南昌市大气PM_(10)、PM_(2.5)的污染特征及来源解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气颗粒物是大气环境中危害较大的污染物之一,对气候变化、能见度降低、环境危害(如酸雨、烟雾)及健康危害等具有重要影响。本研究以南昌市不同功能区、不同季节的大气颗粒物为主要研究对象,于2007年7月-8月、2007年11月-12月及2008年4月-7月同步采集PM_(10)、PM_(2.5)样品,对比分析了夏、冬季大气PM_(10)、PM_(2.5)中无机组分和多环芳烃的分布特征、时空变化规律;采用多种方法对颗粒物来源进行解析;研究了室内外PM_(2.5)中多环芳烃的分布特征;在此基础上,得出以下结论:
     南昌市夏季PM_(10)日均浓度为149.09μg/m~3,为国家二级标准的0.99倍,PM_(2.5)日均浓度为88.03μg/m~3,为美国PM_(2.5)标准的1.35倍,冬季PM_(10)日均浓度为170.73μg/m~3,为国家二级标准的1.14倍,PM_(2.5)日均浓度为110.16μg/m~3,为美国PM_(2.5)标准的1.69倍,PM_(10)、PM_(2.5)质量平均浓度均呈现出夏低冬高的特征,空间分布上,夏、冬季PM_(10)和PM_(2.5)的污染情况为交通干线>工业区>商业区>居住区>郊区。PM_(10)和PM_(2.5)之间存在显著的线性关系,大气中细颗粒物(PM_(2.5))在PM_(10)中的比重大于粗颗粒物,约占63%。
     不同功能区的元素浓度存在较明显的空间分布特征:市内元素浓度值高于郊区元素浓度值,交通干线和工业区的元素浓度值比商业区和居民区高。冬季PM_(10)中Al、Ca、Mg、Fe、Mn、Pb、Zn、Ti、Ni元素平均浓度高于夏季,与质量浓度变化趋势一致,As、Cu、Cr元素平均浓度未表现出明显的季节变化,S元素夏季平均浓度高于冬季。冬季PM_(2.5)中Al、Ca、Mg、Fe、S、Mn、Pb、Zn、Ni元素平均浓度高于夏季,与质量浓度变化趋势一致,As、Cu、Cr、Ti元素平均浓度未表现出明显的季节变化。
     源解析结果表明,土壤尘、燃煤尘、建筑尘、机动车尾气尘、冶金尘是南昌市环境空气中PM_(10)和PM_(2.5)的主要排放源类,对PM_(10)贡献大的源类,对PM_(2.5)贡献基本也大。土壤尘、煤烟尘和建筑尘是决定PM_(10)和PM_(2.5)是否超标的主要源类,是污染防治的重点。用BP网络进行源解析与CMB源解析法求出的污染源贡献率大小排序上夏、冬季完全一致,仅数值大小存在着差异,取得了较好的效果,因此BP网络模型应用于大气颗粒物的源解析是可行的。
     建立了二极管阵列检测器和荧光检测器串联的高效液相色谱分析方法,优化得到对应高效色谱仪及特定色谱柱测定多环芳烃化合物的色谱条件,确定荧光检测器发射波长在390nm处各多环芳烃组分有很好的响应,在标样未完全分离的情况下,采用双激发波长有效地改善了色谱分离条件。
     南昌市大气PM_(10)和PM_(2.5)中PAHs污染情况为交通干线>工业区>商业区>居民区>郊区,PM_(10)和PM_(2.5)中PAHs单体以4环和5环为主,6环次之,3环最少,2环基本未检出。毒性风险从大到小排列为八一广场>罗家集区>南昌二中老校区>荣昌小区>下罗村。南昌市的主要污染源车辆排放源、燃煤污染源、高温加热源和焦化污染源对大气PM_(10)中多环芳烃的贡献率分别为33.7%、18.8%、13.0%和18.0%。各污染源对南昌市大气PM_(2.5)中多环芳烃的贡献率分别为31.0%、21.1%、14.6%和25.8%。因子分析/多元线性逐步回归法分析的结果与南昌市区能源结构基本吻合。
     罗家集区室内外PAHs的浓度总量水平高于八一广场、南昌二中老校区、荣昌小区、梨园小区室内外,八一广场、南昌二中老校区、荣昌小区、梨园小区四个室内外采样点室内PAHs与室外PAHs是相关的,而罗家集区室内外采样点存在室内源对颗粒物中PAHs的贡献,相对于3-4环的PAHs而言,5-6环的PAHs更易富集在室内的可吸入颗粒物中。
The atmospheric particles are one of the hazardous pollutants in atmospheric environment which significantly impact climate changes, visibility decline, environmental damage(eg. acid rain, smog) and health hazard. This research focuses on the atmospheric particles of different functional areas and different seasons in Nanchang city. PM_(10) and PM_(2.5) were synchronous sampled in Jul-Aug 2007, Nov-Dec 2007 and Apr-Jul 2008, and the inorganic components and PAHs of PM_(10) and PM_(2.5) collected in summer and winter were comparatively analyzed to investigate the distribution characteristics and the rules of space-time changes. Source apportionment and the distribution characteristics of PAHs in PM_(2.5) indoors and outdoors were also studied in this paper.
     According to above analysis, the DAC (daily average concentration) of PM_(10) in summer was 149.09μg/m~3, 0.99 times the concentration of National Secondary Standard; PM_(2.5) in summer was 88.03μg/m~3, 1.35 times as much as American PM_(2.5) Standard; the DAC of PM_(10) in winter was 170.73μg/m~3, 1.14 times of National Secondary Standard; and PM_(2.5) in winter 110.16μg/m~3,1.69 times of American PM_(2.5) Standard. The DAC of PM_(10) and PM_(2.5) in summer were lower than that in winter. In different areas the pollution severity order of PM_(10) and PM_(2.5) was traffic roads (worse than), industrial zone, commercial mixing zone, residential zone and suburbs. The amount of PM_(2.5) was remarkably linear correlated with the amount of PM_(10), and a larger proportion than coarse particles in PM_(10), about 63%.
     Distinct space-time distribution characteristics of EAC (element average concentration) were shown in different functional areas. The EAC of urban areas was higher than that of the suburbs, while the EAC of the traffic roads and industrial zone was higher than that of the commercial mixing zone and residential zone. In PM_(10), the EAC of Al, Ca, Mg, Fe, Mn, Pb, Zn, Ti and Ni in winter were higher than those in summer, which was consistent with the tendency of DAC, and the EAC of S in summer was higher than that in winter, but no evident EAC changes of As, Cu and Cr with seasons were observed. In PM_(2.5), the EAC of Al, Ca, Mg, Fe, S, Mn, Pb, Zn and Ni in winter was higher than those in summer as the tendency of DAC; whereas no obvious EAC changes of As, Cu, Cr and Ti with seasons were found.
     The results of source apportionment illustrated that soil dust, burnt dust, building dust, vehicle dust and metallurgical dust were the dominant emission sources of PM_(10) and PM_(2.5) in atmospheric environment of Nanchang. The sources which made more contribution to PM_(10) also contributed more to PM_(2.5). Whether the concentrations of PM_(10) and PM_(2.5) reached the standard depends on soil dust, burnt dust and building dust, which become the emphasis of pollution control. The rank of pollution sources contribution ratio in the Summer and Winter simulated by BP network was the same as that simulated by CMB method, only varies in ratio numerical value. The preferable results proved feasibility of BP network in source apportionment.
     The HPLC method with diode array and fluorescence series detectors was established and corresponding chromatographic conditions determining PAHs of specific chromatographic column were optimized. The optimal emission wavelength was selected in 390 nm, and dual wavelength excitation was applied without complete separation of standard sample. The components of PAHs were separated efficiently in chromatographic column.
     The severity order of PAHs pollution in PM_(10) and PM_(2.5) was traffic roads (worse than), industrial zone, commercial mixing zone, residential zone and suburbs. The primary monomers of PAHs were 4-ring and 5-ring aromatics, 6-ring came next, 3-ring was least and 2-ring was hardly detected. The toxic risk rank was Bayi Square (more serious than), Luojiaji district, Old Campus of Nanchang No.2 Middle School, Rongchang district, and Xialuo Village. The contribution ratios of vehicle emission, coal burning, high-temperature heating and coking pollution to PAHs in PM_(10) were 33.7%, 18.8%, 13.0% and 18.0% respectively; the contribution ratios of various sources to PAHs in PM_(2.5) were 31.0%, 21.1%, 14.6% and 25.8% respectively. The results of factor analysis/multiple linear stepwise analysis conform to the energy structure of Nanchang city.
     The PAHs amount of Luojia district indoors and outdoors was higher than that of Bayi Square, Old Campus of Nanchang No.2 Middle School, Rongchang district and Liyuan district. The indoor PAHs of Bayi Square, Old Campus of Nanchang No.2 Middle School, Rongchang district and Liyuan district was correlated with outdoor PAHs, except that the indoor source in Luojia district contributes to PAHs as well. Compared with 3-ring and 4-ring PAHs, 5-ring and 6-ring PAHs were easilier accumulating in inhaled particles.
引文
[1] Prospero J M, Charlson R J, Mohnen V, et al. Then atmospheric aerosol system: an overview[J]. Reviews of Geophysics and Space Physics, 1983,21:1607-1629.
    [2] 秦瑜.大气化学基础[M].北京:气象出版社,2003,102-103.
    [3] Diana J F, Frank C R, Cattell. Wood burning as a source of atmospher-Ic polycyclic aromatic hydrocarbons[J]. Environ Sci &Technol, 1990,24:1581-1585.
    [4] 杨旭曙,王正萍,宋艳涛.大气颗粒物中多环芳烃的源解析方法[J].环境监测管理与技术,2002,14(4):10-14.
    [5] 王桂山,仲兆庆,王福寿.PAHs(多环芳烃)的危害及产生途径[J].山东环境,2001,41(2):41.
    [6] Durlak S K, Biswas P. Characterization of polycyclic aromatic hydrocarbons particulate and gaseous emission from polystyrene combustion[J]. Environ Sci Technol,1998, 32:2301-2307.
    [7] Fraser M P, Cass G R, Simoneit B R T. Particulate organic compands emitted from motor vehicle exhaust and urban atmosphere[J]. Atmospheric Environment, 1999, 33:271-272.
    [8] 夏慧丽,倪小明,陈孟林,等.大气中多环芳烃的研究现状与展望[J].广西师范大学学报(自然科学版),2003,21(2):67-70.
    [9] Eskinja I, Soljic Z, Svel-chrovecki S. Sources and fate of polycyclic aromatic hydrocarbons in ambient air of urban and rural Croatian sites[J]. Intern J Environ Anal Chem, 1996, 63: 251-268.
    [10] 杨发忠,颜阳,张泽志,等.多环芳烃研究进展[J].云南化工,2005,32(2):44-48.
    [11] 林勇,孙军,吕波.大气中多环芳烃的研究现状[J].济南职业学院学报,2006,2(53):39-42.
    [12] Menzie C A, Potocki B B, Santodonato J. Exposure to carcinogenic PAHs in the environment[J]. Environmental Science & Technology, 1992,26(7), 1278-1284.
    [13] Wichmann H E, Spix C, Tuch T, et al. Daily mortality and ultrafine particles in Erfurt[J]. Gemany:Health Effects Institute Report, 2003:98-101.
    [14] 王静,朱利中.空气中多环芳烃的污染源研究[J].浙江大学学报(理学版),2001,28(3):302-308.
    [15] 岳敏,谷学新.多环芳烃的危害与防治[J].首都师范大学学报(自然科学版),2003,24(3):40-44,31.
    [16] YelenaY N.Polycyc aromatic hydrocarbons in indoor and outdoor urban atmospheres A Dissertation submitted to the Graduate School-New Brunswick Rutgers[J]. The State University of New Jersey Janauary,2003.
    [17] Zdenek. Envionmental exposure of small children to polycyclic aromatie hydrocarbons[J]. Int Arch Occup Environ Health,2001,74:411-420.
    [18] Ando M,Tamura K,Katagiri K.Study on suspended pariculate matter and polycyclic Aromatic hydrocarbons in indoor and outdoor air[J]. Int Arch Occup Environ Health, 1991, 63(4):297-301.
    [19] 张林,戴树桂,白志鹏,等.城市室内环境多环芳烃污染与源的相关性[J].城市环境与城市生态,1997,10(4):43-45.
    [20] 刘勇建,朱利中,王静,等.室内空气中多环芳烃(PAHs)的源及贡献率[J].环境科学,2001,22(6):39-43.
    [21] Harrisom R M, Smith D J T, Luhana L. Source apportionment of atmosphere collected from an urban location in Birmingham UK[J]. Environ Sci Technol, 1996,30:825-832.
    [22] Nielsen T, Jorgensen H E, Larsen J, et al. City air pollution of polycyclic aromatic hydrocarbons and other mutagens:occurrence, sources and health effects[J].The Sci of the Total Environ, 1996,189/190:41-49.
    [23] Menichini E, Monfredini F, Merli F. The temporal variation of the profile of carcinogenic polycyclic aromatic hydrocarbons in urban air:a study in a medium traffic area in Rome[J]. Atmospheric Environment, 1999, 33: 3739-3750.
    [24] Nikolaou K. Sources and chemical reactivity of polynuclear aromatic hydrocarbons in atmosphere-A critical review[J]. Sci Total Environ, 1984,32(2): 103-132.
    [25] 孙韧,朱坦,白志鹏.大气颗粒物上多环芳烃的识别和源解析的进展[J].城市环境与城市生态,1997,10(3):27-31.
    [26] 朱先磊.大气颗粒物上多环芳烃源解析的研究[D].南开大学,2001.
    [27] Baek S O. Significance and behavior of polycyclic aromatic hydrocarbons in ruban ambient air[D]. Ph D Thesis, Imperial College of Science and Technology, University of London. 1998.
    [28] 林治卿,袭著革,杨丹风.采暖期大气中不同粒径颗粒物污染及其重金属分布状况[J].环境与健康杂志,2005,22:33-34.
    [29] Ballester F, Tenias JM, Perez-Hoyos S. Air pollution and emergency hospital admissions for cardiovasctlar diseases in Valencia[J]. Spain J Epidemiol Community Health, 2001, 55:57-65.
    [30] Gary N. Sharon NY, Jane QK, et al. An association between fine particles and asthma emergency department visits for children in Scattle[J]. Environ Health Perspective, 1999, 107(6): 489-493.
    [31] 董晨,宁伟民,施烨闻.PM_(2.5)颗粒物引起血管内皮细胞氧化损伤的研究[J].卫生研究,2005,34(2):169-171.
    [32] Dejmek J. Environ Health Perspect[J]. 2000,108(12):1159-1164.
    [33] 黄雪莲,金昱,郭新彪.沙尘暴PM_(2.5)、PM_(10) 对大鼠肺泡巨噬细胞吞噬功能的影响[J].卫生研究,2004,33(2):154-157.
    [34] 黄雪莲,金昱,郭新彪.沙尘暴PM_(2.5)、PM_(10) 对大鼠肺泡巨噬细胞炎性因子分泌的影响[J].环境与健康杂志,2004,21(1):38-40.
    [35] 时宗波,邵龙义,T.P.Jones.城市大气可吸入颗粒物对质粒DNA的氧化性损伤[J].科学 通报,2004,49(7):673-678.
    [36] 唐孝炎(主编),李金龙,粟欣,陈旦华.大气环境化学[M],1991,高等教育出版社,北京:191-197.
    [37] 刘淑琴,王鹏.环境中的多环芳烃与致癌性[J].环境保护,1995,9:42-45.
    [38] Janerich D T, Thompson W D. Lung cancer and exposure to tobacco smoke in the household[J]. New England Journal of Medicine, 1990:323,632-636.
    [39] Li S, Pan D, Wang G. Analysis of polycyclic aromatic hydrocarbons in cooking oil fumes[J]. Archives of Environmental Health, 1994,49(2): 119-122.
    [40] Korenaga T, Liu X, Huang Z. The influence of moisture content on polycyclic aromatic hydrocarbons emission during rice straw burning[J]. Chemosphere, 2001, 3:117-122.
    [41] Launhardt T, Thoma H. Investigation on organic pollutants from a domestic heating system using various solid biofuels[J]. Chemosphere, 2000,40:1149-1157.
    [42] Fang M, Zheng M, Wang F,et al. The solvent-extractable organic compounds in the Indonesia biomass burning aerosols-characterization studies[J]. Atmospheric Environment, 1999, 33: 783-795.
    [43] Raiyani C V, Shan S H, Desai N M, et al. Characterization and problems of indoor pollution due to cooking stove smoke[J]. Atmospheric Environment, 1993,27A(11):1643-1655.
    [44] Freeman D J, Cattell F C R. Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons[J]. Environmental Science & Technology, 1990,24:1581-1585.
    [45] 蒋红梅,王定勇.大气可吸入颗粒物的研究进展[J].环境科学动态,2001(1):11-15.
    [46] 周军,柴国勇,陈元.城市大气中PM_(2.5)污染控制的意义[J].甘肃环境研究与监测,2003,16(1):29-31.
    [47] Chan Y C, Simpso R W, Mctainsh G H, et al. Source apportionment of PM_(2.5) and PM_(10) aerosols in Brisbane (Australia) by receptor modeling[J]. Atmospheric Environment, 1999, 33: 3237-3250.
    [48] 李红,邵龙义,单忠健,等.气溶胶中有机物的研究进展和前景[J].中国环境监测,2001,17(3):62-67.
    [49] Charlson R J, Schwartz S E, Hales J M, et al. Climate forcing by anthropogenic aerosols[J]. Science, 1992,255 : 423-430.
    [50] Liousse C, Ruellan S, Cachier H, et al. Climatology of biomass burning aerosols over central Africa[J]. J. Aerosol Sci., 1999, 30: s887-s888.
    [51] Liousse C, Cachier H., Guelle T, et al. Radiative impact of carbonaceous aerosols[J]. J. Aerosol Sci., 1998,29: s1303-s1304.
    [52] Liousse C, Chazette P, LSCE/CFR, et al. Coupling between ground chemical and optical data for urban aerosols at Thessaloniki[J]. J. Aerosol Sci., 1999, 29: s527-s528.
    [53] Taylor K E, Penner J E. Response of the climate system to atmospheric aerosols and greenhouse gases[J]. Nature, 1994,369: 734-737.
    [54] Chartier K L, Weitz M A. A comparison of filter types in the collection and gravimetric determination of airborne particulate matter less than 2.5 microns (PM_(2.5))[J]. J. Air & Waste Manage. Assoc, 1998,48:1199-1203.
    [55] Lachenmyer C, Hidy G M. Urban measurements of outdoor-indoor PM_(2.5) concentrations and personal exposure in the Deep South. Part I. Pilot study of mass concentrations for nonsmoking subjects[J]. Aerosol Science and Technology, 2000, 32: 34-51.
    [56] Williams R, Creason J, Zweidinger R, et al. Indoor, outdoor and personal exposure monitoring of particle air pollution: the Baltimore elderly epidemiology-exposure pilot study[J]. Atmospheric Environment, 2000, 34:4193-4204.
    [57] Geller M D, Chang M, Sioutas C, et al. Indoor/outdoor relationship and chemical composition of fine and coarse particles in the southern California deserts[J]. 7tmospheric Environment, 2002, 36:1099-1110.
    [58] Gotschi T, Oglesby L, Mathys P, et al. Comparison of black smoke and PM_(2.5) levels in indoor and outdoor environments of four European cities[J]. Environ. Sci. Technol. , 2002, 36: 1191-1197.
    [59] Salma I, Chi X G, Maenhaut W. Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary[J]. Atmospheric Environment, 2004, 38:27-36.
    [60] Fischer P H, Hoek G, Reeuwijk H V, et al. Traffic-related differences in outdoor and indoor concentrations of particles and volatile organic compounds in Amsterdam[J]. Atmospheric Environment, 2000, 34: 713-722.
    [61] Oie L, Magnus P. Suspended particulate matter in Norwegian dwellings in relation to fleece and shelf factors, domestic smoking, air exchange rate, and presence of hot wire convection heaters[J]. Environment international, 1997,23:465-473.
    [62] Funasaka K, Miyazaki T, Tsuruho K, et al. Relationship between indoor and outdoor carbonaceous particulates in roadside households[J]. Environmental Pollution, 2000, 110:127-134.
    [63] Lee H S, Kang B W. Chemical characteristics of principal PM_(2.5) species in Chongju, South Korea[J]. Atmospheric Environment, 2001, 35: 739-746.
    [64] Tsai F C, Smith K R, Vadakan N V, et al. Indoor/outdoor PM_(10) and PM_(2.5) in Bangkok, Thailand [J]. Journal of Exposure Analysis and Environmental Epidemiology, 2000, 10: 15-26.
    [65] Li C S, Lin C H. Carbon profile of residential indoor PM_1 and PM_(2.5) in the subtropical region[J]. Atmospheric Environment, 2003,37: 881-888.
    
    [66] Lin J J, Tai H S. Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung city, Taiwan[J]. Atmospheric Environment, 2001, 35: 2627-2636.
    [67] Chao C Y, Wong K K. Residential indoor PM_(10) and PM_(2.5) in Hong Kong and the elemental composition[J]. Atmospheric Environment, 2002, 36: 265-277.
    [68] Cao J J, Lee S C, Ho K F,et al. Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period[J]. Atmospheric Environment, 2003, 37:1451-1460.
    [69] Xinhua Wang, Xinhui Bi, Duohong Chen, et al. Hospital indoor respirable particles and carbonaceous composition[J].Building and Environment, 2006,41: 992-1000.
    [70] 珍全,邵龙义,黄宇婷,等.北京市空气中PM_(10)与PM_(2.5)的污染水平状况研究[J].北京工业职业技术学院学报.2006,5:29-34.
    [71] 黄鹂鸣,王格慧,王荟,等.南京市空气中颗粒物PM_(10)、PM_(2.5)污染水平[J].中国环境科学,2002,22:334-337.
    [72] 潘纯珍,陈刚才,杨清玲,等.重庆市地区道路PM_(10)/PM_(2.5)浓度分布特征研究[J].西南农业大学学报(自然科学版),2004,26:576-579.
    [73] 魏复盛,滕恩江,吴国平,等.我国4个大城市空气PM_(2.5)、PM_(10)污染及其化学组成[J].中国环境监测,2001,17:1-6.
    [74] 胡衡生,朱易,张新英,等.南宁市大气颗粒物PM_(10)、PM_(2.5)污染水平[J].广西师范学院学报.2003,20:1-4.
    [75] 张永,李心意,姜丽娟,等.住宅室内空气颗粒物污染状况及其与大气浓度关系的初探[J],卫生研究.2005,34:407-409.
    [76] 段琼,张渝,李红格,等.太原市某办公室PM_(10)与PM_(2.5)的实测与研究[J].能源研究与信息,2006,22:12-17.
    [77] 于凤莲.城市大气气溶胶细粒子的化学成分及其来源[J].气象,28(11):3-6.
    [78] 王玮,汤大钢,刘红杰.中国PM_(2.5)污染状况和污染特征的研究[J].环境科学研究,2000,13(1):1-5.
    [79] 宋燕,徐殿斗,柴之芳.北京大气粒物PM_(10)和PM_(2.5)中水溶性阴离子的组成及特征[J].分析试验室,2006,25(21:80-85.
    [80] 滕恩江.中国四城市空气中粗细颗粒物元素组成特征[J].中国环境科学,1999,19(30):238-242.
    [81] 陈邢琪,陆春霞,王宇骏.广州市空气可吸入性颗粒物化学元素组成特征[J].环境科学研究,1999,12(4):1-5.
    [82] 杨复沫,贺克斌,马永亮.北京大气细粒子PM_(2.5)的化学组成[J].清华大学学报,2002,42(12):1605-1608.
    [83] 沈轶,陈立民,孙久宽.上海市大气PM_(2.5)中Cu、Zn、Pb、As等元素的浓度特征[J].复旦学报,2002,41(4):405-409.
    [84] 曾凡刚,王关玉,田健.北京市部分地区大气气溶胶中多环芳烃污染特征及污染源探讨[J].环境科学学报,2002,22(3):284-288.
    [85] 郭红莲,陆晨刚,余琦.上海大气可吸入颗粒物中多环芳烃(PAHs)的污染特征研究[J].复旦学报(自然科学版),2004,43(6):1107-1112.
    [86] 彭林,曾凡刚,陈名.太原市大气总悬浮颗粒中正构烷烃和多环芳烃空间分布及来源分析[J].岩矿测试,2003,22(9):206-210.
    [87] 祁士华,王新明,傅家谟.珠江三角洲经济区主要城市不同功能区大气气溶胶中优控多环芳烃污染评价[J].地球化学,2000,29(4):337-341.
    [88] Guo H, Lee S C, Ho K F. Particle-Associated Hydrocarbons in Urban Air of Hong Kong[J]. Atmospheric Environment, 2003, 37: 5307-5317.
    [89] 潘静,周成,郇宁.青岛地区大气气溶胶中多环芳烃的GC/MS分析[J].环境化学,2003,22(3):311-312.
    [90] 祁士华,盛国英,傅家谟.澳门大气气溶胶中多环芳烃的源解析尝试[J].中国环境科学,2002,22(2):118-122.
    [91] 王瑞斌,王明霞,安华.我国环境空气质量标准与国外相应标准的比较[J].环境科学,1997,10(6):35-391.
    [92] 印红玲,洪华生,叶翠杏,等.厦门市大气PM_(10)中PAHs的健康风险评估-BEQ评估[J].环境化学,2006,25(3):360-362.
    [93] 樊曙先.南京市区与郊区气溶胶PM_(2.5)元素及多环芳烃污染特征的对比研究[D].南京信息工程大学博士论文,2006.
    [94] 叶翠杏,王新红,印红玲,袁伟民,洪华生.厦门市大气PM_(2.5)中多环芳烃的昼夜变化特征[J].环境化学,2006,25(3).
    [95] 吴水平,蓝天,左谦,等.不同高度大气颗粒物中多环芳烃的粒径分布[J].环境化学,2005,24(1):76-80.
    [96] Evans D E, Harrison R M, Ayres J G The generation and characterisation of elemental carbon aerosols for human challenge studies [J]. Aerosol Science, 2003,34: 1023-1041.
    [97] 何昌华,金文刚,钟秦.环境空气中大气颗粒物源解析的研究进展[J].重庆环境科学,2002,24(3):55-59.
    [98] 仇志军,郭盘林,王基庆,等.基于质子微探针研究的大气气溶胶单颗粒源解析[J].环境科学,2001,22(2):51-54.
    [99] Paulo A, Marta L C, Rabello, et al. Nuclear microprobe analysis and aourceapportionment of individual atmospheric aerosol particles [J]. Nuclear Instruments and Methods in Physics Research, 1993,B75:521-525.
    [100] Orlicl, Watt, Loh K K, et al. Nuclear microscopy of single aerosol particles. Nuclear Instruments and Methods in Physics Research, 1994,B85:840-844.
    [101] 汪安璞,杨淑兰,沙因.北京大气气溶胶单个颗粒物的化学表征[J].环境化学,1996,16(4):486-495.
    [102] 刘风英,郭光焕.X-射线荧光光谱法测定道路扬尘中21种元素[J].城市环境与城市生态,1996,9(1):45-47.
    [103] Watson J G, Copper J A. The effective variance weighting for least squares calculations applied to the mass balance receptor model. Atmospheric Environment, 1984,18(7):1347-1355.
    [104] Watson J G, Robinson N F. The USEP/DRI chemical mass balance receptor model,CMB7.0. Environment Software, 1990,5L38-49.
    [105] Henry R C, Lewis C W, Hopke P K, et al. review of receptor model fundamentals. Atmospheric Environmet, 1984,18(8): 1507-1515.
    [106] Lowenthal D H, Chow J C, Wastson J G, et al. The effects of collinearity on the ability to determine aerosol contributions from diesel-and gasoline-powered vehicles using the chemical mass balance model. Atmospheric Environment, 1992,26A(13):2341-2351.
    [107] 王帅杰,朱坦.大气颗粒物源解析技术研究进展[J].环境污染治理技术与设备,2002,3(8):8-12.
    [108] 杭维琦,黄世鸿.南京市城区环境空气中总悬浮颗粒物的源解析[J].环境监测管理与技术,2000,12(4):18-21.
    [109] 胥晓瑜,马永亮,傅立新等.应用化学质量平衡模型解析烟台市污染源的排放贡献率[J].环境污染与防冶,2001,23(5):262-264.
    [110] 唐孝炎,方晨,张远航等.北京市大气细粒子的来源分析[J].环境科学,2002,23(6):11-16.
    [111] 朱广一.大气可吸入颗粒物研究进展[J].环境保护科学,2002,28(113):3-5.
    [112] 杨复沫,马永亮,贺克斌.细微大气颗粒物PM_(2.5)及其研究概况[J].世界环境,2000,(4):32-34.
    [113] 吴雷,王慧.城市颗粒物污染来源与特性分析[J].干旱环境监测,2003,17(3):157-159.
    [114] 李祚泳,彭荔红.基于遗传算法的大气颗粒物的源解析[J].环境科学研究,2000,13(6):19-21.
    [115] Fung Y S, Wong L W Y. Apportionment of air pollution sources by receptor models in Hong Kong[J]. Atmospheric Environment, 1995, 29:2041-2048.
    [116] Vallius M, Lanki T, Tiittanen P, et al. Source apportionment of urban ambient PM_(2.5) in two successive measurement campaigns in Helsinki, Finland[J]. Atmospheric Environment, 2003, 37: 615-623.
    [117] 靳春光.大原市大气颗粒物污染源解析[D].中国预防医学科学院硕士论文,2001.
    [118] 周来东.成都市春季大气飘尘目标变换因子分析(TTFA)[J].四川环境,1995,14(3):12-15.
    [119] Biegalski S R, Landsberger S. Source-receptor modeling using trace metals in aerosols collected at three rural Canadian great lakes sampling stations[J]. J. Air & Waste Manage. Assoc., 1998,48:227-237.
    [120] Bilos C, Colombo J C, Skorupka C N, et al. Sources, distribution and variability of airborne trace metals in La Plata city area, Argentina[J]. Environmental Pollution, 2001, 111: 149-158.
    [121] Manish K S, Subramanian R, Wolfgang F R, et al. Sources of organic aerosol: Positive matrix factorization of molecular marker data and comparison of results from different source apportionment models. Atmospheric Enviroment, 2007,41(40):9353-9369.
    [122] Ramadan Z, Song X H, Hopke P K. Identification of sources of Phoenix aerosol by positive matrix factorization[J]. J. Air & Waste Manage. Assoc., 2000, 50: 1308-1320.
    [123] Song X H, Polissar A V, Hopke P K. Sources of fine particle composition in the northeastern US[J]. Atmospheric Environment, 2001,35: 5277-5286.
    [124] Lee E, Chan C K, Paatero P. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong[J]. Atmospheric Environment, 1999, 33: 3201-3212.
    [125] Chueinta W, Hopke P K, Paatero P. Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization [J]. Atmospheric Environment, 2000, 34: 3319-3329.
    [126] 苑金鹏,钟宁宁.稳定碳同位素在污染物源解析中的应用[J].环境科学动态,2003(4):9-10.
    [127] 冯银厂,白志鹏,朱坦.大气颗粒物二重源解析技术原理与应用[J].环境科学,2002,23增刊:106-108.
    [128] 李祚泳.用投影回归进行大气颗粒物的污染源解析[J].中国环境科学,1999,19(3):270-272.
    [129] 李祚泳,丁晶,张欣莉.成都市大气颗粒物源解析的PPR法[J].环境科学研究,2000,13(5):38-40.
    [130] 李祚泳,倪长健,丁晶.粗集理论应用于大气颗粒物的源解析[J].四川大学学报(工程科学版),2003,35(4):113-114.
    [131] 王文兴,梁金友,陈延智.华南地区气溶胶区域源解析[J].中国环境科学,1992,12(1):1-8.
    [132] 梁金友,王文兴.区域源解析模型的建立[J].环境科学学报,1990,10(1):17-25.
    [133] John G W, Judith C. Chow and Eric M. Fujita. Review of volatile organic compound source apportionment by chemical mass balance[J]. Atmospheric environment,2001,35(9): 1567- 1584.
    [134] A.V K, R S P, K S V. Nambi. Source apportionment of suspended particulate matter at two traffic junctions in Mumbai, India[J]. Atmospheric environment,2001,35(25):4245-4251.
    [135] Fujita E M, Watson J G, Chow J C, et al. Validation of the chemical mass balance receptor model applied to hydrocarbon source apportionment in the Southern California Air quality study[J]. Environmental Science and Technology, 1994,28(9): 1633-1649.
    [136] Sharma M, Mcbean E, Thomson N, et al. Source-receptor modeling of PAHs using deposition levels in winter-long urban snowpack. Journal of Environmental Engineering[J].1994.120(5):1248-1265.
    [137] 李祚泳,丁恒康.BP网络应用于大气颗粒物的源解析[J].中国环境监测,2005,21(2):
    [138] 张泽,孙宏,郭祥锋.大气总悬浮颗粒物中有机碳的测定[J].中国环境监测,1996,12(4):16-18.
    [139] 张志强,徐少才,王燕.大气气溶胶中若干有机物的含量和季节变化[J].中国海洋大学学报,2005,35(4):661-664.
    [140] 杨旭曙,王正萍,宋艳涛.大气颗粒物中多环芳烃的源解析方法[J].环境监测管理与技术,2002,14(4):10-14.
    [141] 王帅杰,朱坦.大气颗粒物源解析技术研究进展[J].环境污染治理技术与设备,2002,3(8):8-12.
    [142] 朱先磊,刘维立,卢妍妍,等.燃煤烟尘多环芳烃成分谱特征的研究[J].环境科学研究,2001,14(5):428.
    [143] Sheldon K F. Chemical element balances and identification of air pollution sources [J]. Environ Sci Technol, 1973 ,7 (3): 235-240.
    [144] Li C K, Richard M K. The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling [J]. Atmospheric Environment, 1993 , (27A): 523-532.
    [145] 李玉武,张雅琳,狄一安,等.等离子体发射光谱法测定大气颗粒物中的无机元素[J].岩矿测试,2000,19(1):63-69.
    [146] 刘小真,周文斌,胡利娜,等.抚河南昌段底泥重金属污染特征研究[J].环境科学与技术,2008,31(5):30-34.
    [147] 弓晓峰,陈春丽,Barbara Zimmermann,等.ICP-AES测定湖泊沉积物中微量元素的样品微波消解研究[J].光谱学与光谱分析,2007,27(1),155-159.
    [148] Kuss H M. Fresenius[J]. Anal Chem.,1991,7(2):160.
    [149] 吴晓岚,马蓉,王艳.石墨炉原子吸收光谱法测定土壤中的铅-微波消解与电热板消解比较试验[J].西南农业学报,2005,18(3):362-364.
    [150] 黄捷玲,梁志华,老倩群,等.程序升温马福炉灰化法对食品中铅、砷、铜检测预处理的研究[J].职业与健康,2006,22(19):1568-1569.
    [151] Takahama S, Gilardoni S, Russell L M, et al.Classification of multiple types of organic carbon composition in atmospheric particles by scanning transmission X-ray microscopy analysis[J]. Atmospheric Environment, 2007, 40(41):9435-9451.
    [152] 王志伟,朱文,朱慧芳,等.用原子吸收法测定大气颗粒物中的金属元素-用CA-CN型微孔滤膜采样[J].光谱学与光谱分析,1999,19(3):385-387.
    [153] 刘立坤,田伟之,王平生,等.用中子活化法分析北京地区三个采样点的大气颗粒物[J].同位素,2005,18(1-2):67-72.
    [154] 谢华林.ICP-AES法测定大气颗粒物中的金属元素[J].环境化学,2002,1(1):25-26.
    [155] Cariatl F, Fermo P. Optimization of an urban particulate matter multielement analysis method by inductively coupled plasna atomic emission spectrometry(ICP-AES)[J]. Annalidi chimica, 2003,93:539-550.
    [156] 郭璇华,高瑞英,黄瑞毅,等.大气颗粒物中无机元素特性的研究[J].环境科学与技术,2006,29(6):49-51.
    [157] 傅昀,谢克金,李世萍,等.ICP-AES和AAS测定土壤和植物中常量及微量元素之比较(一).土壤通报,1999,30(3):143-146.
    [158] US-EPA. Compendium method IO-3.3. Determination of Metals in Ambient Particulate Matter Using Inductively Coupled Plasma(ICP) Spectroscopy, 1999.
    [159] 叶国森.环境背景值调查研究土壤标准物质的研制[J].矿物岩石,1997.17(4):115-119.
    [160] Roussel R, Allaire M, Friar R S. Atmospheric polycyclic aromatic hydrocarbons at a point source of emissions. Part A: identification and determination of polycyclic aromatic compounds in airborne particulate matter near a Horizontal Stud Soderberg Plant[J]. Journal of the Air & Waste Management Association, 1992,42: 1609-1603.
    [161] Mastral A M, Callen M S. Review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environmental Science and Technology, 2000,34(15): 3051-3058.
    [162] Stephens J D L, McFadden T, Heath O D, et al. The effect of sonication on the recovery of polycyclic aromatic hydrocarbons from coal stack ash surfaces[J]. Chemosphere, 1994, 28(10):1741-1747.
    [163] Jochen F M, Darryl W H, Des W C, et al. Passive sampling of atmospheric SOCs using tristearin-coated fiberglass sheets[J]. Atmospheric Environment, 2000,34:3525-3534.
    [164] 谢重阁,张月英,孙兰香,等编.环境中的苯并(a)芘及其分析技术[M].1991,中国环境科学出版社,北京:9-18.
    [165] 黄以玲,徐文菁,赵国栋,等.北京市大气颗粒物中PAHs的组成[J].环境科学,2001,22:16-20.
    [166] Messer D C, Taylor L T. Method development for the quantitation of trace polyaromatic hydrocarbons from water via solid-PAHse extraction with supercritical fluid elution. J[J]. Chromatogr. Sci., 1995,33:290-296.
    [167] Miao Z, Yang M J, Pawliszyn J. Extraction of airborne organic contaminants from adsorbents using supercritical fluid[J]. Journal of Chromatographic Science., 1995, 33: 493-499.
    [168] Castells P, Santos F J. Development of a sequential supercritical fluid extraction method for the analysis of nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in urban aerosols. Journal of Chromatography A, 2003,1010:141-151.
    [169] Masahiko Shimmo, Piia Anttils. Identification of organic compounds in atmospheric aerosols particles by on -line supercritical fluid extraction-liquid chromatography-gas chromatography-mass spectrometry[J]. Journal of Chromatography A,2004,1022:151-159.
    [170] Inoka Senaratne. A chemical analysis of aerosol over Chrischurch, New Zealand, and its significance for souce appornment [J]. Journal of Aerosol Science, 2000,37:232-233.
    [171] Dimashki M, Lim L H, Harrison R M, et al. Temporal trends, temperature dependence, and relative reactivity of atmospheric PAHs[J]. Environmental Science and Technology, 2001, 35(11): 2264-2267.
    [172] Masahiko Shimmo, Heidi Adler. Analysis of pariculate polycyclic aromatic hydrocarbons by on linecoupled supercritical fluid extraction-liquid chromatography-gas chromatography-mass spectrometry[J].Atmospheric Environment,2002,36:2985-2995.
    [173] Fraser M P, Yue Z W, Tropp R J, et al. Molecular composition of organic fine particulate matter in Houston, TX. Atmospheric Environment,2002,36(38):5751-5758.
    [174] 孙福生,季晓松,朱涛,等.固相萃取反相高效液相色谱测定水中16个多环芳烃(Ⅰ)[J].苏州科技学院学报:工程技术版,2004,17(4):11-19.
    [175] 朱利中,沈学优,刘勇建,等.高效液相色谱分析水中痕量多环芳烃[J].环境化学,1999,18:488-492.
    [176] 刘章现,袁英贤,张江石,等.平顶山市大气PM_(10)、PM_(2.5)污染调查[J].环境监测管理与技术,2007,19(2):26-29.
    [177] 柯昌华,金文刚,钟秦.环境空气中大气颗粒物源解析的研究进展[J].重庆环境科学,2002,24(3):55-59,76.
    [178] 肖美.南昌市区大气颗粒物化学组成特征及其源解析研究[D].南昌大学,2007.
    [179] 李祚泳,丁恒康,丁晶.大气颗粒物源解析的BP网络权重分析模型[J].四川大学学报(自然科学版),2004,41(5):6201-9201.
    [180] 曹云者,施烈焰,李丽和,等.浑蒲污灌区表层土壤中多环芳烃的健康风险评价[J].农业 环境科学学报,2008,27(2):542-548.
    [181] Chun T L, Yuan C L, Wen J L, et al. Emission of polycyclic aromatic hydrocarbons and their carcinogenic potencies from cooking sources to the urban atmosphere [J]. Environmental Health Perspectives, 2003,111(4):483-487.
    [182] Guo H, Lee S C, Ho K F, et al. Particle-Associated polycyclic aromatic hydrocarbons in urban air of HongKong[J]. Atmospheric environment, 2003, 37:5307-5317.
    [183] Takeshi O, Takashi A, Masshiro F, et al. Spatial distribution and profile of atmospheric polycyclic aromatic hydrocarbons in two industrial cities in Japan [J].Environmental Science Technology, 2004,38:49-55.
    [184] 张树才,张巍,王开颜,等.北京东南郊大气TSP中多环芳烃的源解析[J].环境科学学报,2007,27(3):452-458.
    [185] 陈晓英.典型污染源排放颗粒物中多环芳烃的组成特征研究[D].南京理工大学,2005.
    [186] 秦传高,钟秦,胡伟,等.南京市可吸入颗物中多环芳烃的源解析[J].环境化学,2008,27(3):318-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700