用户名: 密码: 验证码:
城市交通网络机动车排放优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市机动车保有量的增加与道路相对有限的矛盾不断加剧,带来了交通环境的持续恶化,相关研究表明单纯从机动车内部降低排放潜力已经不大。在这种情况下,通过交通管控措施来合理组织交通流运行,综合运用车载排放测试采集排放数据,建立基于比功率的排放预测模型,并结合动态交通仿真软件输出机动车的实时运行状态数据,从而可以为比较不同交通管控措施带来的机动车排放及延误差异奠定基础。本论文在排放建模方法、区域排放定量评价及交通管控措施效益对比上进行深入的研究和探索。具体内容如下:
     选择长春市代表车型,在市区四种等级道路上进行车载排放测试,获取了大量的尾气排放数据,在分析机动车尾气生成机理的基础上,应用比功率分析方法,得到了城市机动车瞬时功率与尾气排放之间的规律,最终获取了不同比功率区间三种车型机动车的质量排放率。
     选择红旗街—延安大街区域作为研究对象,采用交通仿真软件实时仿真并输出区域的交通流状况,将比功率下的排放与单车实时的比功率结合,计算区域内单车的实时排放情况,并定量评价区域的排放状况及延误情况。
     最后选择适合区域交通管控的单向改造和信号配时优化两种方式,通过微观排放模型结合改造前后机动车实时仿真输出的运行状况,对比两种方式改造前后的排放和延误差异。计算结果表明,通过优化交通管控措施,可以大大的降低区域的机动车排放总量,同时可降低机动车延误、使区域路网机动车运行顺畅。论文的研究成果可为评价不同交通管控措施的环境和社会效益提供理论依据。
According to the Intergovernmental Panel on Climate Change (IPCC) 2007 report, urban transport accounted for 13.1% of total global greenhouse gas emissions, which are the third-largest emitting sectors. In recent years, with the contradictions between traffic demand and traffic supply have become increasingly prominent, traffic pollution and energy consumption are increasingly grim situation at home and abroad,and which have begun to attach importance to the traffic environment evaluation and control. The urban road network of a node, a certain section of a regional environmental impact assessment has become essential, how to bridge the gap in transportation and emission models for the evaluation of dynamic traffic simulation ;combined traffic simulation tool to evaluate motor vehicle emissions, spatial and temporal distribution characteristics of traffic flow through the rational organization of the existing transport facilities in the same situation to improve road traffic environment, and reduce vehicle delays.
     Select light-duty car, mid-sized car and bus as the study object, how to optimize the traffic control measures to reduce emissions and delays as the research goal, firstly building a real-time on-board emission measurement system, through the actual driving conditions emissions tests, different types of motor vehicle emissions and the corresponding operating conditions database can be got, then comparing the emissions differences of four road types; through the vehicle emission factor analysis to determine VSP-based emission model which cover the speed, acceleration and road gradient; integrating the micro-emission model with dynamic traffic simulation tool to evaluate motor vehicle emissions of road network ,and get different types of motor vehicle emissions contribute to the situation; determining single transformation and signal timing optimization as two kinds of optimization of traffic control measures for the selected region, thereby re-organize the operation of traffic flow conditions, combined with traffic simulation tool to assess their environmental and social benefits. The study includes five aspects:
     1. The actual road motor vehicle transient emission test data acquisition
     The key of this work is to build a real-time on-board emission measurement system, collecting speed, latitude and longitude from the GPS system, collecting instantaneous mass emission of three kinds of emissions (CO、HC、NOx) second-by-second through OEM-2100, engine intake air temperature and pressure, engine speed, load can be got through engine operation condition monitoring systems. Four different grades of road were selected in vehicle emission test, through multiple tests in the actual operation state, establishment of second-by-second emission data and the corresponding driving conditions database; determining 22 parameters to describe the driving conditions characteristic of the four graded roads, and road vehicle driving characteristics were analyzed, the impact of speed on three kinds of emissions in four different graded road were compared. The results showed that: with decline of road grade, motor vehicles always operate at a lower speed range, while higher rates of CO and HC emissions, lower NOx emission rate. Increase in vehicle speed, to avoid the frequent acceleration and deceleration, reducing queuing time of vehicles crossing intersection and proportion of idle time, can effectively reduce the total vehicle emissions.
     2. Motor Vehicle Emission Model of Transient Emissions
     This work represents an attempt to bridge the gap in transportation and emission models, through the use of real-world distributions of Vehicle Specific Power (VSP) bins that are associated with speed, acceleration and road gradient, developing a micro-scale VSP-based modeling approach to estimate emissions. Integration of traffic simulation model and vehicle emissions model can be performed to quantitatively assess the impacts on environment from transport management and transportation planning. It not only provides technical support but useful guidance to evaluate the urban transport development subjected to environment improvement. Using the second-by-second instantaneous speed, acceleration and road gradient, VSP was computed from different vehicle types. The values were then categorized into 10 VSP Bins;The corresponding bin emission rate can be computed.
     3. Quantitative analysis and evaluation of regional transportation emission and delay
     In this part, the hongqi street and yan’an street area were selected for simulation, Paramics Microscopic Traffic Simulation software was selected to build a road network topology map, using of Estimator module by traffic flow and turning flow to compute the OD data, determining the hot spots of emissions by the on road emission measurement data to optimize traffic control measures; through simulation software reliability analysis to determine the software can accurately describe the traffic situation in the region, and acquired regional traffic delay conditions; using of motor vehicles real-time operation data to compute the average mass emission rates by tracing vehicle operation in the simulation , integrated the VPS-based emission model with transportation model can be quantitatively evaluate the region's motor vehicle emission pollution conditions, and the benefits from appropriate emission control strategy.
     4. Study on regional emission reduction by single transformation
     This section selected single transformation which fit the regional road structure and traffic characteristics as a regional transportation management and control means, through analyzing the pros and cons of clockwise and counter-clockwise organization of single transformation, select clockwise organizations as design; Yan'an Street, Hongqi Street, , Qinghua street and Wanbao Street were transferred from two-way access to one-way access, number of lanes remains the same, but also with the residents travel situation in Yan'an Street, Main Street and set up reverse bus lanes; using of Paramics traffic simulation software simulating the regional traffic flows after single transformation, combined with micro-emission model has been computed the total emissions. In contrast with before and after single transformation, the total hourly emissions reduced 4.62%. Compared the traffic delays before and after single transformation, building reverse bus lane and optimal design of time and space resources in intersection, vehicle speed increased by 17% or more, vehicle average delay decreased by 11% or more.
     5. Study on regional emission reduction by signal timing optimization
     The Hongqi Street - Yan'an Street region's main intersection were selected as an optimization target, using synchro signal timing optimization software, to conduct the signal cycle length, phase parameter optimization, the optimized results will be the input parameter of Paramics Software, select the simulated sample to calculate emission optimization classified by vehicle types and hourly total emission reduction, and compared before and after the optimization of traffic signal timing delays. By contrast the emissions before and after signal timing optimization, 7.93% of total emissions are reduced, indicating that through the optimization of signal timing to increase traffic capacity of the regional transportation will still be effective on the improvement of regional emissions. Through the optimization of signal timing can improve the vehicle speed of more than 14% at the same time can be reduced more than 25% of the delay time. It showed that through signal timing optimization can significantly improve the road environment as well as improve vehicle speed, reduce delays.
     Real-time on-board emission was used to build VSP-based micro-emission models, and their integration with dynamic traffic simulation tool to quantify regional emission situation; in coordination with regional road structure and the transformation states, single transformation and signal timing optimization were selected as two ways, there is no change of the existing transportation facilities through reasonable traffic organization, to improve environmental quality and reduce delays in the area. Research results have a good operability and practicality, not only useful on specific areas but also as emission optimization reference, while for effective and reasonable organization for urban traffic flow, there will provide theoretical support for our country's transport environmental governance have a positive impact .
引文
[1]环境状况公报[EB/OL]. [2010-3-17]. http://www.zhb.gov.cn/plan/zkgb/.
    [2]本书选编组编.中华人民共和国国民经济和社会发展第十一个五年规划纲要学习参考[M].中共党史出版社, 2006.
    [3]王岐东,姚志良,霍红,等.中国城市轻型车的排放特性[J].环境科学学报, 2008,28(9):1713-1720.
    [4]郝吉明等编著.城市机动车排放污染控制国际经验分析与中国的研究成果[M].中国环境科学出版社, 2001.
    [5]王云鹏,李世武,郭栋,等.基于BP神经网络的城市道路轻型车排放率模型[J].交通与计算机, 2007(05):1-3.
    [6]王岐东,霍红,姚志良,等.基于工况的城市机动车排放模型DC MEM的开发[J].环境科学, 2008,29(11):3285-3290.
    [7]霍红,贺克斌,王歧东.机动车污染排放模型研究综述[J].环境污染与防治, 2006,28(7):526-530.
    [8]姚志良,马永亮,贺克斌,等.宁波市实际道路下汽车排放特征的研究[J].环境科学学报, 2006,26(8):1229-1234.
    [9]贺克斌,霍红,王岐东,等.城市轻型车实际道路瞬态排放的特征[J].中国环境科学, 2006,26(4):390-394.
    [10]李铁柱.城市交通大气环境影响评价及预测技术研究[D].江苏:东南大学交通学院, 2001.
    [11]吉林省经协办[EB/OL]. [2010-3-17]. http://jxb.jl.gov.cn/xsjxb/sxdt/200808/t20080804_428169.html.
    [12]曹磊,郭琳,曹晋军.污染物排放总量控制定量评价模型及其应用研究[J].甘肃环境研究与监测, 1999,12(1):5-8.
    [13]夏海芳.机动车尾气对环境的影响及其污染控制[J].化学工程与装备, 2008(11):136-138.
    [14]徐枫,刘兆礼,陈建军.长春市近50年城市扩展的遥感监测及时空过程分析3[J].干旱区资源与环境, 2005,19(7):80-84.
    [15]长春市城市总体规划-中国城市规划协会-建筑行业门户——建筑时空[EB/OL]. [2010-3-17]. http://www.buildcc.com/html/49/149-15655.html.
    [16] Yu L., Wang Z., Qiao F.. Approach to Development and Evaluation of Driving Cycles for Classified Roads Based on Vehicle Emission Characteristics[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008,2058(-1):58-67.
    [17]陈琨,于雷.用于交通控制策略评估的微观交通尾气模拟与实例分析[J].交通运输系统工程与信息, 2007(1):93-100.
    [18]冯晓,陈思龙.改善城市道路机动车排放污染的智能交通手段[J].交通运输工程学报, 2002,2(2):73-77.
    [19]王志明,王浩国,张强.基于热力学模型的液化石油气发动机燃烧放热及排放分析[J].机械工程学报, 2001,37(6):82-85.
    [20]谭丕强,陆家祥,王均效,等.一种预测柴油机微粒排放的新模型——桥式现象学模型[J].内燃机学报, 2002,20(6):497-500.
    [21]李怀彬.解读《中国轻型汽车排放标准》[J].汽车工业研究, 2005(009):29-32.
    [22]姜国华,郝汝林,麦瑞礼.我国轻型汽车排放标准的发展历程[J].交通节能与环保, 2008(1):19-22.
    [23]陆红雨.来自轻型汽车新排放标准的挑战[J].汽车工程, 2004(5):538-541.
    [24]薛永红.清洁燃油质量标准研究[J].石油化工应用, 2007,26(5):8-12.
    [25]黄璘.清洁燃油组成与排放关系研究获重要进展[J].2009(3):124-125.
    [26]邵祖峰.浅谈城市机动车尾气污染治理[J].重型汽车, 2002(1):9-10.
    [27]陈长虹,戴利生.上海市机动车排污状况与污染控制战略[J].上海环境科学, 1997,16(1):28-31.
    [28]郑山亭.加强重庆市I/M制度建设减少机动车污染[J]. 2007,25(2):41-43.
    [29]王怡,吕海峰,付方平.推行检测维修制度,控制机动车排气污染——浅议青岛市机动车检测维修制度的实施[J].汽车维护与修理, 2007(8):77-78.
    [30]王云鹏,沙学锋,李世武,等.城市道路车辆排放测试与模拟[J].中国公路学报, 2006(05):88-92.
    [31] Coelho Margarida C., Frey H. Christopher, Rouphail Nagui M., etl. Assessing methods for comparing emissions from gasoline and diesel light-duty vehicles based on microscale measurements [J]. Transportation Research Part D, 2009,14(2):91-99.
    [32] Frey H C, Rouphail N, Unal A, et-al. Emissions and Traffic Control: An Empirical Approach[C]. Proceedings of the CRC On-Road Vehicle Emissions Workshop, San Diego, CA, 2000.
    [33] Marsden Greg, Bell Margaret, Reynolds Shirley. Towards a real-time microscopic emissions model[J]. Transportation Research Part D: Transport and Environment, 2001,6(1):37-60.
    [34]傅立新,郝吉明.北京市机动车污染物排放特征[J].环境科学, 2000,21(3):68-70.
    [35]李伟,傅立新,郝吉明,等.中国道路机动车10种污染物的排放量[J].城市环境与城市生态, 2003,16(2):36-38.
    [36]隽志才,谭云龙,倪安宁.公交车辆运行微观交通仿真模型研究[J].公路交通科技, 2008,25(8):119-122.
    [37]马因韬,刘启汉,雷国强,等.机动车排放模型的应用及其适用性比较[J].北京大学学报(自然科学版), 2008,44(2):308-316.
    [38] Int Panis Luc, Broekx Steven, Liu Ronghui. Modelling instantaneous traffic emission and the influence of traffic speed limits[J]. Science of the Total Environment, 2006,371(1-3):270-285.
    [39]黄琼,于雷,杨方,等.机动车尾气排放评价模型研究综述[J].交通环保, 2003,24(6):28-31.
    [40]姚志良,贺克斌,王岐东,等. IVE机动车排放模型应用研究[J].环境科学, 2006,27(10):1928-1933.
    [41]黄定华.车辆行驶工况与排放率关系及其数据库研究[D].武汉理工大学, 2008.
    [42]刘小波.深圳汽车行驶工况和污染物排放关系的测试研究[D].昆明理工大学, 2007.
    [43] Zhang Kaishan. Micro-scale on-road vehicle-specific emissions measurements and modeling[D]. North Carolina State University., 2006.
    [44]黄成,陈长虹,戴璞,等.轻型柴油车实际道路瞬时排放模拟研究[J].环境科学, 2008,29(10):2975-2982.
    [45]潘汉生,陈长虹,景启国,等.轻型柴油车排放特性与机动车比功率分布的实例研究[J].环境科学学报, 2005,25(10):1306-1313.
    [46]王云鹏,沙学锋,李世武,等.机动车道路排放的实时测试系统开发及试验研究[J].公路交通科技, 2005,22(8):149-151.
    [47]徐成伟,吴超仲,初秀民,等.城市机动车尾气排放测试方法模型与应用及展望[J].华东公路, 2008(5):87-90.
    [48]霍红,贺克斌,王歧东.机动车污染排放模型研究综述[J].环境污染与防治, 2006,28(7):526-530.
    [49]胡京南,郝吉明,傅立新,等.机动车排放车载实验及模型模拟研究[J].环境科学, 2004,25(003):19-25.
    [50]宋翔宇,谢绍东.中国机动车排放清单的建立[J].环境科学, 2006,27(6):1041-1045.
    [51]王云鹏,郭栋,李世武,等.基于OEM-2100的城市道路交叉口排放测试试验研究[J].公路交通科技, 2009(10):153-158.
    [52] Coelho Margarida C., Frey H. Christopher, Rouphail Nagui M. Assessing methods for comparing emissions from gasoline and diesel light-duty vehicles based on microscale measurements[J]. Transportation Research Part D: Transport and Environment, 2009,14(2):91-99.
    [53] ZHANG Yingying, CHEN Xumei, ZHANG Xiao, etl. Assessing Effect of Traffic Signal Control Strategies on Vehicle Emissions [J]. Journal of Transportation Systems Engineering and Information Technology, 2009,9(1):150-155.
    [54] Ahn Kyoungho, Rakha Hesham. The effects of route choice decisions on vehicle energy consumption and emissions[J]. Transportation Research Part D: Transport and Environment, 2008,13(3):151-167.
    [55]王炜等著.城市交通系统能源消耗与环境影响分析方法[M].科学出版社, 2002.
    [56]韩立波.基于排放分析的单点信号交叉口配时优化仿真研究[D].吉林大学, 2006.
    [57]孙凤艳.基于微观交通仿真的城市道路交叉口减排方法研究[D].吉林大学, 2008.
    [58] Zhang K., Frey C. Evaluation of Response Time of a Portable System for In-Use Vehicle Tailpipe Emissions Measurement[J]. Environmental Science & Technology, 2008,42(1):221.
    [59] Abdel-Aziz Amr, Frey H. Christopher. Development of hourly probabilistic utility NOx emission inventories using time series techniques: Part II--multivariate approach[J]. Atmospheric Environment, 2003,37(38):5391-5401.
    [60] Inc Clean AIR Technologies International. OEM-2100 Montana System Operational Manual[G]. 2003:1-34.
    [61]城市机动车排放空气污染测算方法[EB/OL]. [2010-3-17]. http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/xgbz/200510/t20051001_68915.htm.
    [62]闫军.城市道路分类与城市用地关系[J].城市规划, 1997(4):24-26.
    [63]王云鹏,郭栋,隗海林,等.城市分等级道路车辆运行速度对排放的影响[J].哈尔滨工业大学学报, 2009(7):110-114.
    [64]李孟良,朱西产,张建伟,等.典型城市车辆行驶工况构成的研究[J].汽车工程, 2005,27(5):557-560.
    [65] Huo Hong, Wu Ye, Wang Michael. Total versus urban: Well-to-wheels assessment of criteria pollutant emissions from various vehicle/fuel systems[J]. Atmospheric Environment, 2009,43(10):1796-1804.
    [66]黄成,陈长虹,景启国,等.重型柴油车实际道路排放与行驶工况的相关性研究[J].环境科学学报, 2007,27(2):177-184.
    [67] Jiménez-Palacios JoséLuis. Understanding and quantifying motor vehicle emissions with vehicle specific power and TILDAS remote sensing [Z]. 1999.
    [68] ZHAI H B, FREY H C, ROUPHAIL N M. A Vehicle-Specific Power Approach to Speed- and Facility-Specific Emissions Estimates for Diesel Transit Buses[J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008,42(21):7985-7991.
    [69] Frey H. C., Rouphail N. M., Zhai H. Speed-and Facility-Specific Emission Estimates for On-Road Light-Duty Vehicles on the Basis of Real-World Speed Profiles[J]. Transportation Research Record: Journal of the Transportation Research Board, 2006,1987(-1):128-137.
    [70] Frey H., Zhang K., Rouphail N. Fuel Use and Emissions Comparisons for Alternative Routes, Time of Day, Road Grade, and Vehicles Based on In-Use Measurements[J]. Environmental Science & Technology, 2008,42(7):2483-2489.
    [71] Christopher Frey H., Kuo Po-Yao, Villa Charles. Methodology for characterization of long-haul truck idling activity under real-world conditions[J]. Transportation Research Part D: Transport and Environment, 2008,13(8):516-523.
    [72] Pete Sykes, Rob Morris,胡树成.微观仿真模型的建立及数据分析[J].城市交通, 2008(4):82-90.
    [73] Pete Sykes, Bevan Wilmshurst,胡树成.《交通微观仿真分析指南》概要[J].城市交通, 2007,5(4):85-90.
    [74]魏明,杨方廷,曹正清.交通仿真的发展及研究现状[J].系统仿真学报, 2003,15(8):1179-1183.
    [75]臧志刚,陆锋,李海峰,等. 7种微观交通仿真系统的性能评价与比较研究[J].交通与计算机, 2007,25(1):66-70.
    [76]庄焰,胡明伟,李德宏.微观交通仿真软件PARAMICS在ITS模拟和评价中的应用[J].系统仿真学报, 2005,17(7):1655-1659.
    [77]黄永刚,温惠英,何兆成,等.基于Paramics的多相位感应信号控制仿真研究[J].交通与计算机, 2007,25(6):45-48.
    [78]长春私家车辆数量骤增现有道路难堪重负-中网资讯中心[EB/OL].[2010-3-17]. http://www.cnwnews.com/html/car/cn_jtzc/20100223/195327.html.
    [79]崔志华.城市道路单向改造对交通排放的影响研究[D].吉林大学, 2009.
    [80] Cameron GDB, Duncan GID. PARAMICS—Parallel microscopic simulation of road traffic[J]. The Journal of Supercomputing, 1996,10(1):25-53.
    [81]何兆成,余志.城市道路网络动态OD估计模型[J].交通运输工程学报, 2005,5(2):94-98.
    [82] Ashok K., Ben-Akiva M. Dynamic origin-destination matrix estimation and prediction for real-time traffic management systems, 1993[C]. Elsevier Science Ltd.
    [83] Hazelton M. L. Estimation of origin–destination matrices from link flows on uncongested networks[J]. Transportation Research Part B, 2000,34(7):549-566.
    [84]杨琪,王炜,卢林.用于OD反推的路段交通量观测点设置研究[J].中国公路学报, 1999,12(5):81-87.
    [85]焦朋朋,陆化普,刘颖,等.基于交叉路口的动态OD反推模型与算法研究[J].土木工程学报, 2004,37(9):100-103.
    [86]景春光,王殿海.典型交叉口混合交通冲突分析与处理方法[J].土木工程学报, 2004,37(6):97-100.
    [87]张晓翠,柴干.基于延误分析的交叉口信号配时优化研究[J].交通科技与经济, 2007,9(3):82-84.
    [88]刘广萍,裴玉龙.信号控制下交叉口延误计算方法研究[J].中国公路学报, 2005,18(1):104-108.
    [89]宫晓燕,王飞跃,李润梅.城市单行交通的分析,设置和评价方法的探讨[J].交通运输系统工程与信息, 2005,5(2):85-89.
    [90]江强.浅谈城市道路单向交通[J].交通与运输, 2001(4):21-22.
    [91]吴薇薇,宁宣熙.城市街道网单行道改造方案的评估[J].系统工程理论与实践, 2009(7):153-159.
    [92]毛保华,贾顺平等著.区域交通组织优化方法及实践研究[M].人民交通出版社, 2008.
    [93]顾尚华.单向交通的主要优缺点分析[J].华东公路, 1990(006):16-21.
    [94]裴玉龙,伊新苗.城市单向交通组织方案规划及其评价研究[J].东北公路, 2003,26(003):118-120.
    [95]王玉娥.城市道路单向交通方案技术评价研究[D].湖南大学, 2008.
    [96]陈斌编著.交通工程技术[M].西南交通大学出版社, 2007.
    [97]王国晓,杨涛,陆原,等.城市中心地区单向交通系统研究[J].城市交通, 2006,4(5):50-54.
    [98]张彬,李文勇,陈学武.单向交通条件下交叉口通行能力分析与仿真[J].交通与计算机, 2005,23(003):52-55.
    [99]肖志国,李杰,张正亚.单向交通条件下的公交优先适应性分析[J].华中科技大学学报:城市科学版, 2005,22(B05):159-163.
    [100]高晗.城市道路单向交通特性的研究[J].辽宁省交通高等专科学校学报, 2004,6(1):46-47.
    [101]李彬,郭冠英,杨东援.城市公共交通专用道规划研究[J].合肥工业大学学报:自然科学版, 1999,22(3):57-61.
    [102]肖志国,李杰,张正亚.单向交通条件下的公交优先适应性分析[J].华中科技大学学报:城市科学版, 2005,22(B05):159-163.
    [103]高昆,张海.城市交通中的公交优先策略[J].交通运输系统工程与信息, 2006,6(2):23-26.
    [104]孙超,徐建闽.基于Synchro的单点交叉口信号配时优化研究[J].公路交通科技, 2009,26(11):117-122.
    [105]刘智勇,梁渭清.城市交通信号控制的进展[J].公路交通科技, 2003,20(6):121-125.
    [106]杨锦冬,杨东援.城市信号控制交叉口信号周期时长优化模型[J].同济大学学报:自然科学版, 2001,29(7):789-794.
    [107]李灵犀,高海军,王飞跃.两相邻路口交通信号的协调控制[J].自动化学报, 2003,29(6):947-952.
    [108]吴小丹,余志,何兆成.基于微观交通仿真的信号交叉口优化方案的评价[J].公路交通科技(应用技术版), 2007(5):157-160.
    [109]孙超,徐建闽.城市单点交叉口的信号配时优化研究[J].交通与计算机, 2008,26(6):6-10.
    [110]张本,商蕾,陈丹.基于微观交通仿真的城市交叉口机动车尾气排放评估[J].交通与计算机, 2008(4):95-98.
    [111]刘洋,史忠科.基于Synchro的多交叉口交通信号控制研究[J].交通与计算机, 2005,23(6):35-38.
    [112]邹志云,陈绍宽,郭谨一,等.基于Synchro系统的典型信号交叉口配时优化研究[J].北京交通大学学报:自然科学版, 2004,28(6):61-65.
    [113] Alper Unal, Nagui M. Rouphail, H. Christopher Frey. Effect of Arterial Signalization and Level of Service on Measured Vehicle Emissions[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003(1): 47-56.
    [114] Plan S., Committees S., Committees P., etl. Assessing Aging of Pretimed Traffic Signal Control Using Synchro and SimTraffic[J]. Transportation Research, 2006,2:9P.
    [115] Yafeng Yin. Robust optimal traffic signal timing [J]. Transportation Research Part B: Methodological,2008,42(10):911-924.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700