大豆蛋白质/聚羟基脂肪酸酯生物可降解聚合物的分子组装改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆蛋白质(SP)、聚羟基丁酸酯(PHB)、3-羟基丁酸与3-羟基戊酸的共聚物(PHBV)均为天然生物可降解聚合物。但SP分子中的氢键作用、自组装和亲水性使其耐水性、耐湿性和力学性质稳定性较差。而PHB、PHBV存在结晶度高、脆性大等不足。本文针对它们的分子结构特点,采用共混、共聚手段,通过在SP与PHB或SP与PHBV之间形成一定程度的大分子组装或调节它们的大分子组装状态,达到了改善SP/PHB、SP/PHBV的综合性质的目的。
     首先,利用SP的7S和11S在冷水中的不同溶解性,制备了富含11S的大豆分离蛋白(SPIG)。研究表明,SPIG比其它SP产品有更低的吸水性。
     然后,采用熔融模压法制备了SPIG/PHB和SPIG/PHBV及低分子量PHB(LPHB)与SPIG的共混物,研究了共混改性的效果和机理。以乙二醇、甘油、木糖醇、三油酸甘油酯、环氧大豆油为添加剂,探讨了这些小分子对SP/PHB的改性作用。采用溶液共聚法制备了SPI-co-PHB,探索了PHB共聚改性SP的效应。采用DSC、DMA、FTIR、SEM、PLM、固态13C NMR、拉伸测试、激光粒度仪、SDS-PAG凝胶电泳、吸水率测定、生物降解速率测定等方法表征了共混物或共聚物的聚集态结构和性质。
     研究表明,在共混物中,PHB、PHBV、LPHB与SP产生了分子间氢键,破坏了各自原刚硬的自组装结构,形成了新的分子间组装结构,使PHB、PHBV在SP含量较高时难以组装成较大的球晶,甚至以片晶束与SP共存,并阻止了PHB、PHBV的二次结晶,且疏水性PHB、PHBV组装到SP亲水性基团上而形成疏水薄膜层,从而,改善了SP的力学性质、耐水性、耐湿性及力学性质稳定性。
     研究还表明,乙二醇、甘油、木糖醇、三油酸甘油酯、环氧大豆油对SPIG/PHB有良好的增塑效果,但前三者因自身吸水性高而导致共混物持耐水耐湿性有所降低,而后两者的疏水性使共混物耐水性略有增加。
     研究还表明,PHB可与SP共聚,并改变SP和PHB的自组装状态,改善SP聚合物的强度和韧性,且因在SP中引入PHB,使共聚物具有耐水耐湿性。
     研究还表明,SP/PHA共混物降解速率高于SP,但添加甘油等小分子使SP/PHB的降解速率低于纯SP,而SPI-co-PHB的降解速率与SP相差不大。
Soy protein (SP), poly(3-hydroxybutyrate) (PHB), the polymer of 3-hydroxybutyric acid and 3-hydroxyvaleric acid (PHBV) are natural biodegradable polymers. But hydrogen-bonding, self-assembly in SP macromolecules and its hydrophilic property result in low water resistance or moisture resistance and unstable mechanical properties of SP. Moreover, britlleness of PHB and PHBV is high for their high degrees of crystallinity. In the study, based on characteristics of SP, PHB and PHBV, macromolecular assembly was formed to some extent or the states of macromolecular assembly was modified by blending or copolymerization. Resultingly, the properties of SP were improved.
     Firstly, a soy protein isolate (SPIG) with rich 11S was prepared by the difference in solubility of 7S and 11S in water at relatively low temperature. The water sorption of SPIG is lower than other SP products by the study on it.
     Secondly, SPIG/PHB, SPIG/PHBV and SPIG/LPHB (the PHB with low molecular-mass) were prepared by blending them respectively. Effects of PHB, PHBV and LPHB on improving properties of SP were researched. Mechanism of the improvement of the properties was proposed. Effects of glycol, glycerol, xylitol, epoxidized soy oil and triolein on SPIG/PHB were investigated. A SPI-co-PHB copolymer was prepared by solution-polymerization. Effect of the copolymeration on improving properties of SP was studied. The morphology and properties of all of the blends prepared here and the SPI-co-PHB were characterized by DSC, DMA, FTIR, SEM, PLM, 13C solid-NMR, the test of strength, BIC Particle Sizing, SDS-PAG, water sorption test and biodegradation rate test.
     It is revealed that hydrogen-bonds formed between SP and PHB, PHBV, LPHB, respectively, conversely, rigid self-assembling structures of SP, PHB, PHBV and LPHB privately were partly altered into intermacromolecular assembly, resulting in that PHB and PHBV could not assembled into big spherulites, or only formed lamellar-beams distributed in SP. The secondary crystallization of PHB and PHBV was inhibited also. Mechanical properties, water and moisture resistance and the stability of mechanical properties of the blends based on SP were improved because hydrophobic PHB and PHBV assembled to hydrophilic groups of SP and constructed a layer of film round the hydrophilic groups. It is indicated that toughness of SPIG/PHB was enhanced by glycol, glycerol, xylitol, epoxidized soy oil and triolein. However, high hydrophilicity of the former three additives decreased slightly water resistance of their blends. Conversely, hydrophobic nature of the farmer two additives increased lightly water resistance of the blends added the farmer. It is exhibited that PHB may copolymerize with SP. The self-assembly of SP and PHB privately was changed in the copolymerization. The strength and roughness of the copolymer based on SP were improved by copolymerization. Water resistance of the copolymer is high for copolymerizing PHB. It is indicated that the SP/PHA blends have higher biodegradation rates than pure SP. The biodegradation rate of SPI-co-PHB is near to pure SP.
引文
[1]Swain S.N., Biswal S.M., Nanda P.K., et al, Biodegradable Soy-Based Plastics: Opportunities and Challenges, J. Polym. Environ., 2004,12:35~42.
    [2]Ren X.,Biodegradable plastics: a solution or a challenge? Journal of Cleaner Production, 2003,11:27~40
    [3]Mohanty A.K., Misram., Drzal L.T.J.,Chance and challenge: soybean protein plastics, J. Polym. Environ., 2002,10:19~24.
    [4]Ly Y. T.-P., Johnson L.A., Jane J. Biopolymers from renewable resource, edited by Kaplan D.L., Berlin: Springer-Verlag Berlin Heidelberg,1998,pp145~176
    [5]Hanley Zac, Slabas Toni, Elborough, et al, The use of plant biotechnology for the production of biodegradable plastics, Trends in Plant Science Volume: 2000,5(2):45~46
    [6]戈进杰,生物降解高分子材料及其应用,北京:化学工业出版社,2002
    [7]Mochizuki M., Aibertsson A.-C., Varma I. K., et al, Biopolymers, Volume 4, Polyesters III - Applications and Commercial products, edited by Dio Y. and Steinbüchel A., Grermany: Wiley-VCH, 2002
    [8]Aerobic P, Jurgen Scheller1 and Udo Conrad, Plant-based material, protein and biodegradable plastic3-hydroxyvalerate) (PHB/V), Current Opinion in Plant Biology 2005,8:188–196
    [9]Snyder H.E. and Kwon T.W., Soybean utilizayion, New York:VNR,1987~2058.
    [10]David R.Erickson, Practical Handbook of Soybean Processing and Utilization, St. Louis Missouri, USA: AOCS PRESS and Untied Soybean Board,1993
    [11]Lee S.Y., Plastic bacteria? Progress and prospects for polyhdroxyakanoates production in bacteria, TIBTECH, 1996,14:431~438
    [12]Dennis Douglas E, Klomparens Karen, et al., Polyhydroalkanoates, a biodegradable thermoplastic, produced in Trangenetic Plants, Science, 1992,256:5056
    [13]Yves Poirier and Kenneth J Gruys, Biopolymers, Volume 3a,Polyesters I- Systhesis of Polyhydroalkanoates in Trangenetic Plants, Dio Y., Steinbüchel A.(Eds), Grermany:Wiley-VCH,2002,Chapter 15
    [14]Reddy C.S.K., Ghai R. Rashm, Kalia V.C., Polyhydroxyalkanoates: an overview, Bioresource Technology, 2003, 87:137~146
    [15]Poirier Y., Production of polyesters in transgenic plants, in: Biopolyesters (Babel, W., Steinbuchel A., Eds.), Berlin: Springer-Verlag, 2001, 209~240
    [16]Cabezas H. et al., Sustainability and renewable resources, Resources, Conservation and Recycling 2005,44:197~200
    [17]Mayer D.J., Industrial Applications for Soy Protein and Potential for Increased Utilization, CEREAL FOOD CHEMISTRY, 1993,38(5):355~360
    [18] Badley R.A., Atkinson D.D., Hauser H.,et al, The Structure, physical and chemical properties of soybean protein glycinin. Biochim. Biophys. Acta., 1975, 412:214~231.
    [19]Kinsella,J.E.,Functional Properties of Soy Proteins for Food Applications, J. Am. Oil Chem. Soc.,1979,56:242~258
    [20]Peng I., Quass C.D., Dayton W.R., The Physicochemical and Functional Properties of Soybean 11S Globulin, Cereal Chem., 1984,61:480~490.
    [21]Thanh V.H., Shibasaki K.J., Major proteins of soybean seeds: subunit structure ofβ-conglycinin, J. Agric. Food. Chem.,1978,26: 692~698.
    [22]陶慰孙,李惟,姜涌明(主编),蛋白质分子基础(第二版),北京:高等教育出版社,1995
    [23]Steinbüchel, A. and Fahnestock Stephen R.(Eds.), Biopolymers, Vol. 7: Polyamides and Complex Proteinaceous Materials I,Weinheim: Wiley-VCH, 2002
    [24]Fahnestock Stephen R. and Steinbüchel A., Matsumura S. (Eds.), Biopolymers Vol. 8: Polyamides and Complex Proteinaceous Materials II, Weinheim: Wiley-VCH, 2003
    [25]Krinski T.L. and Scacciaferro M.L., Protein adhesive binder and process for producing it, Euroupe Patent, 0833513A2, 1998
    [26]Seal R., Industrial soy protein technology, In: Grant R.A.(Ed.), Applied Protein Chemistry, USA: Appl. Sci. Pub. Ltd, 1980, pp87~111
    [27]李荣和,大豆新加工技术原理与应用,北京:科学技术文献出版社,1998
    [28]谢文磊,粮油化工产品化学与工艺学[M].北京:科学出版社, 1998
    [29]胡慰望,谢笔均,食品化学,北京:科学出版社, 1992
    [30]李官奇,植物蛋白合成丝,中国专利:99116636.1., 1999.9
    [31]王其,冯勋伟,大豆纤维针织物导透汽性研究,纺织学报,2001,3: 16~18
    [32]韩光亭,谢莉青,孙永军等.大豆蛋自纤维织物湿热舒适性能分析,棉纺织技术,2001; 29 (9): 16~17
    [33]Zhang X., Huang G., Hao F., et al, The Quantitative Analysis Method of Blended Fabric Made from Wool and Soybean Protein Fiber, The Third China International Wool Textile Conference, 2002, 9: 523~560
    [34]赵伟玲,郝凤鸣,郭晓玲,大豆蛋白纤维性能测试分析,棉纺织技术,2002, 30 (8): 33~37
    [35]Tang R., Du Y., Zheng H., et al, Preparation and Characterization of Soy Protein Isolate–Carboxymethylated Konjac Glucomannan Blend Films, Journal of Applied Polymer Science, 2003,88:1095~1099
    [36]Chen Y., Zhang L.,Blend Membranes Prepared from Cellulose and Soy Protein Isolate in NaOH/Thiourea Aqueous Solution,J Appl Polym Sci 2004,94: 748~757
    [37]Huang J., Zhang L., Wei H., et al,Soy Protein Isolate/Kraft Lignin Composites Compatibilized with Methylene Diphenyl Diisocyanate,J Appl Polym Sci 2004,93: 624~629
    [38]Chen Y., Zhang L., Gu J., et al, Physical properties of microporous membranes prepared by hydrolyzing cellulose/soy protein blends, Journal of Membrane Science 2004,241:393~402
    [39]Huang J., Zhang L., Wang X., Soy Protein–Lignosulphonate Plastics Strengthened with Cellulose, J Appl Polym Sci, 2003,89:1685~1689
    [40]Huang J., Zhang L., Chen F.,Effects of Lignin as a Filler on Properties of Soy Protein Plastics, I. Lignosulfonate,J Appl Polym Sci, 2003,88: 3284~3290
    [41]Huang J., Zhang L., Chen P.,Effects of Lignin as a Filler on Properties of Soy Protein Plastics, II. Alkaline Lignin,J Appl Polym Sci, 2003,88: 3291~3297
    [42]Lu, Y., Weng, L., Zhang, L., Morphology and properties of soy proteinisolate thermoplastics reinforced with chitin whiskers, Biomacromolecules, 2004,5:1046~1051
    [43]Hayashi N., Hayakawa I., Fujio Y., Flow behaviour of soy protein isolate melt with low and intermediate moisture levels at an elevated temperature, J Food Eng, 1993,18:1~7
    [44]Feng L., Wang Y.Q., Sun X.S., Curing process and mechanical properties of protein-based polymers, J Polym Eng, 1999,19(6):383~390
    [45]Tostoguzov V.B., Thermoplastic extrusion一the mechanism of the formation of extrudate structure and properties, J Am Oil Chem Soc, 1993, 70: 417~424
    [46] Mo X., Sun X.S., Wang Y., Effect of molding temperature and pressure on properties of soy protein polymers, J. Appl. Polym. Sci., 1999,73: 2595~2602
    [47]Paetau I., Chen C.Z., Jane J., Biodegradable plastics made from soybean products. I. Effects of preparation and processing incorporation on mechanical properties and water absorption, J. Eng. Chem. Res., 1994, 33: 1821~1827
    [48]Sue H.-J., Wang S., and Jane J.-L., Morphology and mechanical behaviour of engineering soy plastics, Polymer, 1997,38:5035~5040
    [49]Wang S., Sue H.J., Jane J., Mechanical properties of soy protein plastics, J. Macromol. Sci. [Pure Appl. Chem. (Ed.)], 1996,33: 557~569
    [50]Wang S., Zhang S., Jane J.L., et al, Effect of polyols on mechanical properties of soy protein, Polym. Mater. Sci. Eng. (Am. Chem. Soc.), 1995, 72:88~89
    [51]汪浩,黄华,张隐西,大豆蛋白质材料加工和力学性能的研究,中国材料,2001,15(7):47~50
    [52]Zhang J., Mungara P., Jane J., Mechanical and thermal properties of extruded soy protein., Polymer, 2001, 42, 2569~2576
    [53]Jane J.,Wang S., Soy protein-based thermoplastic composition for preparing molded articles, US Patent: 5523293,1996
    [54]Paetau I., Chen C.Z., Jane J., Biodegradable plastics made from soybean products. II. Effects of crosslinking and cellulose incorporation on mechanical properties and water absorption, J. Environ. Polym. Degrad., 1994, 2: 211~217
    [55]Vaz C.M., de Graaf L.A., Reisa, R.L., et al, In vitro degradation behaviour of biodegradable soy plastics: effects of crosslinking with glyoxal and thermal treatment, Polymer Degradation and Stability, 2003, 81: 65~74
    [56]Hwang H.C. Chang T.C.and Jane J.,Mechanical and physical properties of protein-starch based plastics produced by extrusion and injection molding, JAOCS, 1999,76:1101~1108
    [57]Mo X. and Sun X.,Effects of Storage Time on Properties of Soybean Protein-based Plastics,Journal of Polymers and the Environment, 2003, 11(1):15~22
    [58]Mungar P., Chang T., Zhu J., et al, Processing and Physical Properties of Plastics Made from Soy Protein Polyester Blends, J. Polym. Environ., 2002,10:31~37
    [59]Otaigbe U.J., Adams O.D., Novel bioabsorbable polyphosphate/soy protein plastic composites, Int. SAMPE Tech. Conf., (Composites for the Real World), 1997,29,686~697
    [60]Otaigbe, U.J., Adams, O.D., Bioabsorbable soy protein plastic composites: effect of polyphosphate fillers on water absorbtion and mechanical properties, J. Environ. Polym. Degrad., 1997,5: 199~208
    [61]El-Hadi A., Schnabel R., Straube E., et al, Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends, Polymer Testing, 2002; 21: 665~74
    [62]Saada G.R., Seligerb H., Biodegradable copolymers based on bacterial poly((R)-3-hydroxybutyrate): thermal and mechanical properties and biodegradation behaviour, Polymer Degradation and Stability, 2004,83: 101~10.
    [63]WANG T., CHENG G., MA S., et al, Crystallization behavior, mechanical properties, and environmental biodegradability of poly(β-hydroxybutyrate)/cellulose acetate butyrate blend, J. Appl. Polym. Sci., 2003,89:2116~2121
    [64]Grassie N., Murray E.J., Holmes P.A., Thermal degradation of Poly(D-β-hydroxybutyric acid): part 3---The reaction mechanism, Polym Degrad Stab, 1984,6:127~134
    [65]Kopink F.-D., Mackenzie K., Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(hydroxybutyric acid), J. Analytical and Applied Pyolysis, 1997, 40-41:43~53
    [66]Janigova′I., Lac ?′k I., Choda′k I., Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC, Polymer Degradation and Stability, 2002,77: 35~41
    [67]Kunioka A.K., Dio Y., Thermal degradation of microbial copolyesters poly(3-hydroxybuturate-co-3-hydroxyvalerate) and poly(3-hydroxybuturate-co-4-hydroxyvalerate), Macromolecules, 1990,23:1933~1936
    [68]Kunioka A.K.,Dio Y.,Crystalline and Thermal properties of poly(3HB-co-3-HV) and poly(3-HB-co-4HV), Macromolecules, 1989, 23: 1933~1936
    [69]El-Hadi A., Schnabel R., Straube E., et al, Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends,Polymer Testing, 2002,21:665~674
    [70]Hirt T.D., Neuenschwander P., Suter U.W. Telechelic diols from poly[(R)-hydroxybutyric acid] and poly{[(R)-3-hydroxybutyric acid]-co-[(R)-3-hydroxyvaleric acid]}, Macrol Chem Phys, 1996,197:1609~1614
    [71]Bo Zhu, Jianchun Li, et al.,Thermal and infrared spectroscopic studies on hydrogen-bonding interaction of biodegradable poly(3-hydroxybutyrate)s with natural polyphenol catechin,Green Chemistry, 2003, 5(5): 580~586
    [72]Xu J., Guo B.-H., et al, In situ FTIR study on melting and crystallization of polyhydroxyalkanoates, Polymer, 2002, 43: 6893~6899
    [73] Krinski T.L., Scacciaferro M.L., Protein adhesive binder and process for producing, Eur. Patent: 0838513A2, 1998
    [74]Souillac P.O., Middaugh C. R., Rytting H.J., Investigation of protein/carbohydrate internactions in the dried state. 2. Diffuse reflectance FTIR Studies, International Journal of Pharmaceutics, 2002,235:207~218
    [75]Zhang H., Li L., Tatsumi E., et al, Influence of high pressure on conformational changes of soybean glycinin, Innovative Food Science and Emerging Technologies, 2003,4:269~275
    [76] Nishizawa K., Maruyama N., Satoh R., et al, C-terminal sequence of soybean b-conglycinin subunit acts as a vacuolar sorting determinant in seed cells, the Plant Journal, 2003,34: 647-659
    [77]Motoyasu Adachi, et al., Crystal structure of proglycinin A1aB1b homotrimer, J. Mol. Biol., 2001,305:291~305
    [78]Chronakis I.S., Network formation and viscoelastic properties of commercial soy protein dispersions: effect of heat treatment,pH and calcium ions,Food research international, 1996,29(2):123~124
    [79]Renkema J. M. S., Relations between rheological properties and network structure of soy protein gels,Food Hydrocolloids, 2004,18:39~47
    [80] Renkema J.M.S., Lakemond C.M.M., Harmen H.J. et al, The effect of pH on heat denaturation and gel forming properties of soy proteins , Journal of Biotechnology, 2000,79:223~230
    [81] Renkema J.M.S. and van Vliet T.,Concentration dependence of dynamic moduli of heat-induced soy protein gels,Food Hydrocolloids, 2004,18:483~487
    [82]Chandra R.; Rustgi R., Biodegradable polymers, Progress in Polymer Science,1998. 23(7):1273~1335
    [83]Rhim J. W., Gennadios A., Weller C. L., et al, Sodium dodecyl sulfate treatment improves properties of cast films from soy protein isolate, Industrial Crops and Products 2002, 5:199~205
    [84]Huang W., Sun X., Adhesive properties of soy proteins modified by sodium dodecyl sulfate and sodium dodecylbenzene sulfonate, J. Am. Oil Chem. Soc., 2000, 77 (7):705~708
    [85]Huang Weining, Sun X., Adhesive protein of soy protein modified by urea and guanidine hydrochloride, J.Am. Oil Chem. Soc., 2000,77( 1 ): 101~104
    [86]Hemingway R.W., Conner A.H., Branham S.J., Adhesive from renewable resources, Washington: American Chemical Society, 1989
    [87]Rockville M.D., Indirect food additives: paper and paperboard component; oxidised soy isolate, FED Register (1982), 47, 51106
    [88]Franzen K.L.,Kinsella J.E., Functional properties of succinylated and acetylated soy protein, J. Agric. Food Chem., 1976,24:788~795
    [89]Lambuth A.L., Soybean glues, In: Skeist, I. (Ed.), Handbook of Adhesives, 2nd ed., New York: Van Nostrand, 1977, pp172~180
    [90]Gruener L., Ismond M.A.H. Food Chem, 1997, 60(4): 513~520
    [91]Coco C.E., Graham P.M., Krinski K.L., A protein adhesive binder, Eur. Patent: 108649, 1984
    [92]Cabodevila O., Hill S.E., Armstrong H.J., et al., Gelation enhancements of soy protein isolate using the maillard reaction and technology, J Food Sci, 1994, 59(4): 872~875
    [93]Medina A.L., Colas B., Le Meste M., et al., Physicochemical and dynamic properties of caseins modified chemical phosparyloton , J. Food Sci., 1992, 57(3): 617~621
    [94]卢寅泉,陈彤华,陈连就,食品与发酵工业, 1993, (1): 17~24
    [95]Krinski T.L., Steinmetz A.L., Protein modified with a silanation reagent as a adhesive binder and process of producing it, US Patent: 4713116, 1987
    [96] Liang, F., Wang, Y., Effect of silane coupling agents on the interface of soy protein and glass fibre, Proc. Am. Soc. Compos., Tech. Conf.14th, 1999,pp.511~520
    [97] Weakley, F.B., Roth, W.B., Mehltretter, C.L., Crosslinked protein glue containing chicken blood for interior-type plywood, Hamm Douglas, Poult. Sci., 1972,51:378~381
    [98] Rhim J.-W., Gennadios A., Weller C.L., et al, Soy protein isolate–dialdehyde starch films, Industrial Crops and Products 1998,8:195~203
    [99]Kunte L.A., Gennadios A., Cuppett S.L., et al, Cast films from soy protein isolates and fractions, Cereal Chemistyr, 1997,74:115~118.
    [100]Krinski T.L., Coco C.E., Steinmetz A.L., Cationic monomer-modified protein adhesive binder for paper coatings, US Ser:No. 696941,1987
    [101]Krinski, T.L., Hou, K.C., Vegetable protein–protein acrylate coprecipitate as binder thickner, Eur. Patent: 1054103, 2000
    [102]Symeenk J.M., Ayres L.Strunnenberg H.G., et al, Polymer protein hybrids, Macromol. Symp., 2005,225:1~8
    [103]Dykstra, G.M., Hollingsworth, R.L., Method for producing paper coating binder involving grafting unsaturated acrylate onto proteinaceous substrate in water, US Patent: 3920592, 1975
    [104]徐筱杰,超分子建筑---从分子到材料,北京:科学技术文献出版社,2000, pp40~42
    [105]Ziegler G. R. and Foegeding E.A., The gelation of protein, Adv.Food Nutr. Res.,1990,34:203~208
    [106]Wang C.-H. and Damodaran S., Thermal gelation of globular proteins: influence of protein conformation on gel strength, J. Agric. Food Chem., 1991,39:433~438
    [107]Hwang D.-C. and Damodaran S., Chemical modification strategies for sunthesis of protein-based hydrogel, J. Agric. Food Chem., 1996,44,751~758
    [108]Ram ?′rez-Sua′rez J.C.and Xiong Y.L., Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/soy protein mixtures, Meat Science, 2003,65:899~907
    [109]Hua Y., Cui S.W., Wang Q., Gelling property of soy protein–gum mixtures, Meat Science, 2003,65:899~907
    [110]Kuijpers A., Engbers G.H.M., Krijgsveld J., et al, Cross-linking and characterisation of gelatin matrices for biomedical applications, J. Biomater. Sci.: Polym. Edt., 2000,11:225~243
    [111]Spence K.E., Allen A.L., Wang S., et al, Hydrogels and biodegradable polymers for bioapplications,Am. Chem. Soc. Symp. Series, 1996,627:149~158
    [112] Kalapathy U., Hettiarachchy N. S.,Myers D.,et al., Alkali-modified soy proteins: effect of salts and disulfide bond cleavage on adhesion and viscosity, J. Am. Oil Chem. Soc., 1996, 73(8): 1063~1066
    [113]鲁伟,宋俊梅,大豆分离蛋白水解用酶的筛选,研究与探讨,2005,26(1):25~27
    [114]Vaz C. M., Fossen M., van Tuil R. F., et al, Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications, J Biomed Mater Res,2003,65A: 60~70
    [115]Vaz, C.M., van Doeveren, P.F.N.M., Reis, et al, Development and design of double-layer co-injection moulded soy protein based drug delivery devices, Polymer, 2003,44:5983~5992
    [116] Wang S., Sue H., Jane J., Efects of polyhydric alcohols on the mechanical properties of soy protein plastics, J Macromol Sci-Pure Appl Chem, 1996, A33(5): 557~569
    [117]Ly Y. T.-P., Johnson L.A., Jane J., Biopolymers from renewable resource, edited by Kaplan D.L., Berlin: Springer-Verlag Berlin Heidelberg,1998,pp145~176
    [118]Lodha P., Netravali A.N., Thermal and mechanical properties of environment-friendly‘green’plastics from stearic acid modified-soy protein isolate, Industrial Crops and Products, 2005,21:49~64
    [119]Zhong, Z., Sun, X.S., Properties of soy protein isolate/polycaprolactone blends compatalised by methylene diphenyl diisocyanate. Polymer, 2001, 42:6961~6969
    [120]Subirade, M., Kelly, I., Gue′guen, J., et al, Molecular basis of film formation from a soybean protein: comparison between the conformation of glycinin in aqueous and in films, International Journal of Biologogic Macromolecules., 1998,23:241~249.
    [121]Gueguen J.,Viroben G.,Noireaux P., et al, Influence of plasticizers of treatments on the properties of films from pea proteins, Industrial Crops and Products, 1998,7:149~157
    [122]Anneke H. Martin, Katja Grolle, et al, Network Forming Properties of Various Proteins Adsorbed at the Air/Water Interface in Relation to Foam Stability, Journal of Colloid and Interface Science, 2002,254: 175~183
    [123] BURGESS D.J. and SAHIN N.O.,Interfacial Rheological and Tension Properties of Protein Films,JOURNAL OF COLLOID AND INTERFACE SCIENCE,1997,189:74~82
    [124] Cho S.Y. and Rhee C., Water Sorption Characteristics of Soy Protein Films and their Relation to Mechanical Properties , Lebensm.-Wiss. u.-Technol., 2002,35:151~157
    [125] Schmidt V., Giacomelli C., Soldi V., Thermal stability of films formed by soy protein isolate-sodium dodecyl sulfate, Polymer Degradation and Stability, 2005,87:25~31
    [126] Foulk J.A., Bunn J.M., Properties of compression-molded, acetylated soy protein Films, Industrial Crops and Products, 2001,14:11~22
    [127]Lee M., Lee S., Song K.B., Effect ofγ-irradiation on the physicochemical properties of soy protein isolate films Radiation Physics and Chemistry, 2005,72:35~40
    [128]Stuchell, Y.M., Krochta, J.M., Enzymatic treatments and thermal effects on edible soy protein films, J. Food Sci., 1994,59:1332~1337
    [129] Kim K.M., Weller C.L., Hanna M.A. et al, Heat Curing of Soy Protein Films at Selected Temperatures and Pressures, Lebensm.-Wiss. u.-Technol., 2002,35:140~145
    [130]S.Y.Cho and C.Rhee, Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration, Lebensm.-Wiss. u.-Technol., 2004,37:833~839
    [131]Baldwin E.A.,Nisperos M.O., Chen X., et al, Improveming storage life of cut apple and potato with edibale coating, Postharvest Biology and Technology, 1996,9:151~163
    [132]Shih F.F., Interaction of soy isolate with polysaccharide and its effect on film properties, J. Am. Oil Chem. Soc., 1994,71:1281~1285
    [133]L. Mariniello, P. Di Pierro, C. Esposito, A. et al, Preparation and mechanical properties of edible pectin-soy flour films obtained in the absence or presence of transglutaminase, Journal of Biotechnology 2003,102:191~198
    [134]Ratner B.D., Hoffman A.S., Systhetic hydrogels for biomedical applications, in: Hydrogels for medical and related applications, Andrade J.D. (Ed.), ACS Symposium Series 31, Ameracan Chemical Society: Washindong, DC, 1976,pp168~170
    [135]Circle, S.J., Meyer, E.W., Whitney, R.W., Rheology of soy protein dispersions. Effect of heat and other factors on gelation, Cereal Chem., 1964, 41: 157~172
    [136]Johnson O., Adhesive formula and the product produced, US Patent: 1460757,1923
    [137] Soy-based wood adhesive, in: Market opportunity summary, February 2000
    [138]Madison W.I., Wood Handbook: Wood as an Engineering Material, in: Agriculture Handbook, vol.72, U.S. Department of Agriculture, Forest Products Laboratary, 1987
    [139]Steele P.H., Kreibich R.E., Steynberg P.J., et al, Finger jointing green southern yellow pine with a soy-based adhesives, Adhes. Age, 1998,41:49~56
    [140]Coggeshall B., Int. Contrib. Wood Adhes. Res., Forest Products Society Annual Meeting, USA: Forest Products Society, Madison W.I., 1999, pp129~131
    [141]Lambuth A.L., Soybean glues, in: Skeist, I. (Ed.), Handbook of Adhesives, 2nd ed. Van Nostrand, New York, 1977,pp172~180
    [142]Lambuth A.L., Protein adhesives for wood, In: Pizzi, A., Mittal, K.L. (Eds.), Advanced Wood Adhesive Technology, Marcel Dekker Inc, New York, 1994, pp 259~281
    [143]Weakley F.B., Carr M.E., Mehltretter C.L., Dialdehyde starch in paper coatings containing soy flour-isolated soy protein adhesive, Staerke 1972,24:191~194
    [144]Paul G.M., Krinski T.L., Heat coagulable paper composition with a soy protein adhesive binder, US Patent: 4421564, 1983
    [145]Wildes, S.G., Industrial product utilization of soybean derivative, Final Conference CTVO-net, Bonn (Germany), June 2001
    [146]Wool R.P., Khot S.H., LaScala J.J., et al, In: Bandyopadhyay (Ed.), Sustainable Composites from Renewable Resources, Compos. Transp. Ind., Proc., ACUN-2: Int. Compos. Conf. 2, 2000, pp619~627
    [147]Kuo M., Adams D., Myers, D., et al, Properties of wood/agricultural fibre cardboard bonded with soybean based adhesives, Forest Production Journal, 1998,48:71~75.
    [148]Zhong, Z., Sun X.S., Fang X., et al, Adhesion properties of soy protein with fibre cordboard, J. Am. Oil Chem. Soc., 2001,78:37–41
    [149]Sun X, Bian Kc., Shear strength and water resistance of modified soy protein adhesives, J. Am. Oil Chem. Soc.,1999,76(8) :977~980
    [150]Bian K. and Sun S., Adhesive performance of modified soy proteins polymers, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1998,39:72~73.
    [151]Ignjatovic N.L., Tomic S.L.J., Vrhovacc L.P., et al, Determination of optimal conditions for modification of urea formaldehyde adhesives by enzymatically modified soybean adhesive, Hem. Ind. 1998.52: 286~289
    [152]Kriebich R.E., New adhesives based on soy protein,Oils–Fats–Lipids 1995, Proc. 21st World Congr. Int. Soc.Fat Res., 21st (1996) Meeting Date, vol.3, UK: P.J. Barnes & Associates, Bridgwater, pp503~509
    [153]Zhao K., Hao X.F., Liu D.J., soy protein isolate composite adhesive,Transaction of Zhengzhou Industry University,2000,21:15~18
    [154]Wool R.P., Khot S.N., LaScala J.J., et al, Thielemans W., Morye S.S., All natural composites for the transportation industry, Polym. Mater. Sci. Eng. (Am.Chem. Soc.), 2000, 83: 12
    [155]Cheng E., Sun X., Karr G.S., Adhesive properties of modified soybean flour in wheat straw particleboard, Composites: Part A, 2004 35:297~302
    [156]Hinterwaldner R., Plant proteins as resources for innovation in backbone binders,Coating,1997,30:323~325
    [157]Okamura K. and Marchessauit R.H., In: Conformation of Biopolymers, Vol.2, ed. Ramachandran G.N., London: Academic Press, 1967, p709
    [158]Hauttecoeur B., Marchessault R.H., Benoit H., et al., Physical properties of poly(β-hydroxybutyrate)Ⅲ. Folding of helical segments in 2,2,2-trifluoroethanol, Macromolecules, 1970,3:741~752
    [159]Yokkouchi M., structure studies of polyesters, Polymer, 1974, 14: 267~269
    [160]Barham P.J., Keller A., Otun E.L., et al., CRYSTALLIZATION AND MORPHOLOGY OF A BACTERIAL THERMOPLASTIC - POLY-3-HYDROXYBUTYRATE, J Mater Sci,1984;19:2781~2794
    [161]El-Hadi A., Schnabel R., Straube E., et al, Effect of Melt Processing on Crystallization Behavior and Rheology of Poly(3-hydroxybutyrate) (PHB) and its Blends, Macromol., Mater. Eng., 2002, 287: 363~372
    [162]Terada M., Marchessault R.H., Retermination of solubility for poly(3-hydroxyalkanoates), International Journal of Biological Macromolecules, 1999,25:207~215
    [163] Yu G., Morin F.G., Nobes G.A.R., et al., Degree of acetylation of chitin and extent of grafting PHB on chitosan determined by solid state 15N-NMR, Macromolecules, 1999, 32(2):518~520
    [164]Lauzier C., Revol J.F., Debzi E.M., et al, Hydrolytic degradation of isolated poly(β-hydroxybutyrate) granules, Polymer, 35: 4156~4162
    [165]Yu G., Marchessault R.H., Characterization of low molecular weight poly(b-hydroxybutyrate)s from alkaline and acid hydrolysis, Polymer,2000,41:1087~1098
    [166]Cai Z., Cheng G., Geng M., et al, Surface modifacation of poly(hydroxybutyrate) (PHB) by photografting and its properties evalution, J. Polym. Research, 2004,11:99~104
    [167]Zhao Q., Cheng G.,Li M., et al, Synthesis and characterization of biodegadable poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers, Polymer, 2005,46:10561~10567
    [168]赵强,蔡志江,王典杰等,聚(3-羟基丁酸酯)/聚乙二醇共聚物的制备与特性研究,2004年全国高分子材料科学与工程研讨会论文集,上海:2004,pp413~414
    [169]Reeve M.S., McCarthy S., Gross R.A., Preparation and Characterization of (R)-Poly(β-hydroxybutyrate)-Poly(ε-caprolactone) and (R)-Poly(β-hydroxybutyrate)-Poly(lactide) Degradable Diblock Copolymer, Macromolecules, 1993,26:888~904
    [170]Yalpani M., Marchessault R.H., Moria F.G., et al., Synthesis of Poly(3-hydroxyalkanoate)(PHA) Conjugates: PHA-Carbohydrate and PHA-Synthetic Polymer Conjugates, Macromolecules, 1991, 22: 6046~6053
    [171]Miyamoto M., Kimura Y., Synthesis and characterization of hydroxy-terminated [RS]-poly(3-hydroxyburate) and its utilization to block copolymerization with L-lactide to obtain a biodegradable thermoplastic elastomer, Polymer,2000,41:7369-7379
    [172]Lawrence F.H., Stephen M.F., Melissa S.Z., Hydrophilic, semipermeable membrances fabricated with poly(ethyleneoxide)-polysulfone block copolymer, Biomaterials, 2000, 21: 725~733
    [173]Hobbs J. K., McMaster T. J., Miles M. J., et al, Cracking in spherulites of poly(hydroxybutyrate), Polymer 1996, 37(15): 3241 ~3246
    [174]Iwata T., Tsunada K., Doi Y., Mechanical properties of uniaxially cold-drawn films of poly([R]-3-hydroxybuturate), Ploymer Degradation and Stability, 2003,79:217~224
    [175]Aoyagi Y., Doi Y.,Iwata T., et al, Mechanical properties and high ordered structure of ultra-high-molecular-weight poly([R]-3-hydroxybuturate) films: effect of annealing and two-step drawing, ploymer Degradation and Stability, 2003,79:207~216
    [176]Bahari K., Mitomo H., Enjoji T., et al., Degradability of poly(3-hydroxybutyrate) and its copolymer grafted with styrene by radiation, Polym Degrad Stab, 1998,61:245~252
    [177]Bahari K., Mitomo H., Enjoji T., et al., Radiation crosslinked poly(butylene succinate) foam and its biodegradation, Polym Degrad Stab, 1998,62:551~557
    [178]Mitomo H., Enjoji T., Yoshii F., et al., Radiation-induced graft polymerization of poly(3-hydroxybutyrate) and its copolymer, Journal of Macromolecular Science-Pure and Applied Chemistry, 1995,32:429~442
    [179]李建树,罗祥林,何成生等,高分子材料表面固定生物分子的光化学方法,高分子材料科学与工程,2001,17:20~24
    [180]Ceccorulli G., Pizzoli M., Scandola M., EFFECT OF A LOW-MOLECULAR-WEIGHT PLASTICIZER ON THE THERMAL AND VISCOELASTIC PROPERTIES OF MISCIBLE BLENDS OF BACTERIAL POLY(3-HYDROXYBUTYRATE) WITH CELLULOSE-ACETATE BUTYRATE, Macromolecules, 1993, 26(25): 6722~6726
    [181]Scandoia M., Ceccorulli G., Greco P., et al, Miscibility of Bacterial Poly(3-hydroxybutyrate) with Cellulose Esters , Macromolecules, 1992, 25: 6441~6446
    [182]Maekawa1 M., Pearce R., Marchessault R.H., et al, Miscibility and tensile properties of poly (b-hydroxybutyrate)–cellulose propionate blends ,Polymer ,1999,40: 1501~1505
    [183]Avella M., Martuscelli E., Raimo M., The Fractionated Crystallization Phenomenon in Poly(3-hydroxybutyrate)/ Poly(ethylene oxide) Blends, Polymer, 1993, 34: 3234
    [184]李荣群,安玉贤,庄宇钢等,聚β-羟基丁酸酯/超高分子量聚氧化乙烯共混体系相容性和结晶行为,高分子学报, 1999, 4: 498
    [185]Godbole S., Gote S., Latkar M., et al, Preparation and characterization of biodegrable poly-3-hydroxybutyrate?starch blend films, Bioresour. Technol., 2003,86:33~37
    [186] Xing P., Ai X., Dong L., et al, Miscibility and Crystallization of Poly(β-hydroxybutyrate)/Poly(vinyl acetate-co-vinyl alcohol) Blends, Macromolecules, 1998, 31: 6898~6906
    [187]Kim B.O., Woo S.I., Compatibiting Capability of Poly(β-hydroxybutyrate-co-ε-caprolactone) in the Blend of Poly(β-hydroxybutyrate) and Poly(ε-caprolactone), Polymer Bulletin, 1998, 41: 707~713
    [188]贺文楠,张增民,曾峄等,聚(3-羟基丁酸酯)/聚(3-羟基辛酸酯聚-co-3-羟基癸酸酯)共混物相容性的研究,全国高分子学术论文报告会论文集,1997: p24
    [189]Cao A., Asakava N., Yoshie N., Phase Structure and Biodegradation of the Bacterial Poly(3-hydroxybutyric acid)/Chemosynthetic Poly(3-hydroxypropionic acid) Blend, Polymer Journal, 1998, 9: 743~749
    [190] Xing P., Dong L., An Y., et al, Miscibility and Crystallization of Poly(β-hydroxybutyrate) and Poly(p-vinylphenol) Blends, Macromolecules, 1997, 30: 2726~2733
    [191]Gonzalez1 A., Irusta L., Ferna′ndez-Berridi M.J., et al, Miscibility behaviour of amorphous poly(3-hydroxybutyrate) (a-PHB)/styrene–vinyl phenol copolymer (STY-co-VPH) blends applying an association model, Polymer, 2004,45:1477~1483
    [192]Maekawa M.,Pearce R., Marchessault R.H., et al, Miscibility and tensile properties of poly(β-hydroxybutyrate)-cellulose propionate blends, Polymer, 1999, 40:1501~1505
    [193]王东山,黄勇,沈家瑞,生物降解塑料研究进展,广州化学,2001,1:23~25
    [194]何曼君,陈维孝,高分子物理,上海:复旦大学出版社,1990,34~142
    [195]焦剑,雷渭媛,高聚物结构、性能与测试,北京:化学工业出版社,2003, 116~124
    [196]邓如生,共混改性工程材料,北京:化学工业出版社,2003
    [197]周达飞,唐颂超,(主编),高分子材料成型加工,北京:化学工业出版社,2000,184~187
    [198]Wu S., Phase structure and adhesion in polymer blends: a criterion for rubber toughening, Polymer, 1985, 26:1855~1862
    [199]Kurauchi T., Ohta T., Energy absorption in blends of polycarbonate with ABS and SAN, J Mater Sci, 1984, 19:1699~1706
    [200]Kwei T.K., The effect of hydrogen bonding on the glass transition temperature of polymer mixtures, J. Polym. Sci. Lett. Ed. 1984; 22: 307-313
    [201]Painter P.C., Park Y., Coleman M.M., Thermodynamics of hydrogen bonding in polymer blends. 1. Application of Association Models, Macromolecules, 1989, 24: 570~579
    [202]Painter P.C., Park Y., Coleman M.M., Thermodynamics of hydrogen bonding in polymer blends. 2.Phase Behavior, Macromolecules, 1989, 22: 580~589
    [203]Snyder R. W., Thomson B., Bartges B., et al, FTIR Studies of Polyimides: Thermal Curing, Macromolecules 1989, 22: 4166~4172
    [204]Painter P.C., Shenoy S.L., Bhagwagar D.E., Effect of hydrogen bonding on the melting Point in polymer blends where one component crystallizes, Macromolecules, 1991, 24: 5623~5629
    [205]Painter P.C., Graf J.F., Coleman M.M., Effect of hydrogen bonding on the enthalpy of mixing and the composition dependence of the glass transition temperature in polymer blends, Macromolecules, 1991, 24: 5630~5638
    [206]Painter P.C., Tong W-L., Coleman M.M., Formation of Molecular Compositse through hydrogen bonding interactions, Macromolecules, 1991, 24: 3580~3589
    [207]Coleman M.M.and Painter P.C., Hydrogen bonded polymer blends, Prog. Polym. Sci., 1995, 20:1~59
    [208]Coleman M.M., Graf J.F., Painter P.C., Functional Group Accessibility in Hydrogen Bonded Polymer Blends, Macromolecules, 1996, 29: 6820~6831
    [209]Park Y., Veytsman B., Coleman M., et al, The miscibility of hydrogen-bonded polymer blends: Two self-associating polymers,Macromolecules, 2005, 38(9): 3703~3707
    [210]Viswanathan S. and Dadmun M., Formation of a True Molecular Composite using Optimal Hydrogen Bonding, Macromolecular Rapid Communications, 2001, 22(10), 779-82
    [211]Viswanathan S.and Dadmun M., Guidelines to Creating a True Molecular Composite: Inducing Miscibility in Blends by Optimizing Intermolecular Hydrogen Bonding, Macromolecules, 2002, 35(13): 5049~5060
    [212]Viswanathan S. and Dadmun M., Optimizing Hydrogen-Bonding in Creating Miscible Liquid Crystalline Polymer Blends by Structural Modification of the Blend Components, Macromolecules, 2003, 36, 3196
    [213]Zhang S. H., Jin X., Painter P. C., et al, Dynamical Heterogeneity in the Thermodynamically Miscible Polymer Blend of Poly(vinyl ethyl ether) and Styrene-co-p-hydroxystyrene Copolymer, Macromolecules, 2003, 36: 5710~5718
    [214]Bo Zhu, Jianchun Li, et al., Thermal and infrared spectroscopic studies on hydrogen-bonding interaction of biodegradable poly(3-hydroxybutyrate)s with natural polyphenol catechin,Green Chemistry, 2003, 5(5): 580~586
    [215]Nuno-Donlucas-S,Puig-J, Katime-I,Hydrogen bonding and miscibility behavior in poly [ethylene-co-(acrylic acid)] and poly (N-vinylpyrrolidone) mixtures, Macromolecular Chemistry and Physics, 2001,202(16): 3106~3111
    [216]Reusch R.N., Huang R., Bramble L.L., PHB/calcium polyphosphate complexs form voiltage-active calcium channel in plasma membranes, Biophys. J., 1995, 69: 754~766
    [217]Reusch R.N., Gruhn A.G., PHA-conjugated proteins are ubiquitous in both prokaryote and eukaryotes, in: Int. symp. Bacterial polyhydroxyalkanoates (Eggink G., et al. Eds.), Ottawa: NRC Pre., 1997, 10~19
    [218]沈家骢,分子组装---21世纪化学面临的挑战与机遇,世界科技研究与发展, 1995, 1: 16~17
    [219]齐志奇,邵学斌,赵新等,四氢键二聚体和分子组装,有机化学, 2003, 23(5):403~412
    [220]李薇,徐冉,王丽颖等,分子组装技术制备超晶格的研究进展,化学进展,1999,11(2): 140~47
    [221]赵冰,张希,徐蔚青等,分子组装体的谱学研究,光散射学报, 2000, 12(12): 77~82
    [222]王幽香,沈家骢,超分子组装构建非病毒基因传递体系的研究进展,科学通报, 2004,49(9): 819~824
    [223]Reusch R.N., Biopolymers, Volume 3a, Polyesters I , edited by Dio Y. and Steinbüchel A., Grermany: Wiley-VCH, 2002
    [224]Fox T.G., Bull. Am. Phys. Soc., 1956,2:123
    [225]Hoffman J.D., Week J.J., J. Res. Nat. Bur. Stds., 1966,66A:13
    [226]谢晶曦,常俊标,王绪明,红外光谱在有机化学和药物化学中的应用,北京:科学出版社,2001
    [227]张叔良,易大年,吴天明,红外光谱分析与新技术,北京:中国医药科技出版社,1993
    [228]宁永成,有机化合物结构鉴定与有机波谱学(第二版),北京:科学出版社,2003
    [229]薛奇,高分子结构研究中的光谱方法,北京:高等教育出版社,1995
    [230]Iriondo P., et al., Thermal and infra-red spectroscopic investigation of a miscible blens composed of PVP and PHB, Polymer, 1995, 32:323~3237
    [231]Peng S., An Y., Chen C., et al, Isothermal crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), European Polymer Journal, 2003,39:1475~1480
    [232]Parvez I. Haris and Severcan F., FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media, Journal of Molecular Catalysis B: Enzymatic, 1999, 7:207~22
    [233]Godbole S., Gote S., Latkar M., et al, Preparation and characterization of biodegrable poly-3-hydroxybutyrate?starch blend films, Bioresour. Technol., 2003, 86:33~37
    [234]金兹布尔格A.C.,食品干燥原理与技术基础(中译本),高奎元译,轻工业出版社,1986
    [235]Hoffmann A., Kreuzberger S., Hinrichsen G., Influence of thermal degradation on tensile strength and Young’s modulus of poly(β-hydroxy butyrate), Polym. Bull., 1994, 33:355~341
    [236]S.H. El-Taweel, G.W.H. Ho¨hne, et al, Glass transition and the rigid amorphous phase in semicrystalline blends of bacterial polyhydroxybutyrate PHB with low molecular mass atactic R, S-PHB-diol, Polymer, 2004, 45:983~992
    [237]张敬一,环氧大豆油增塑剂的研究,河北化工,1992,4:3~4
    [238]张启兴,环氧大豆油的合成与应用,化工时刊,1992,31~32
    [239]Swern D., Sonntag N.O.V., Formo M.W., et al, Fourth edition, Vol.Ⅰ, New York: John Wiley & Son, 1979
    [240]Swern D., Allen R.R., Sonntag N.O.V., et al, Industrial Oil and Fat Products, Fourth edition, Vol.Ⅳ, New York: John Wiley & Son, 1982
    [241]Yoshie N., Nakasatoa K., Fujiwara M., et al, Effect of low molecular weight additives on enzymatic degradation of poly(3-hydroxybutyrate), Polymer,2000, 41: 3227~3234

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700