北半球冬季副热带西风急流异常的气候效应和动力诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用NCEP/NCAR再分析资料、中国160站资料、CMAP和ERSST资料,通过理论分析和统计动力诊断方法,围绕“副热带西风急流异常的气候效应及成因”这一主题,以两种副热带西风急流指数的定义和计算为切入点,分析了它们的气候及异常特征,发现它们存在明显的季节变化和年际变化,与北半球区域气候异常关系密切。在此基础上,重点讨论了副热带西风急流与角动量输送、热带SST、平均经圈环流之间的联系,揭示了急流异常的成因,对北半球冬季副热带西风急流取得了较系统和较深入的认识。主要结论为:
     1)根据两种不同经度范围纬向平均[u]图的分布,定义了北半球副热带西风急流(J,0~360°)和亚洲副热带西风急流(JA,70~145°E)两种大尺度环流系统,建立了冬季季、月J、JA的64年(1948-2011)环流指数(强度P、中心位置C(φc、pc))序列,它们对急流位置的描述是二维的,包含了急流中心的南北位置和高、低空位置。
     2)通过强度指数和位置指数对J、JA的描述,可见J、JA稳定存在于整个冬季,中心位于30°N、200hPa附近。其气候特征为:J(JA)在12月最弱,2月(1月)达最强;季内中心位置不断南移,而垂直方向则表现为高、低空不断振荡。季、月J、JA强度异常的年际变化趋势基本一致,J的强度以年际尺度振荡周期为主,而JA除此之外还存在10~20a周期的年代际振荡。J、JA中心位置在1970's初期前偏南偏高,之后偏北偏低;J、JA中心位置均存在10a及以下周期,且J年代际振荡较JA显著。
     3)J、JA与北半球气候异常显著相关,J(JA)强度与气温(T)、降水(R)的显著相关区主要在西半球(东半球)。J(JA)的强度与T、R的相关明显强(弱)于其中心位置,且它们与T的相关均明显强于与R的相关。特别地,JA与中国气候异常显著相关,故在我国冬季气候异常分析及短期预测研究中,用JA指数更为合理。JA强年,我国除西南外的大部分区域气温偏低(尤以长江以南地区为主),华北、华中和华东降水偏少(尤以华北为主);JA中心位置异常年,显著相关区成片出现在一定地理区域。
     4)12-2月,全域西风角动量从热带东风带向中高纬西风带的经向输送主要发生在中低纬度;强度冬季强于夏季,北半球季节差异大于南半球。全域u角动量强经向输送主要在中低纬对流层上部和冬半球高纬平流层进行,J位于角动量强向极输送中心高纬一侧的输送辐合区中;北半球冬季J主要由平均经圈环流输送及其辐合维持,其次由大小相当的定常波和瞬变涡输送及其辐合维持。另外,Hadley环流将热带东风带地面的全域Ω角动量向上、向副热带纬度输送,是两半球东西风及J维持的主要原因;Hadley环流对Ω角动量的输送以及伴随的u角动量的转换,有利于热带对流层中东西风带界面随高度增加向赤道倾斜,并在对流层顶关于赤道不对称。
     5)局域西风角动量的经向和垂直输送特征与全域类似,不同的是,局域西风角动量还涉及到西、东边界上的纬向输送。在JA的维持中,局域u角动量的经向输送及其辐合作正贡献,纬向和垂直输送作负贡献,它们的平衡是JA维持的环流原因;JA大部分区域为纬向净输出,西、东边界上的平均纬向环流及它们和定常波的相互作用是主要的。另外,局域Hadley环流对亚洲区域热带对流层东西风带界面结构特征的形成起关键作用,该交界面关于赤道准对称。
     6)北半球冬季急流搜索区u角动量输送辐合的异常增强使J增强、JA减弱,并伴有J中心位置北抬、上升和JA的南移;且J的u角动量异常输送主要由定常波与瞬变涡输送分量引起,JA的u角动量异常输送则由平均纬向环流与定常波相互作用以及纬向定常波分量引起。热带海洋SST异常与J、JA异常的相关显著。强El Nino (La Nina)年,北半球Hadley环流偏强(弱)、中心偏南(北),亚洲Hadley环流偏弱(强)、Ferrel环流偏强(弱),导致J的异常加强(减弱)、中心偏南(北)和JA的偏南偏高(偏北偏低)。
Based on the NCEP/NCAR reanalysis dataset, the observation data of160-stations in China, CMAP and ERSST dataset, this paper focuses on the theme of "climatic effects of the subtropical westerly jet anomalies and its causes" by using the theoretical analysis and diagnostic methods of statistics and dynamics. The starting point for analyses is the definition and calculation of indices of the two subtropical westerly jets. The climatic and anomalous features of these indices are analyzed and found that there are obvious seasonal and interannual variability, and they are closely related to the regional climate anomalies in Northern Hemisphere. On this basis, the relationship between the subtropical westerly jet stream and angular momentum transport, tropical SST, the mean meridional circulation are discussed. The cause of the jet stream anomaly is revealed. The systematic and in-depth understanding of subtropical westerly jet stream in Northern hemisphere winter is obtained. The main conclusions are as follows:
     1) The two large-scale circulation systems, northern hemisphere subtropical westerly jet stream (J,0~360°) and Asian subtropical westerly jet stream (JA,70~145°E), are defined by zonal average distributions of [u] in two different longitude range. The64-year seasonal and monthly series of the circulation indices (intensity P, central position C (φc, pc)) of J and JA in winter are established. The jets'positions described by them are two-dimensional, including the meridional and vertical position of the jet stream center.
     2) From the description of J and JA by intensity index and position index, it can be found that J and JA exist throughout the winter with their center near30°N,200hPa. J (JA) is the weakest in December and up to the strongest in February (January). During the winter, the centers constantly move southward and oscillate between high and low level of the vertical direction. The interannual variations of the seasonal and monthly intensity anomalies of J and JA are consistent. J has the interannual scale oscillation mainly. Besides this, JA has the10-20a-period interdecadel oscillation. The central positions of J and JA are higher and southerly before the early of1970's, lower and northerly after that with the period of≤10a. J's interdecadel oscillation is more significant than JA.
     3) J and JA are significantly associated with the climate anomalies of the Northern Hemisphere. The significant correlation region between J (JA) intensity and temperature (T), precipitation (R) is mainly in the Western Hemisphere (Eastern Hemisphere). The correlation between J (JA) intensity and T, R is obviously stronger (weaker) than its central position. Their correlation with T is distinctly bigger than R. In particular, JA has the significant correlation with China climate anomalies. So in the research of winter climate anomalies analyses and the short-term climate prediction in China, the index of JA is more reasonable. In the stronger JA years, most of China except the southwest has the lower temperature (especially in the area to the south of the Yangtze River) and the northern, central and eastern China has the less precipitation (especially in northern China). In the years of JA central location anomalies, the significant correlation area appears analogous in a certain geographical area.
     4) From December to February, westerly angular momentum transport meridionally from tropical easterlies to extratropical westerlies in northern winter, which intensity in winter is stronger than summer. The seasonal difference in the northern hemisphere is greater than the southern hemisphere. The strong meridional transportation of global u angular momentum is at upper troposphere of the middle and low latitudes and the high latitude stratosphere in winter hemisphere. J is in the transportation convergence zone to the high latitude side of strong angular momentum poleward transportation center. During the northern hemisphere winter, J is maintained by the average meridional circulation transportation and its convergence mainly, and then is preserved by the equivalent steady wave, transient eddy transportation and its convergence. In addition, Hadley circulation transports the global Ω angular momentum at the ground of the tropical easterlies upward and poleward to the subtropical latitudes. This is the main reason that the easterlies and westerlies in the two hemispheres and J maintain. The transportation of Ω angular momentum by Hadley circulation and the accompanying transformation of u angular momentum contribute to equatorward inclining the interface of the easterlies and westerlies in the tropical troposphere with the increase of height and the asymmetry about the equator in the tropopause.
     5) The meridional and vertical transportation characteristics of local westerly angular momentum are similar to the global situation with the difference that the local westerly angular momentum is related with the zonal transportation at the west and east boundary. During the maintenance of JA, the meridional transportation of local u angular momentum and its convergence has the positive contribution, but the zonal and vertical transportation has the negative contribution. Their balance is the circulation reason of the maintenance of JA. JA has the zonal net export in most area. The main compent is the average zonal circulation and its interaction with the steady wave. Otherwise, local Hadley circulation plays a key role on the interface structure formation of the easterlies and westerlies in Asian regional tropical troposphere. The interface is quasi-symmetric about the equator.
     6) In the jet stream search area of northern hemisphere winter, the abnormal increase of u angular momentum transportation convergence enhances J and weakens JA, accompanying the northward and upward movement of the J's central position and the southward movement of JA. The u angular momentum anomaly transportation of J is caused by the transportation components of the steady wave and transient eddy, while J is caused by the interaction between the average zonal circulation and the steady wave, and the component of the zonal steady wave. The SST anomalies in the tropical ocean are significantly related with the anomaly of J and JA. In the years of strong El Nino (La Nina), Hadley circulation in northern hemisphere is stronger (weaker) and its central position is southward (northward), but Hadley circulation in Asia is weaker (stronger) and Ferrel circulation is stronger (weaker). This situation can lead to the stronger (weaker) J, its central position moves southward (northward) and JA moves southward and higher (northward and lower).
引文
陈受钧.1962.大型天气转变过程中北半球波谱分析[J].气象学报,20(4):318-321.
    陈文.2002El Nino和La Nifia事件对东亚冬、夏季风循环的影响[J].大气科学,26(5):595-610.
    崔晓鹏,孙照渤.1999.东亚冬季风指数及其变化的分析[J].南京气象学院学报,22(3):321-325.
    《大气科学辞典》编委会.1994.大气科学辞典[M].北京:气象出版社.
    丁一汇,赵深铭,傅秀琴.1988.5-10月全球热带和副热带200hPa多年平均环流的研究(二)—行星风系[J].大气科学,12(3):242-249.
    董广涛,张耀存.2007.青藏高原隆升影响东亚副热带西风急流的数值试验[J].南京大学学报(自然科学),43(2):199-211.
    董丽娜.2009.初夏至盛夏东亚副热带西风急流变化及其异常分析[D].南京:南京信息工程大学博士论文.
    ENSO监测小组.1989.厄尔尼诺事件的划分标准和指数[J].气象,15(3):37-38.
    符淙斌.1985.El Nino时期赤道增暖的两种类型[J].科学通报,30:596-599.
    符淙斌,滕星林.1988.我国夏季的气候异常与厄尔尼诺/南方涛动现象的关系[J].大气科学,(特刊),133-141.
    高守亭,陶诗言,丁一汇.1992.寒潮期间高空波动与东亚急流的相互作用[J].大气科学,16(6):718-724.
    高由禧.1952.从对流层的温度分析来探讨我国上空冬半年西风环流[J].气象学报,23(1):48-60.
    龚振淞,王盘兴,马杰.2002.平均经圈环流质量流函数简化计算方案的应用[J].南京气象学院学报,25(3):328-333.
    顾兴军,王盘兴,李丽平.2004.平均经圈环流质量流函数两种计算方案的比较[J].南京气象学院学报,27(1):11-19.
    郭其蕴.1994.东亚冬季风的变化与中国气温异常的关系[J].应用气象学报,5(2):218-225.
    何金海.1982.100毫巴准常定扰动对角动量输送的长期变化的初步分析[J].南京气象学院学报,5(1):63-71.
    何溪澄,丁一汇,何金海.2008.东亚冬季风对ENSO事件的响应特征[J].大气科学,32(2):335-344.
    胡洛林,刘梅,濮梅娟,等.2008.梅汛期南亚高压活动的谱特征分析——角动量谱[J].气象科学,28(3):289-293.
    黄润龙.1984.多年月平均100毫巴图上副热带及西风带地区波谱的季节变化[J].气象科学,4(2):40-48.
    黄兴春,江静.2008.ENSO事件对东亚副热带西风急流影响的诊断分析[J].气象科学,28(1):15-20.
    季劲钧.1979.斜压球面螺旋行星波和角动量输送[J].气象学报,37(2):93-96.
    况雪源,张耀存,刘健.2008.对流层上层副热带西风急流与东亚冬季风的关系[J].高原气象,27(4):701-712.
    况雪源,张耀存.2007.东亚副热带西风急流与地表加热场的耦合变化特征[J].大气科学,31(1):77-88.
    李春晖,万齐林,林爱兰,等.2010.1976年大气环流突变前后中国四季降水量异常和温度的年代际变化及其影响因子[J].气象学报,68(4):529-538.
    刘飞.2006.东亚夏季西风急流变化特征及其与中国夏季降水的关系分析[D].南京:南京气象学院硕士论文.
    毛睿,龚道溢,房巧敏.2007.冬季东亚中纬度西风急流对我国气候的影响[J].应用气象学报,18(2):137-146.
    钱纫娴,苏晓冰,秦凯兵,等.1985.春季500毫巴西风指数循环及其与角动量输送和能量变化的关系[J].气象学报,43(3):284-294.
    钱维宏,陆波.2010.千年全球气温中的周期性变化及其成因[J].科学通报,55(32):3116-3121.
    秦育婧.2009.全域和局域哈德莱环流气候及异常特征再揭示及应用初探[D].南京:南京信息工程大学博士学位论文.
    任雪娟,张耀存.2007.冬季200 hPa西太平洋急流异常与海表加热和大气瞬变扰动的关系探讨[J].气象学报,65(4):550-560.
    任雪娟,杨修群,周天军,等.2010.冬季东亚副热带急流与温带急流的比较分析:大尺度特征和瞬变扰动活动[J].气象学报,68(1):1-11.
    施能.1996.近40年东亚冬季风强度的多时间尺度变化特征及其与气候的关系[J].应用气象学报,7(2):175-182.
    《数学手册》编写组.1979.数学手册[M].北京:高等教育出版社.
    孙虎林,黎伟标.2008.ENSO冷暖事件期间海气潜热通量特征分析[J].热带海洋学报,27(4):59-65.
    谭杰丽,江静,袁俊鹏.2009.副热带高空急流各中心强度时间变化及分析[J].气象科学,29(4):482-489.
    陶诗言.1956.冬季中国上空平直西风环流条件下的西风波动[J].气象学报,27(4):345-360.
    陶诗言.1959.十年来我国对东亚寒潮的研究[J].气象学报,30(3):226-230.
    王林,陈文,黄荣辉,等.2007.北半球定常波输送西风动量的气候态及其年变化[J].大气科学,31(3):377-388.
    王盘兴,卢楚翰,管兆勇,等.2007.闭合气压系统环流指数的定义及计算[J].南京气象学院学 报,30(6):730-735.
    王盘兴.1994.垂直低分辨率GCM模式大气平均经圈环流的诊断[J].南京气象学院学报,17(2):200-204.
    王蕊,王盘兴,吴洪宝,等.2009.小波功率谱Monte Carlo显著性检验的一个简易方案[J].南京气象学院学报,32(1):140-144.
    王赛西.1992.西南低涡形成的气候特征与角动量输送的关系[J].高原气象,11(2):144-151.
    汪钟兴.1989.早涝异常年份角动量输送谱特征[J].中国科学技术大学学报,19(2):252-256.
    王遵娅,丁一汇.2006.近53年中国寒潮的变化特征及其可能成因[J].大气科学,30(6):1068-1076.
    魏民,仇永炎.1995.全球500hPa角动量与EP通量的季节变化[J].气象学报,53(2):238-246.
    吴国雄,刘还珠.1987.全球大气环流时间平均统计图集[M].北京:气象出版社.
    吴国雄.1988.大气的内外强迫源和西风指数的变化[J].气象,14(8):3-8.
    吴国雄.1988.平均经圈环流在大气角动量和感热收支中的作用[J].大气科学,12(1):8-17.
    吴国雄,Tibaldi S.1988.关于大气平均经圈环流的一种计算方案[J].中国科学B辑,(4):442-450.
    谢安,江剑民.1994.大气环流基础[M].北京:气象出版社.
    谢坤,任雪娟,向洋.2008.冬季东亚-西太平洋西风急流基本结构及其异常的诊断分析[J].热带气象学报,24(2):156-162.
    杨莲梅,杨涛.2007.扰动动能与平均动能转换率及其角动量涡旋输送与新疆暴风雪过程的关系[J].冰川冻土,29(2):250-257.
    叶笃正,曾庆存,郭裕福.1991.当代气候研究[M].北京:气象出版社.
    叶笃正,邓根云.1956.1950年平均经圈环流与角动量的平衡[J].气象学报,27(4):307-321.
    叶笃正,杨大升.1955.北半球大气中角动量的年变化和它的输送机构[J].气象学报,26(4):281-292.
    叶笃正,朱抱真.1958.大气环流的若干基本问题[M].北京:科学出版社.
    于庚康,李俊.1989.1982-83年厄尔尼诺年夏季大气涡旋活动及其物理量输送特征[J].热带气象,5(3):253-261.
    袁媛,晏红明.2012.不同分布型La Nina事件及热带大气的响应特征对比[J].科学通报,57(34):3312-3322.
    张耀存,况雪源.2006.一个气候系统模式FGCMO对东亚副热带西风急流季节变化的模拟[J].大气科学,30(6):1177-1188.
    章基嘉,葛玲.1983.中长期天气预报基础[M].北京:气象出版社.
    钟中,元慧慧,李杰,等.2010.一次高空急流增强过程中的中尺度扰动和动量输送特征[J].气象科学,30(5):639-645.
    周春华.2003.大气角动量平衡的气候及异常分析[D].南京:南京气象学院硕士论文.
    朱乾根,林锦瑞,寿绍文,等.1992.天气学原理与方法[M].北京:气象出版社,
    朱小洁,孙即霖.2006.冬季西北太平洋阿留申低压-南北向海温差-西风急流正反馈过程分析[J].科学通报,51(9):1097-1102.
    Berggren R, Gibbs W J, Newton C W.1958.Observational characteristics of the jet stream[J].A Survey of the Literature, No.19.
    Bjerknes J.1948.Practical applications of H Jeffreys'theory of general circulation[J].Resume des Memoires Reunion d'Oslo:13-14.
    Blackmon M L.1976.A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere[J]. J Atmos Sci,33(8):1607-1623.
    Buch H S.1954.Hemispheric wind conditions during the year 1950[M].USA:The Massachusetts Institute of Technology.
    Cressman G P.1981.Circulation of the West Pacific jet stream[J].Mon Wea Rev,109(12):2450-2463.
    Cressman G P.1984.Energy transformation in the East Asia-West Pacific jet stream[J].Mon Wea Rev, 112(3):563-574.
    Egger J, Hoinka K P.2011.Global angular momentum fluxes in height coordinates[J].Mon Wea Rev,139(8): 2552-2560.
    Feldstein S B.2003.The dynamics associated with equatorial atmospheric angular momentum in an Aquaplanet GCM[J].J Atmos Sci,60(15):1822-1834.
    Fu C B, Diaz H, Fletcher J.1986.Characteristics of the response of sea surface temperature in the central Pacific associated with the warm episodes of the Southern Oscillation[J].Mon Wea Rev,114(9): 1716-1738.
    Gilman P A.1964.On the vertical transport of angular momentum in the atmosphere[J].Pure Appl Geophys,57(1):161-166.
    Hantel M, Hacker J.1978.On the vertical eddy transports in the Northern Atmosphere.2.Vertical eddy momentum transport for summer and winter[J].J Geophys Res,83(C3):1305-1318.
    Hoskins B J, James I N, White G H.1983. The shape, propagation and mean flow interaction of large-scale weather systems[J]. J Atms Sci,40(7):1595-1612.
    Huang H P, Weickmann K M.2003.Unusual behavior in atmospheric angular momentum during the 1965 and 1972 El Ninos[J].J climate,16(15):2526-2539.
    IPCC.2007.Climate Change 2007:The Physical Science Basis[M]. Solomon S, Qin D, Manning M, et al, eds. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press,1-18.
    Jeffreys H.1926.On the dynamics of geostrophic winds[J].Q J Roy Meteor Soc,52(217):85-104.
    Kalnay E, Kanamitsu M, Kistler R, et al.1996.The NCEP/NCAR 40-year reanalysis project[J].Bull Amer Meteor Soc,77(3):437-471.
    Kistler R, Kalnay E, Collins W, et al.2001. The NCEP-NCAR 50-Year reanalysis:monthly means CD-ROM and documentation[J].Bull Amer Meteor Soc,82(2):247-267.
    Kraucunas I, Hartmann D L.2005.Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropical upper troposphere[J].J Atmos Sci,62(2):371-389.
    Krishnamurti T N.1961.The subtropical jet stream of winter[J].J Meteor,18(2):172-191.
    Lau K M, Weng H.1999.Interannual, decadal-interdecadal and global warming signals in sea surface temperature during 1955-1997[J].J Climate,12(5):1257-1267.
    Lau N C.1997. Interaction between global SST anomalies and the mid-latitude atmospheric circulation[J]. Bull Amer Meteor Soc,78(1):21-33.
    Li J, Wu G X.2010.Atmospheric angular momentum transport and balance in the AGCM-SAMIL[J].Adv Atmos Sci,27(5):1183-1192.
    Liu Q Y, Wen N, Yu Y J.2006. The Role of the Kuroshio in the Winter North Pacific Ocean-atmosphere Interaction:Comparison of a Coupled Model and Observations[J]. Adv Atmos Sci,23(2):181-189.
    Livezey R E, Chen W Y.1983.Statistical field significance and its determination by Mante Carlo techniques[J].Mon Wea Rev,111(1):46-59.
    Lorenz E N.1967.The nature and theory of the general circulation of the atmosphere[M].USA:World Meteorological Organization.
    Lorenz E N.1976.大气环流的性质和理论[M].北京大学地球物理系气象专业,译.北京:科学出版社.
    Lu Chuhan, Guan Zhaoyong, Wang Panxing, et al.2009. Detecting the relationship between summer rainfall anomalies in eastern China and the SSTA in the global domain with a new significance test method[J]. J Ocean Univ China,8(1):15-22.
    Madden R A, Speth P.1995.Estimates of atmospheric angular momentum, friction, and mountain torques during 1987-1988[J].J Atmos Sci,52(21):3681-3694.
    Mak M.1978.On the observed momentum flux by standing eddies [J].J Atmos Sci,35(2):340-346.
    Miller A J, Teweles S, Woolf H M.1967.Seasonal variation of angular momentum transport at 500mb [J].Mon Wea Rev,95(7):427-439.
    Mintz Y.1951.The geostrophic poleward flux of angular momentum in the month of Jan 1949[J].Tellus,3(3):195-200.
    Mintz Y.1954.The observed zonal circulation of the atmosphere[J].Bull Amer Meteor Soc,35(3):208-214.
    Newell R E, Kidson J W, Vincent D G,et al.1972.The general circulation of the tropical atmosphere and interactions with extratropical latitudes[M].USA:The Massachusetts Institute of Technology.
    Newton C W.1971.Mountain torques in the global angular momentum balance[J].J Atmos Sci,28(4): 623-628.
    Obasi G O P.1963.Poleward flux of atmospheric angular momentum in the southern hemisphere[J].J Atmos Sci,20(6):516-528.
    Oort A H, Peixoto J P.1983.Global angular momentum and energy balance requirements from observations[J].Adv in Geophys.,25:355-490.
    Oort A H, Rasmusson E M.1971.Atmospheric circulation statistics[J].NOAA Professional paper 5.
    Overland J E, Preisendorfer R W.1982.A significance test for principal components applied to a cyclone climatology[J].Mon Wea Rev,110(1):1-4.
    Palmen E, Alaka M A.1952.On the budget of angular momentum in the zone between equator and 30°N[J].Tells,4(4):324-331.
    Palmen E, Vuorela L A.1963.On the mean meridional circulations in the northern hemisphere during the winter season[J].Q J R Meteor Soc,89(379):131-138.
    Palmen E.1954.On the relationship between meridional eddy transfer of angular momentum and meridonal circulation in the earth's atmosphere[J].Meteor Atmos Phys,7(1):80-84.
    Preisendorfer R W, Barnett T P.1977.Significance tests for empirical orthogonal functions[C].Reprints Fifth Conference on Probability and Statistics in Atmospheric Sciences, Las Vegas, Amer Meteor Soc, 169-172.
    Priestley C H B.1951.A survey of the stress between the ocean and the atmosphere[J].Aust J Sci Res,4(3):315-328.
    Rasmusson E M, Wallace J M.1983.Meteorological aspects of El Nino/Southern Oscillation[J]. Science,222(4629):1195-1202.
    Robinson W A.1991. The dynamics of the zonal index in a simple model of the atmosphere[J]. Tellus A, 43(5):295-305.
    Rosen R D, Salstein D A, Nehrkorn T.1991.Predictions of zonal wind and angular momentum by the NMC medium-range forecast model during 1985-89 [J].Mon Wea Rev,119(1):208-217.
    Simmons A J, Gibson J K.2000.ERA-40 project report series No.1[J].The ERA-40 Project Plan.
    Starr V P, White R M.1951.A hemispherical study of the atmospheric angular-momentum balance[J].Q J Roy Meteor Soc,77(332):215-225.
    Starr V P.1948. An essay on the general circulation of the earth's atmosphere[J].J Meteor,5(1):39-43.
    Trenberth K E, Olson J G1988.ECMWF global analyses 1979-1986:circulation statistics and data evaluation[M].USA:NCAR Technical Note.
    Trenberth K E.1987.The role of eddies in maintaining the westerlies in the southern hemisphere winter[J].J Atmos Sci,44(11):1498-1508.
    Trenberth K E.1997.The definition of El Nino[J].Bull Amer Meteor Soc,78(12):2771-2777.
    White R M.1950.A mechanism for the vertical transport of angular momentum in the atmosphere[J].J Meteor,7(5):349-350.
    Wu B, Li T, Zhou T J.2010.Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Nino and La Nina[J].J Climate,23(18):4807-4822.
    Yang S, Lau K M, Kim K M.2002.Variation of the East Asian jet stream and Asian-Pacific-American winter climate anomalies[J] J Climate,15(3):306-325.
    Yang S, Webster P J.1990.The effect of summer tropical heating on the location and intensity of the extratropical westerly jet streams[J].J Geophys Res,95(D11):18705-18721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700