)13-16
    [72]郑成志,肖胜兵,张树森.基于Pro/ENGINEER的硬质合金车刀有限元分析.现代机械,2005(1):40-42
    [73]孙进平,全代伦,刘忠武.硬齿面刮削加工硬质合金刀具的有限元分析.制造技术与机床,2004(4):60-62
    [74]姚希梦.弹塑性力学[M].北京:机械工业出版社,1987
    [75]K.B.Pedersen,Wear Measurement of Cutting Tools By ComPuter Vision,Int.J.Mach.Tools Manfact.,1990,30(1):131-139
    [76]Li Dan and J.Mat.hew,Tool wear and failure monitoring techniques for turning-A review,Int.J.Mach,Tool Manufact.1990,30(4):579-598
    [77]T.Pfeifer and L.Wiegers,Reliable tool wear monitoring by optimized image and illumination control in machine vision,Measurement 28(2000):209-218
    [78]李锡文,张洁,杜润生.小直径立铣刀后刀面磨损带的研究.工具技术,2000,34(6):7-10
    [79]陈日曜.金属切削原理.北京:机械工业出版社,1985
    [80]Reed Todd R.,A review of recent texture segmentation and feature extractinn techniques,CVGIP Image Understanding,1993.57(3):359
    [81]Wang L,He D C.,A New Statistical Approach for Texture Analysis,Photogram metric Engineering and Remote Sensing,1990,56(1):61-66
    [82]Lee,Yih-Gong;lee,Jia-Hong;Hsueh,Yuang-Chch,Texture classification using fuzzy,uncertainty texture spectrum,Neurocomputing,1998.20(1-3):115-122
    [83]Kiss,Csaba Istvan;nemeth,Geza;Chetverikov,Dmitrij;Boroczky,Lilla,On feature extraction for texture analysis,Periodical Polytechnic,Electrical Engineering,1995.39(2):115-130
    [84]潘永智,艾兴,唐志涛,赵军.基于切削力预测模型的刀具几何参数和切削参数优化.中国机械工程,2008,19(4):428-431
    [85]Gross G R,Jain A K.,Markov Random Field Texture Models,IEEE Trans Pattem Analysis and Machine Intelligence,1983,5(1):25-39
    [86]赵峰,赵荣椿.纹理分割及特征提取方法综述.中国体视学与图像分析,1998,3(4):238-245
    [87]马晓川,候朝焕,赵荣椿.一种新的纹理图像Gibbs模型,计算机学报,1998.21(增刊):304-307
    [88]马晓川,候朝焕,唐娜,新的纹理分类算法,中国图像图形学报,1999,4(5):387-390
    [89]张妙兰,付新文.一种纹理图像分类方法的研究,中国图像图形学报,1999,48:680-683
    [90]王文成.神经网络及其在汽车工程中的应用.北京:北京理工大学出版社,1998(07):1-9
    [91]Chan K.An analysis in the learning recall and generalization characteristics of neural networks for process fault diagnosis.Computer in Chemical Engineering,1990,14(7):128-130
    [92]Hoskins J C.Fault diagnosis in complex chemical plants using artificial neural networks.Journal of AICHE,1991,37(1):137-141
    [93]Venkat Venkatasubramanian,king Chan.A neural network methodology for process fault diagnosis.Journal of AICHE,1989,35(12):1993-2002
    [94]吴蒙.工神经网络和机械故障诊断.振动工程学报,1993(2):153-163
    [95]叶世伟.神经网络原理.北京:机械工业出版社,2004(1):7-15
    [96]焦李成.神经网络的应用于实现.西安:西安电子科技大学出版社,1993(6):54-60
    [97]王永骥,涂健.神经网络控制.北京:机械工业出版社,1998(2)
    [98]王文成.神经网络及其在汽车工程中的应用.北京:北京理工大学出版社,1998(7)
    [99]张青贵.人工神经网络导论.北京:中国水利水电出版社,2004:67-70
    [100]Wang Jun,ZhuLi,Cai Zhihua,et al.Training RBF Network with An Extended Kalman filter Optimized Using Fuzzy Logic.In:Z.Shi,Shimohara K.,Feng D.NIP(International Federation for Information Processing) Intelligent Information Processing Ⅲ.Boston:Springer,2006:317-326.
    [101].Dan Simon.Training radial basis neural networks with the extended Kalman filter.Neurocomputing,2002,vol.48:455-475.
    [102]王君,朱莉,蔡之华。一种基于卡尔曼滤波和模糊控制的RBF神经网络新型学习算法[J].计算机应用,2006,26卷(7期):1700-1705.
    [103]李太福,熊隽迪.基于梯度下降法的自适应模糊控制系统研究.系统仿真学报,2007,19(6):1265-1273
    [104]刘颖超,张纪元.梯度下降法.华东工学院学报,1993(2):12-22
    [105]付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用.北京:科学出版社.2003:4-7
    [106]诸静等.模糊控制原理与应用.北京:机械工业出版社,2005年.358-388.
    [107]闻新.神经网络故障诊断的可实现性.导弹与航天运载技术.2000(2):17-22
    [108]Iserm an R.Fault diagnosis of machines via parameter estimation and knowledge processing-tutorial paper.Automatica,1993,29(4):815-835
    [109]Benkhedda Hassen,Patton Ron J.B spline network integrated qualitative and quantitative fault detection.Proc.of IFAC World Congress,1996:163-168
    [110]张延华,许阳明.高技术计算环境-MATLAB使用指南.北京:科学技术文献出版社,1998(8)
    [111]Hummels D M,Ahmed W,Musavi M T.Adaptive Detection of Small Sinusoidal Signals in Non-Gaussian Noise using an RBF Neural Network.IEEE Trans on Neural Networks,1995,6(1):214-219
    [112]Chen E S,Chert S,Mulgrew B.Gradient Radial Basis Function Networks for Nonlinear and Nonstationary Time Series Prediction,IEEE Trans on Neural Networks.1995,7(1):190-194
    [113]Moody,Darken C.Fast Learning in Networks of Locally-tuned Processing Units.Neural Computation,1989,1(1):281-294
    [114]Chen S,Cowan C F N,Grant P M.Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks.IEEE Trans on Neural Networks,1991,2(2):302-309.
    [115]Chen S,Billings S A,Grant P M.Recursive Hybrid Algorithm for Nonlinear Identification Using Radial Basis Function Networks.International Journal of Control,1995,55(5):1051-1070
    [116]阎平凡,张长水.人工神经网络与模拟进化计算.北京:清华大学出版社.2001:35-49
    [117]徐秉铮,张百灵.神经网络理论与应用.广州:华南理工大学出版社,1994(12)
    [118]杨行峻,郑君里.人工神经网络与盲信号处理.北京:清华大学出版社,2002:41-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700