Ba_(1-x)(M)_xCo_(0.9-y)Fe_yNb_(0.1)O_(3-δ)材料性能及电化学应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿型混合导体是一类同时具有电子和离子导电性能的材料,可以广泛应用于透氧膜(OTM)、固体氧化物燃料电池(SOFC)及固体氧化物电解池(SOEC),从而引起了化学、材料及物理等领域的科研工作者的广泛关注。
     本文在材料选择与设计基础上,从合成过程-性能分析-实际应用出发,首先采用固相合成方法制备了Ba1.0Co0.7Fe0.2Nb0.1O3-δ混合电导钙钛矿材料,然后系统评价了Ba缺位及Fe掺杂浓度对Ba1.0Co0.7Fe0.2Nb0.1O3-δ(x=0-0.15, y=0-0.9)材料热膨胀系数、电化学性能的影响。同时评价了Ba1.0Co0.7Fe0.2Nb0.1O3-δ(BCF0.4N)及Ba0.9Co0.7Fe0.2Nb0.1O3.δ(B0.9CFN)与中温电解质材料La0.8Sr0.2Ga0.83Mg0.17O3-δ的化学相容性。在此基础上首次研究了具有p型半导体导电性质的BCF0.4N作为SOEC氧电极的应用可行性及高钴、高活性的B0.9CFN应用于SOFC阴极及OTM的长期稳定性。
     最后,通过原位还原混合电导钙钛矿材料Pr0.4Sr0.6CQ0.2Fe0.7Nb0.1O3-δ,开发了新型微纳结构的陶瓷合金复合阳极材料。该复合阳极材料具有很好的抗硫耐积碳性能及氧化还原循环稳定性。综上,通过本文研究为混合电导材料工业化应用奠定了坚实基础。
In recent years, mixed-conducting perovskite-type materials have attracted great attentions to researchers in the fields of chemistry, materials and physics. These materials can be used in many applications such as Oxygen Transport Membranes (OTM), Solid Oxide Fuel Cell (SOFC) and Solid Oxide Electrolysis Cell (SOEC).
     In this study, BaCo0.7Fe0.2Nb0.1O3-δhas been synthesized using a solid state reaction method based on the study of synthesis process-performance analysis-practical application. The effects of A-site cation deficiency and B-site iron doping concentration on the thermal expansion coefficient (TEC) and electrochemical performance of Ba1-xCo0.9-yFeyNb0.1O3_δ(x=0-0.15,y=0-0.9) have been systematically evaluated. X-ray diffraction results showed that Bao.9Coo.sFeo.4Nb0.1O3.5(BCF0.4N) and Ba0.9Co0.7Fe0.2Nb0.1O3-δ(B0.9CFN) were chemically compatible with the La0.8Sr0.2Ga0.83Mg0.17O3-δLSGM) electrolyte. A novel BCF0.4N was prepared and characterized as oxygen electrode for SOEC. The performance and stability of B0.9CFN for OTM application and as cathode for LSGM-electrolyte supported SOFCs were reporetd for the first time.
     Furthermore, a novel ceramic-alloy composite anode obtained by reduction of Pr0.4Sr0.6Co0.2Fe0.7Nbo0.1O3-δ has been reported. The novel ceramic-alloy composite anode has demonstrated excellent sulfur tolerance and coking resistance as well as redox cyclability. In conclusion, this dissertation has established a solid foundation for the practical application of mix-conducting materials.
引文
[1]林祖镶等.快离子导体(固体电解质-基础、材料、应用).上海:上海科学技术出版社,1983.
    [2]Q.H. Yin, J. Kniep, Y.S. Lin. Oxygen sorption and desorption properties of Sr-Co-Fe oxide. Chemical Engineering Science,2008,63:2211-2218.
    [3]L.M. Liu, T.H. Lee, L. Qiu, et al. A Thermogravimetric Study of the Phase Diagram of Strontium Cobalt Iron Oxide. Sr0.5Co0.8Fe0.2O3-δ. Materials Research Bulletin,1996,31:29-35.
    [4]B.J. Mitchell, J.W. Richardson Jr. et al. Phase stability of SrFeCo0.5Oy under synthesis and annealing conditions. Journal of the European Ceramic Society,2002,22:661-671.
    [5]H.T. Wang, X.Q. Liu, et al. Gelcasting of La0.6Sr0.4Co0.8Fe0.2O3-δ from oxide and carbonate powders. Ceramics International,1999,122:113-121.
    [6]江金国,崔崇La0.6Sr0.4Co1-yFeyO3系阴极材料制备及表征.材料科学与工程学报,2005,23(5):615-617.
    [7]Y. Teraoka, T. Fukuda, N. Miura,et al. Catalytic effects in oxygen permeation through mixed-conductive LSCF perovskite membranes.Solid State Ionics,2002,152-153:681-687.
    [8]C. Mongkolkachit, S. Wanakitti. Characterization of (La,Sr)(Co,Fe)O3-δ Ferrite-Based Cathodes for Intermediate-Temperature SOFCs.Journal of Metals, Materials and Minerals,2008,18(2):33-36.
    [9]杨维慎,王海辉,丛铀.一种双相混合导体透氧膜、其制备方法及用途.中国:CN02124417.0.
    [10]C.S. Chen. A.J. Burggraaf. Stabilized bismuth oxide-noble metal mixed conducting composites as high temperature oxygen separation membranes. Journal of Applied Electrochemistry,1999,29:355-360.
    [11]K.Q. Huang, M. Schroeder, J.B. Goodenough. Oxygen permeation through composite oxide-ion and electronic conductors. Electrochemical and Solid-State Letters,1999,2:375-378.
    [12J T. Nakamura, G. Petzow, L. J. Gauckler. Stability of the perovskite phase LaBO3 (B=V、Cr、Mn、 Fe、 Co、 Ni) in reducing atmosphere. Material Research Bulletin,1979,14:649-659.
    [13]A. F. Moreirados Santos. Electrical and magnetic properties of manganates with perovskite-related structure. Ph.D.thesis, University of California,2002.
    [14]H.J.M. Bouwmeester, A.J. Burggraaf. Fundamentals of Inorganic Membrane Science and Technology. Amsterdam:Elsevier,1996.435-515.
    [15]A.N. Petrov, O. F. Kononchuk, A. V. Andreev, et al. Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y. Solid State Ionics,1995,80:189-199.
    [16]T. Ishihara, ed.Perovskite Oxide for Solid Oxide Fuel Cells. Springer,2009.
    [17]韩敏芳,彭苏萍.固体氧化物燃料电池材料与制备.北京:科技出版社,2004.2.
    [18]S. C. Singhal, K. Kendall高温固体氧化物燃料电池—原理、设计和应用(韩敏芳,蒋先锋译).北京:科学出版社,2007.
    [19]J.W. Fergus. Electrolytes for solid oxide fuel cells. Journal of Power Sources,2006,162:30-40.
    [20]K. Eguchi, T. Setoguchi, et al. Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics,1992,52(1-3):165-172.
    [211 X. Zhang, M. Robertson, et al. Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte. Journal of Power Sources,2007,164(2):668-677.
    [22]C. Xia, M. Liu. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing. Solid State Ionics,2001,144(3-4):249-255.
    [23]K.Q. Huang, J.B. Goodenough. A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer. Journal of Alloys and Compounds,2000,303-304:454-464.
    [24]T. Ishihara, T. Akbay, H. Furutani, Y. Takita. Improved oxide ion conductivity of Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite type oxide. Solid State Ionics,1998,113-115:585-591.
    [25]N. Trofimenko, H. Ullmann. Co-doped LSGM:composition-structure-conductivity relations. Solid State Ionics,1999,124:263-270.
    [26]X.G. Zhang. S. Ohara, R. Marie, et al. Interface reactions in the NiO-SDC-LSGM system. Solid State Ionics, 2000,133:153-160.
    [27]C.W. Sun, R. Hui, J. Roller. Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry,2010,14:1125-1144.
    [28]Z.P. Shao. S.M Haile. A high performance cathode for the next generation of solid-oxide fuel cells. Nature. 2004,431:170-173.
    [29]Q.J. Zhou, T. Wei, Y.H. Shi, et al. Evaluation and optimization of SrCo0.9Ta0.1O3-δ perovskite ascathode for solid oxide fuel cells, Current Applied Physics,2012,12:1092-1095.
    [30]Z. Shao, S.M. Haile, J. Ahn, et al. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density.Nature,2005,435:795-798.
    [31]S. C.Singhal. Materials for solid oxide fuel cells. China University of Mining&Technology, Beijing, April 15,2009.
    [32]Z. L. Zhan. S. A. Barnett. An octane-fueled solid oxide fuel cell. Science,2005,308:844-847.
    [33]A. Atkinson. S. Barnett. R. J. Gorte. et al. Advanced anodes for high-temperature fuel cells. Nature Materials, 2004,3:17-27.
    [34]S. Mclntosh, R.J. Gorte. Direct hydrocarbon solid oxide fuel cells. Chemical Reviews,2004,104:4845-4866.
    [35]S.M. Plint, P.A. Connor, S.W. Tao. et al. Electronic transport in the novel SOFC anode material La1-xSrxCr0.5Mn0.5O3-δ,Solid State Ionics,2006,177:2005-2008.
    [36]Y. Huang, R. I. Dass, Z. Xing, et al. Double perovskites as anode materials for solid-oxide fuel cells.Science, 2006.312:254-257.
    [37]Z. H. Bi, J. H. Zhu. Effect of current collecting materials on the performance of the double-perovskite Sr2MgMoO6-δ anode. Journal of The Electrochemical Society,2011,158:B605-B613.
    [38]X. Li, H. L. Zhao, X. Zhou, et al. Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells. International Journal of Hydrogen Energy, 2010,35:7913-7918.
    [39]L. Yang. S. Z. Wang, K. Blinn, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs:BaZr0.1Ce0.7Y0.2-xYbxO3-δ. Science.2009.326:126-129.
    [40]G.L. Xiao. C. Jin, Q. Liu. et al. Ni modified ceramic anodes for solid oxide fuel cells. Journal of Power Sources,2012,201:43-48.
    [41]J.E. O'Brein, C.M. Stoots. J.S. Herring, et al. Performance measurements of solid-oxide electrolysis cells for hydrogen production. Journal of Fuel Cell Science and Technology.2005.2:156-163.
    [42]A. Hauch, S.D. Ebbesen, S.H. Jensen, et al. Highly efficient high temperature electrolysis. Journal of Materials Chemistry,2008,18:2331-2340.
    [43]S.H. Jensen et al. Hydrogen and synthetic fuel production from renewable energy sources. International Journal of Hydrogen Energy 2007,32:3253-3257.
    [44]张文强,于波,陈靖,等.高温固体氧化物电解水制氢技术.化学进展,2008,20(5):778-787.
    [45]刘明义,于波,徐景明.固体氧化物电解水制氢系统效率.清华大学学报(自然科学版),2009,49:868-871.
    [46]J. Guan, N. Minh, B. Ramamurthi. High Performance Flexible Reversible Solid Oxide Fuel Cell. Final Technical Report,October 2004- November 2006.GE Global Research Center.
    [47]W.S. Wang, Y.Y. Huang, S.W. Jung, et al. A comparison of LSM, LSF, and LSCo for solid oxide electrolyzer anodes. Journal of The Electrochemical Society,2006,153:A2066-A2070.
    [48]徐南平.面向应用过程的陶瓷膜材料设计、制备与应用.北京:科学出版社,2005.
    [49]M.LeFevre.3rd Annual GTL Commercialization Conference,2003.
    [50]C. Wagner. Equations for transport in solid oxides and sulfides of transition metals. Progress in Solid State Chemistry,1975,10:3-16.
    [511 H. Dong, Z. P. Shao, G. X. Xiong. et al. Investigation on POM reaction in a new perovskite membrane reaction.Catalysis Today,2001,67:3-13.
    [52]S. Liu, G.R. Gavalas. Oxygen selective ceramic hollow fiber membranes. Journal of Membrane Science, 2005,246.103-108.
    [53]X. F. Zhu, Y. Cong, W.S Yang. Oxygen permeability and structural stability of BaCe0.15Fe0.85O3-δ membranes. Journal of Membrane Science,2006.283:38-44.
    [54]N.S. Xu, H.L. Zhao, Y.N. Shen, et al. Structure, electrical conductivity and oxygen permeability of Ba0.6Sr0.4Co1-xTixO3-δ ceramic membranes. Separation and Purification Technology,2012,89:16-21.
    [55]C.Y. Tsai, A.G. Dixon, Y.H. Ma, et al. Dense Perovskite La1-xAxFe1-yCoyO3-δ(A'= Ba, Sr, Ca) Membrane Synthesis, Applications and Characterization. Journal of the American Ceramic Society,1998,81(6): 1437-1444.
    [56]L. Yang, Z.T. Wu, W.Q. Jin. et al. Structure and Oxygen Permeability of BaCo0.4Fe0.6-xZrxO3-δ Oxide:Effect of the Synthesis Method. Industrial & engineering chemistry research,2004,43:2747-2752.
    [57]B. Meng, Z.G. Wang, X.Y. Tan, et al. SrCo0.9Sc0.1O3-δ perovskite hollow fibre membranes for air separation at intermediate temperatures. Journal of the European Ceramic Society,2009.29:2815-2822.
    [58]陈鑫智.新型掺杂钙钛矿型混合导体透氧膜材料的研究[硕士论文].华南理工大学,2010.
    [59]K. Zhang, R. Ran, L. Ge, et al. Systematic investigation on new SrCo1-yNbyO3-δ ceramic membranes with high oxygen semi-permeability. Journal of Membrane Science,2008,323:436-443.
    [60]S.W. Lee, K. S. Lee, S. K. Woo, et al. Oxygen-permeating property of LaSrBFeO3 (B=Co, Ga) perovskite membrane surface-modified by LaSrCo03.Solid State Ionics,2003,158:287-296.
    [61]Y. Teraoka, T. Fukuda, N. Miura,et al. Catalytic effects in oxygen permeation through mixed-conductive LSCF perovskite membranes.Solid State Ionics,2002,152-153:681-687.
    [62]F. Garzon, I. Raistrick. etal. Dense diffusion barrier limiting current oxygen sensors. Sensors and Actuators B. 1998,50:125-130.
    [63]杨志宾.韩敏芳.袁燕.等.混合电导陶瓷材料研究进展.真空电子技术.2006.4:46-50
    [64]夏晖,李福桑.吴卫江.等.具有LSM致密扩散障碍层的片式极限电流型氧传感器.无机材料学报,2004,19(2):411-416.
    [65]D. Weng, H. Zhao, X. Wu et al. Influence of cerium on the performance of LaMO3+λ) (M=Mn or Mn-Cu) perovskite-type catalyst.Materials Science and Engineering,2003, A361:173-178.
    [66]徐菁利,马建泰,李茸,等.稀土-过渡金属复合氧化物催化剂用于汽车尾气净化研究.环境化学,2003,22(2):177-181.
    [67]徐鲁华,翁端,吴晓东,等La1-x SrxMn0.7Zn0.3O3+λ钙钛矿的制备及稀燃条件下氮氧化物的催化还原性能.中国稀土学报,2002,20(4):378-381.
    [68]工广建.秦永宁,J.马智,等.钙钛矿型复合氧化物材料.化学通报,2005,2:117-122.
    [69]D. Levin, B. Pascal, G. Dagmar, et al.Microstructure of Nanoscaled La0.6Sr0.4CoO3-δCathodes for Intermediate-Temperature Solid Oxide Fuel Cells. Advanced Energy Materials,2011,1:249-258.
    [70]H.Y. Tu, Y. Takeda, N. Imanishi. et al. Ln1-xSrxCo03 (Ln=Sm, Dy) for the electrode of solid oxide fuel cells. Solid State Ionics,1997,100:283-288.
    [71]H.Y. Tu. Y. Takeda, N. Imanishi, et al. Ln0.4Sr0.6Co0.8Fe0.2O3-δ (Ln=La, Pr, Nd.Sm, Gd) for the electrode in solid oxide fuel cells. Solid State Ionics,1999,117:277-281.
    [72]C.R. Xia, W. Rauch, F.Z. Chen, et al. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics,2002,149:11-19.
    [73]A. Petric, P. Huang, F.Tietz. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics,2000,135:719-725.
    [74]T. Nagai, W. Ito. T. Sakon Relationship between cation substitution and stability of perovskite structure in SrCoO3-δ-based mixed conductors. Solid State Ionics,2007,177:3433-3444.
    [75]S.P. Simner, J.F. Bonnett, N.L. Canfield, et al. Optimized Lanathanum Ferrite-Based Cathodes for Anode-Supported SOFCs. Electrochemical and Solid-State Letters,2002,5:A173-A175.
    [76]L.W. Tai, M.M. Nasrallah, H.U. Anderson. in Singhal SC, Iwahara H. (Eds.). SOFC Ⅲ, Proceedings Volume, Vol 93-94.Journal of The Electrochemical Society, NJ,1993:241-251.
    [77]S.K. Tiwari, S. P. Singh, R. H. Singh. Effect of Ni. Fe. Cu, and Cr substitutions for Co in La0.8Sr0.2CoO3 on electrocatalytic properties for oxygen evolution. Journal of The Electrochemical Society,1996, 143(5):1505-1510.
    [78]段枣树.新型阴极材料BSCF在IT-SOFC中的应用[硕士毕业论文].中国科学院研究生院(大连化学物理研究所).2005.
    [79]X.L. Sun, S. Li, J.C. Sun, et al. Electrochemical performances of BSCF cathode materials for ceria-composite electrolyte low temperature solid oxide fuel cells. International Journal of Electrochemical Science,2007,2:462-468.
    [80]A.Y. Yan, M.J. Cheng, Y.L. Dong, et al. Investigation of a Bao 5Sr0.5Co0.8Fe0.2O3-δ based cathode IT-SOFC 1. The effect of CO2 on the cell performance. Applied Catalysis B:Environmental,2006,66:64-71.
    [81]S. Svarcova, K. Wiik. J. Tolchard, et al. Structural instability of cubic perovskite BaxSr1-xCo1-yFeyO3-δ. Solid State Ionics,2008,178:1787-1791.
    [82]U.Balachandran et al. Dense ceramic membranes for partial oxidation of methane to syngas. Applied Catalysis A:General 1995,133:19-29.
    [83]B. Ma, U. Balachandran, J. H. Park. Determination of chemical diffusion coefficient of SrFeCo0.5Ox by the conductivity relaxation method. Solid State Ionics,1996,83:65-71.
    [84]邵宗平.从铀,等.钙钛矿型Sr1-xBixFe03-δ混合导体透氧膜.中国科学,B辑,1999,29(6):553-557.
    [85]J. Sfeir, P.A. Buffat. P. Mockli. et al. Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes. Journal of Catalysis,2001,202:229-244.
    [86]S.W. Tao, J.T.S. Irvine. A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials,2003,2: 320-323.
    [87]O.A. Marina, N.L. Canfield, J.W. Stevenson. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate.Solid State Ionics,2002,149(1-2):21-28.
    [88]张华,金江等La2NiO4+δ透氧膜材料的结构特点与性能.无机材料学报,2001,16(3):440-445.
    [89]S.J. Skinner, J.A. Kilner. Oxygen diffusion and surface exchange in La2-xSrxNiO4+δ. Solid State Ionics.2000,135:709-712.
    [90]T. Ishihara, S. Miyoshi, T. Furuno. et al. Mixed conductivity and oxygen permeability of doped Pr2NiO4-δ based oxide.Solid State Ionics,2006,177:3087-3091.
    [91]杨志宾.钙钛矿型混合导电材料制备与性能研究[硕士毕业论文].北京:中国矿业大学(北京).2008.
    [92]B.C.H. Steele. Oxygen Ion Conductors and Their Technoiogical Applications. Materials Science and Engineering,1992, B13:79-87.
    [93]佟建华,杨维慎.钙钛矿型氧化物混合导体透氧膜材料的选择.膜科学与技术,2003,23(1):33-42.
    [94]B.C.H. Steele. Materials for IT-SOFC stacks 35 years R&D:the inevitability of gradualness. Solid State Ionics,2000,134:3-20.
    [95]Y. Yamamura, C. Ihara, S. Kawasaki, et al. Materials design of perovskite-based oxygen ion conductor by molecular dynamics method. Solid State Ionics,2003.160:93-101.
    [96]M. Segaard.Transport properties and oxygen stoichiometry of mixed ionic electronic conducting perovskite-type oxides. Riso National Laboratory, Roskilde, Denmark,2006.
    [97]E. Girdauskaite, H. Ullmann, M. Al Daroukh, et al. Oxygen stoichiometry, unit cell volume, and thermodynamic quantities of perovskite-type oxides. Journal of Solid State Electrochemistry, 2007,11:469-477.
    [98]J. Richter. Mixed Conducting Ceramics for High Temperature Electrochemical Devices [PhD theisis].ETH Zurich.2008.
    [99]孙宏博,陈宁,李阳,等.AB03钙钛矿型混合导体透氧性能的理论研究.第十四届全国固态离子学学术会议暨国际能量储存与转换技术论坛.中国.哈尔滨,2008.
    [100]J.E. ten Elshof, H.J.M. Bouwmeester. H. Verweij. Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor. Applied Catalysis,1995,A130:195-212.
    [101]邵宗平.混合导体透氧膜及其在甲烷部分氧化制合成气反应中的应用[博十毕业论文].中国科学院大连化学物理研究所.大连:2000.
    [102]K. Kiichiro, et al. On the state of d-electrons in perovskite-type compounds ABO3. Bulletion of the Tokyo institute of technology,1974.120:73-79.
    [103]S.W.Strauss I.Fankuchen, R.Ward. Barium cobalt oxide of the perowskite type. Journal of the American Chemical Society,1951,73:5084-5086.
    [104]M.J. Akhtar, Z.N. Akhtar. J.P. Dragun. et al. Electrical conductivity and extended X-ray absorption fine structure studies of SrFe1-xNbxO3 and BaFe1-xNbxO3 systems. Solid State Ionics.1997.104:147-158.
    [105]O. Fukunaga, T. Fujita. The relation between ionic radii and cell volumes in the perovskite compounsa.Journal of Solid State Chemistry,1973.8:331-338.
    [106]W.Z. Zhu. S.C. Deevi. Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering,2003,A348:227-243.
    [107]H. K. Jung. X-ray photoelectron spectroscopy analysis of (Ln1-xSrx)CoO3-δ(Ln:Pr, Nd and Sm). Applied Surface Science,2011,258:350-355.
    [108]L. Qiu, T.H. Lee. L.M. Liu, et al. Oxygen permeation studies of SrCo0.8Fe0.2O3-δ. Solid State Ionics 1995,76:321-329.
    [109]P.Y. Zeng, Z.H. Chen. W. Zhou, et al. Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite as oxygen semi-permeable membrane. Journal of Membrane Science,2007.291:148-156.
    [110]M A. Alaee, M. M. Movahednia. T. Mohammadi. Effect of Ba Content on Oxygen Permeation Performance of BaxSr1-xCo0.8Fe0.2O3-δ (x=0.2,0.5, and 0.8) Perovskite-Type Membrane. Journal of chemical & engineering data,2009,54:3082-3091.
    [111]K. Xie, J.N. Zhou, G.Y. Meng. Pervoskite-type BaCo0.7Fe0.2Ta0.1O3-δ cathode for proton conducting IT-SOFC. Journal of Alloys and Compounds,2010,506:L8-L11.
    [112]Z.B. Yang, C.H. Yang, B. Xiong, et al. BaCo0.7Fe0.2Nb0.1O3-δ as cathode material for intermediate temperature solid oxide fuel cells. Journal of Power Sources,2011,196:9164-9168.
    [113]Y. Lin, R. Ran, D.J. Chen, et al. A novel Bao6Sr0.4Co0.9Nb0.1O3-δ cathode for protonic solid-oxide fuel cells. Journal of Power Sources.2010.195:4700-4703.
    [114]B.C.H. Steele, A. Heinzel. Materials for fuel-cell technologies. Nature,2001,414:345-352.
    [115]S.Z. Wang. X.Y. Lu, M.L. Liu. Electrocatalytic properties of La0.9Sr0.1MnO3-δ based electrodes for oxygen reduction. Journal of Solid State Electrochemistry,2002,6:384-390.
    [116]E. Magnone. A Systematic Literature Review on BSCF-Based Cathodes for Solid Oxide Fuel Cell Applications. Journal of Fuel Cell Science and Technology,2010.7:064001.
    [117]Y.F. Cheng, H.L. Zhao, D.Q. Teng, et al. Investigation of Ba fully occupied A-site BaCo0.7Fe0.3-xNbxO3-δ perovskite stabilized by low concentration of Nb for oxygen permeation membrane. Journal of Membrane Science,2008.322:484-490.
    [118]S. Lv, Y. Ji, X. Meng, G. Long, et al. BaCo0.7Fe0.2Nbo0.1O3-δ Perovskite Oxide as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells. Electrochemical and Solid-State Letters, 2009,12:B103-B105.
    [119]M. Harada, K. Domen, M. Hara, et al. Ba1.0Co0.7Fe0.2Nb0.1O3-δ Dense Ceramic as an Oxygen Permeable Membrane for Partial Oxidation of Methane to Synthesis Gas. Chemistry Letters,2006,35:1326-1327.
    [120]S.K. Rakshit, S.C. Parida, S. Dash, et al. Heat capacities of some ternary oxides in the system Ba-Fe-O using differential scanning calorimetry. Journal of Alloys and Compounds,2007,438:279-284.
    [121]李春宏.仇卫华,康晓丽.等.固相反应合成Ba1.0Co0.7Fe0.2Nb0.1O的动力学.物理化学学报.2008.24(5):767-771.
    [122]李春宏.仇卫华.李敬.等.KOH处理法固相合成钙钛矿型氧化物Ba1.0Co0.7Fe0.2Nb0.1O3稀有金属.2009,33:718-723.
    [123]J. Zhang, H.L. Zhao. Effects of iron content on the structural evolution, electrical properties and thermochemical stability of BaCo0.9-xFexNb0.1O3-δ ceramic membrane. International Journal of Hydrogen Energy,2010,35:814-820.
    [124]H.L. Zhao, Y.F. Cheng, F.S. Li. et al. Oxygen permeability of A-site nonstoichiometric BaxCo0.7Fe0.2Nb0.1O3-δ perovskite oxides. Solid State Ionics,2010,181:354-358.
    [125]H.J. Hwang, J.W. Moon, S. Lee, et al. Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs. Journal of Power Sources,2005,145:243-248.
    [126]S.Z. Wang, H. Zhong. High performance Pd promoted Sm0.5Sr0.5CoO3-La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ composite cathodes for intermediate temperature solid oxide fuel cells. Electrochim Acta,2007, 52:1936-1941.
    [127]J. Sunarso, S. Baumann. Review mixed ionic-electronic conducting(MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science,2008,320:13-41.
    [128]S.J. Skinner. Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. International Journal of Inorganic Materials.2001.3:113-121.
    [129]Y.M. Yin. M.W. Xiong. Z.F. Ma. Investigation on thermal, electrical, and electrochemical properties of scandium-doped Pr0.6Sr0.4(Co0.2Fe0.8)(1-x)ScxO3-δ as cathode for IT-SOFC. International Journal of Hydrogen Energy,2011,36:3989-3996.
    [130]M. Harada, K. Domen, M. Hara, et al. Oxygen-permeable membranes of Ba1.0Co0.7Fe0.2Nb0.1O3-δ for preparation of synthesis gas from methane by partial oxidation. Chemistry Letters,2006,35 (8):968-969.
    [131]C.J. Zhu, X.M. Liu, C.S. Yi, et al. Novel BaCo0.7Fe0.3-yNbyO3-δ (y=0-0.12) as a cathode for intermediate temperature solid oxide fuel cell. Electrochemistry Communications,2009,11:958-961.
    [132]Z.H. Chen, R. Ran. W. Zhou. et al. Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ (y=0.0-1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane. Electrochimica Acta 2007,52:7343-7351.
    [133]S.Y. Li, Z. Lu. B. Wei, et al. Performance of Ba0.5Sr0.5Co0.6Fe0.4O3-δ-Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC.Journal of Alloys and Compounds,2008,448:116-121.
    [134]M.B. Choi. S.Y. Jeon, S.J. Song. Oxygen chemical diffusivity of BaCo0.7Fe0.22Nb0.08O3-δ via the chemical expansion relaxation method.218th ECS Meeting,2010,1188-1189.
    [135]J.H. Kim, Y.N. Kim. S.M. Cho. et al. Electrochemical characterization of YBaCo3ZnO7+Gd0.2Ce0.8O1.9 composite cathodes for intermediate temperature solid oxide fuel cells. Electrochimica Acta 2010,55:5312-5317.
    [136]T. Wei, Y. Ji, Y.L. Zhang. Sr2NiMoO6-δ as anode material for LaGaO3-based solid oxide fuel cell. Electrochemistry Communications,2008,10:1369-1372.
    [137]W. Zhou, R. Ran, Z.P. Shao, et al. Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-δ(x>0) perovskite as a solid-oxide fuel cell cathode. Journal of Power Sources,2008,182:24-31.
    [138]G. Kostogloudis. Properties of A site deficient La0.6Sr0.4Co0.2Fe0.8O3-δ-based perovskite oxides. Solid State Ionics,1999.126:143-151.
    [139]A. Mai, V.A.C. Haanappel, S. Uhlenbruck, et al. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells Part I. Variation of composition. Solid State Ionics,2005,176:1341-1350.
    [140]T. Nakamura. G. Petzow, L.J. Gauckler. Stability of the perovskite phase LaBO3 (B=V,Cr,Mn,Fe,Co,Ni) in reducing atmosphere I. Experimental results. Materials Research Bulletin.1979.14:649-659.
    [141]Z. Liu, L.Z. Cheng, M.F. Han. A-site deficient Ba1-xCo0.7Fe0.2Ni0.1O3-δ cathode for intermediate temperature SOFC. Journal of Power Sources,2011,196:868-871.
    [142]朱佩誉BaxCo0.9-yFeyNb0.1O3-δ混合导体材料制备、性能及应用研究[硕上毕业论文],中国矿业大学(北 京).2010.
    [143]R.D. Shannon. Crystal physics, diffraction, theoretical and general crystallography. Acta Crystallographica, 1976,A32:751-767.
    [144]C.H. Li, P. Wu. Formability of ABO3 perovskites. Journal of Alloys and Compounds,2004,372:40-48.
    [145]Z.P. Shao, W.S. Yang, Y. Cong, et al. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane. Journal of Membrane Science,2000,172:177-188.
    [146]CD. Wagner, W.M. Riggs, L.E. Davis, et al. Handbook of X-ray Photoelectron Spectroscopy.1st ed. Perkin-Elmer Corporation (Physical Electronics),1979.
    [147]N.S. Mcintyre, D.G. Zetaruk. X-ray photoelectron spectroscopic studies of iron oxides. Analytical Chemistry, 1977.49:1521-1529.
    [148]H. Ullmann, N. Trofimenko, F. Tietz. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics,2000,138:79-90.
    [149]M. Al Daroukh, V.V. Vashook, H. Ullmann, et al. Oxides of the AMO3 and A2MO4-type:structural stability, electrical conductivity and thermal expansion. Solid State Ionics,2003,158:141-150.
    [150]S.W. Strauss, I. Fankuchen. Barium cobalt oxide of the perovskite type. Journal of the American Chemical Society,1951,73:5084-5086.
    [151]L.W. Tai, M.M. Nasrallah. H.U. Anderson, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3-δ, Part 2, the system La0.8Sr0.2Co1-yFeyO3-δ. Solid State Ionics,1995.75:273-283.
    [152]W.Q. Gong, S. Gopalan, U. Pal. Polarization study on doped lanthanum gallate electrolyte using impedance spectroscopy. Journal of Materials Engineering and Performance,2004,13:274-281.
    [153]R. Su, Z. Lu, K.F. Chen, et al. Novel in situ method (vacuum assisted electroless plating) modified porous cathode for solid oxide fuel cells. Electrochemistry Communications,2008.10:844-847.
    [154]M.V. Mundschau, X. Xie, et al. Dense inorganic membranes for production of hydrogen from methane and coal with carbon dioxide sequestration. Catalysis Today,2000.118:12-23.
    [155]A. C. Bose, et al. Beyond state-of-the-art gas separation processes using ion-transport membranes.Desalination,2002,144(1-3):91-92.
    [156]H. Kusaba,Y. Shibata, K. Sasaki, et al. Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide. Solid State Ionics,2006,177:2249-2253.
    [157]S. Ayabe, Y. Teraoka, et al. Catalytic autothermal reforming of methane and propane over supported metal catalysts. Applied Catalysis A,2003.General 241:261-269.
    [158]H.H.Wang, R. Wang et al. Experimental and modeling studies on Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) tubular membranes for air separation. Journal of membrane Science,2004,243:405-415.
    [159]张恒,王婷婷,林维明SrFe0.6Cu0.3Ti0.1O3-δ混合导体透氧材料的稳定性.应用化学,2009.26:1328-133.
    [160]樊传刚,刘卫,江国顺.等La0.2Ba0.8(Co0.2Fe0.8)1-xZrdO3-δ透氧膜材料的微结构与氧分离性能研究.无机材料学报,2004.19:121-126.
    [161]B. Wang, M.C. Zhan, D.C. Zhu, et al. Oxygen permeation and stability of Zr0.8Y0.2O0.9-La0.8Sr0.2CrO3-δ dual-phase composite. Journal of Solid State Electrochemistry.2006.10:625-628.
    [162]B. Wang, J. X. Yi. L. Winnubst, et al. Stability and oxygen permeation behavior of Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ composite membrane under large oxygen partial pressure gradients. Journal of Membrane Science,2006.286:22-25.
    [163]陈婷,赵海雷,等.双相致密透氧膜.化学进展,2012,24:163-172.
    [164]V.V. Kharton, A.V. Kovalevsky, E.V. Tsipis, et al.Mixed conductivity and stability of A-site-deficient Sr(Fe,Ti)O3-δ perovskites. Journal of Solid State Electrochemistry,2002,7:30-36.
    [165]N. Yamazoe, S. Furukawa, Y. Teraoka, et al.The effect of oxygen sorption on the crystal structure of La1-xSrxCoO3-δ. Chemistry Letters,1982:2019-2022.
    [166]J.E. O'Brein, C.M. Stoots, J.S. Herring,et al. Hydrogen production performance of a 10-cell planar solid-oxide electrolysis stack. Journal of Fuel Cell Science and Technology,2006,3:213-219.
    [167]T.V. Choudhary, D.W. Goodman. Stepwise methane steam reforming: a route to Co-free hydrogen. Catalysis Letters,1999,59:93-94.
    [168]M.D. Liang, B. Yu, M.F. Wen, et al. Preparation of LSM-YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism. Journal of Power Sources,2009,190:341-345.
    [169]R. Accorsi, E. Bergann. Cermet cathode for high temperature water electrolysis with zirconia cells. Journal of The Electrochemical Society,1980,4:804-811.
    [170]K. Eguchi, T. Hatagishi, H. Arai. Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia- or ceria-based electrolyte. Solid State Ionics,1996,86-88:1245-1249.
    [171]C.H. Yang, C. Jin, A. Coffin, et al. Characterization of infiltrated (La0.75Sr0.25)0.95MnO3 as oxygen electrode for solid oxide electrolysis cells. International Journal of Hydrogen Energy,2010.35:5187-5193.
    [172]B. Yu. W.Q. Zhang, J.M. Xu, et al. Microstructural characterization and electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ and its application for anode of SOEC. International Journal of Hydrogen Energy, 2008,33:6873-6877.
    [173]A. Yamashita, H. Tsukuda, T. Hashimoto. Anodic and Cathodic Electrode Reaction at La1-xSrxMnO3. European Fuel Cells Group:Lucerne, Switzerland,1994:661-669.
    [174]S.P. Jiang. J.G. Love. Observation of structural change induced by cathodic polarization on (La,Sr)MnO3 electrodes of solid oxide fuel cells. Solid State Ionics,2003,158:45-53.
    [175]Z.L. Zhan, L. Zhao. Electrochemical reduction of CO2 in solid oxide electrolysis cells. Journal of Power Sources,2010,195:7250-7254.
    [176]T. Ishihara, T. Kanno. Steam Electrolysis Using LaGaO3 Based Perovskite Electrolyte for Recovery of Unused Heat Energy. ISIJ International,2010,50(9):1291-1295.
    [177]F. Zhao, Z. Wang, M. Liu, et al. Novel nano-network cathodes for solid oxide fuel cells.Joumal of Power Sources,2008,185:13-18.
    [178]A. Yan, V. Maragou, A. Arico, et al. Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ based cathode SOFC:H. The effect of CO2 on the chemical stability. Applied Catalysis,2007,B 76:320-327.
    [179]M. Mogensen, T. Lindegaard, U. Hansen, et al.Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2. Journal of The Electrochemical Society,1994.141:2122-2128.
    [180]D. Waller, J. Lane, J. Kilner. et al.The effect of thermal treatment on the resistance of LSCF electrodes on gadolinia doped ceria electrolytes. Solid State Ionics,1996,86-88:767-772.
    [181]J. Pena-Martinez. D. Marrero-Lopez. J. Ruiz-Morales, et al. Ba0.5Sr0.5Co1-y,FeyO3-δ (y=0.1-0.9) oxides as cathode materials for La0.9Sr0.1Ga0.8Mg0.2O2.85 based IT-SOFCs. International Journal of Hydrogen Energy, 2009.34:9486-9495.
    [182]Y. Lin. S. Barnett. La0.9Sr0.1Ga0.8Mg0.2O3-δ-La0.6Sr0.4Co0.2Fe0.8O3-δ composite cathodes for intermediate temperature solid oxide fuel cells. Solid State Ionics 2008,179:420-427.
    [183]W. Guo, J. Liu, C. Jin, et al. Electrochemical evaluation of La0.6Sr0.4Co0.8Fe0.2O3-δ-La0.9Ac0.8Mg0.2O3-δ composite cathodes for La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte SOFCs. Journal of Alloys and Compounds, 2009,473:43-47.
    [184]Z. Bi, B. Yi, Z. Wang, et al. A High-Performance Anode-Supported SOFC with LDC-LSGM Bilayer Electrolytes. Electrochemical and Solid-State Letters,2004,7:A105-A107.
    [185]衣宝廉.燃料电池-高效、环境友好的发电方式.北京:化学工业出版社.2000.
    [186]韩敏芳.彭苏萍.固体氧化物燃料电池材料及制备.北京:科学出版社.2004.
    [187]毛宗强.燃料电池.北京:化学工业出版社.2005.
    [188]X. Y. Zhao, Q. Yao. et al. Studies on the carbon reactions in the anode of deposited carbon fuel cells. Journal of Power Sources,2008,185(1):104-111.
    [189]T.J. Huang, C.L. Chou, et al. Coal syngas reactivity over Ni-added LSCF-GDC anode of solid oxide fuel cells. Electrochemistry Communications,2009,11(2):294-297.
    [190]S. C. Singhal. Advances in solid oxide fuel cell technology. Solid State Ionics,2000,135(1-4):305-313.
    [191]S. C. Singhal, K. Kendall. High Temperature Solid oxide fuel cells:Fundementals. design and applications,ed. Oxford:Elsevier Ltd.2004.
    [192]M. Y. Gong, X. B. Liu, J. Trembly, et al. Sulfur-tolerant anode materials for solid oxide fuel cell application. Journal of Power Sources,2007,168:289-298.
    [193]D. M. Bastidas. S. W. Tao, J. T. S. Irvine. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes.Journal of Materials Chemistry,2006,16:1603-1605.
    [194]Q. Liu, X. H. Dong, G. L. Xiao, et al. A Novel Electrode Material for Symmetrical SOFCs. Advanced Materials,2010,22:5478-5482.
    [195]Ph. Hofmann, K. D.Panopoulos, L. E. Fryda, et al. Integrating biomass gasification with solid oxide fuel cells:Effect of real product gas tars, fluctuations and particulates on Ni-GDC anode. International Journal of Hydrogen Energy,2008,33(11):2834-2844.
    [196]E. Nikolla, J. Schwank, S. Linic. Direct Electrochemical Oxidation of Hydrocarbon Fuels on SOFCs: Improved Carbon Tolerance of Ni Alloy Anodes. Journal of The Electrochemical Society,2009,156:B1312-B1316.
    [197]W. An, D. Gatewood, B. Dunlap, et al. Catalytic activity of bimetallic nickel alloys for SOFC anode reactions from density-functional theory.Journal of Power Sources,2011,196:4724-4728.
    [198]T. Suzuki, M. Awano, P. Jasinski. et al. Composite (La. Sr)MnO3-YSZ cathode for SOFC. Solid State Ionics 2006.177:2071-2074.
    [199]S. P. Jiang, S. Zhang. Y. D. Zhen. et al. Performance of GDC-impregnated Ni anodes of SOFCs. Electrochemical and Solid-State Letters,2004,7:A282-A285.
    [200]L. Aguilar, S. W. Zha, S. W. Li, et al. Sulfur-Tolerant Materials for the Hydrogen Sulfide SOFC. Electrochemical and Solid-State Letters.2004,7,A324-A326.
    [201]K. B. Yoo, G. M. Choi, Performance of La-doped strontium titanate (LST) anode on LaGaO3-based SOFC. Solid State lonics,2009,180:867-871.
    [202]K. B. Yoo. G. M. Choi. LST-GDC composite anode on LaGaO3-based solid oxide fuel cell. Solid State Ionics.2011.192:515-518.
    [203]X. C. Lu, J. H. Zhu, Z. G. Yang, et al. Pd-impregnated SYT/LDC composite as sulfur-tolerant anode for solid oxide fuel cells. Journal of Power Sources,2009,192(2):381-384.
    [204]J. Pena-Martinez, D. Marrero-Lopez, J. C. Ruiz-Morales, et al. SOFC test using Ba0.5Sr0.5Co0.8Fe0.2O3-δ as cathode on La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte.Solid State Ionics,2006,177:2143-2147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700