光纤光栅传感技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对光纤Bragg光栅和长周期光纤光栅的理论、制备、传感机理、传感性能和传感应用作了深入系统的研究,并对光纤Bragg光栅在应力传感器和长周期光纤光栅在亚硝酸盐检测中的应用做了详细的分析研究。基于对所涉及到的研究背景知识的分析,结合本实验室的技术和设备条件,分别用相位掩模法和振幅掩模法,采用紫外曝光技术,制备了系列中心波长在1546.908nm-1558.24nm范围的光纤Bragg光栅和周期为350、460、550和640μm的长周期光纤光栅。根据麦克斯韦方程,利用耦合模原理,对光纤Bragg光栅和长周期光纤光栅传感理论及传感特性进行了研究。对于光纤Bragg光栅,分别建立了应变和温度传感模型,首次提出了一种新的解决交叉敏感问题的方案,研究了一种基于特殊悬臂梁的光纤Bragg光栅应力传感器,利用悬臂梁不同区域光纤Bragg光栅的Bragg反射中心波长差,实现了一种简单方便的增敏方案,可使测试灵敏度提高将近一倍,自动消除了温度变化引起的应力测量误差;对于长周期光纤光栅,首次提出一种基于长周期光纤光栅的亚硝酸盐传感器,研究了LPFG包层腐蚀法、LPFG自组装覆膜法、LPFG折射率匹配法三种有效提高这种传感器的检测灵敏度的方法。实验证明,对长周期光纤光栅进行表面腐蚀处理的方法比未腐蚀的裸光栅的检测灵敏度提高了将近14倍,腐蚀后的长周期光纤光栅其可检测的亚硝酸盐的最低浓度达到3×10-4mol/L,该值优于4.2×10-3mol/L的国家食品添加剂亚硝酸盐的检测标准。可通过以上的任一方法或组合方法提高长周期光纤光栅的检测灵敏度。这些研究工作会为高灵敏、多参数化学生物传感器的制作和发展提供理论与实验的依据。
Fiber Grating is a new kind of all-fiber passive device that results from the periodicity micro perturbation of the refractive index in the optical fiber core. Because of the excellent properties such as compatible with optical fiber, easy fabrication, little insert loss, small volume and low price, fiber gratings have wide application in optical fiber communication and sensor field. The application of fiber grating is at the highly prosperity. It is a central issue of interest all along.
     Bragg fiber grating (FBG) can couple the forward propagating core mode to one the backward propagating core modes. It is a type of reflection gratings whose reflective wavelength depends on the product of grating's effective refractive index and grating’s period, and grating’s reflectivity and bandwidth depend on the change in refractive index along grating and grating’s length. Then, designing grating’s period and modulating the change in index can fabricate Bragg fiber grating with different reflective wavelength and reflectivity; in addition, Bragg fiber grating has especially sensitivity to the temperature and strain. It is these unique properties that make Bragg fiber gratings have sensing applications for some physical parameters.
     A long period fiber grating (LPFG) can couple the forward propagating core mode to one or a few of the forward propagating cladding modes, and has no backward reflection. It is a typical transmission device. Because LFPG resonance peaks are changed with different environment index, LPFG can be used as the chemical sensor to measure solution concentration or index.
     The work of this thesis are deeply studying the principle, fabrication, mechanism, properties and applications of sensing of both Bragg fiber gratings and long period fiber gratings. The main achievements of this thesis are shown as following:
     1. Research background
     The interrelated knowledge of the thesis are introduced and analyzed. It include the develop, research actuality , manufacture and sensing application of fiber grating, also the study of electrostatic self assembled technology.
     2. The fabrication of fiber gratings
     The making methods are studied, combined with the technology and equipment conditions of our laboratory, we used uv-exposure to make a series of FBG whose center wavelength range were 1546.908nm-1558.24nm and a series of LPFG whose were periods were 350, 460, 550 and 640μm by the methods of phase-mask method and amplitude-mask method respectively.
     3. The study on the sensing theory and sensing characteristic of FBG
     We deduced the waveguide mode of single mode fiber based on the Maxwell equation, We also deduced the mode field distribution of reflective-type FBG by the couple mode theory, obtained the corresponding relation between the period and wavelength of the fiber gratings based on the weakly guiding optical fiber approximate theory. It’s the theoretical basis of the analysis, design and making of the FBG. Secondly, we built the sensing model of strain and temperature respectively based on the study of the theory, the temperature, strain sensing characteristic of the FBG, which were designed by ourselves, were studied.
     4. Special cantilever stress sensor
     Firstly put forward a new method to solve the problems of cross sensitivity, studied a stress sensor based on a special cantilever structure, a simple and convenient sensitivity enhancement method was realized by using the wavelength difference of the reflection center of FBG in the different region of cantilever. By using this structure of the special cantilever, we solved the cross sensitivity of temperature and strain successfully, and the measure sensitivity was increased by a factor, the strain measurement error caused by temperature is eliminated automatically, and the single parameter measurement and dynamical adjusting measurement range of strain has been realized by using FBG.
     5. The study on the sensing theory and sensing characteristic of long-period fiber grating
     Based on Maxwell equation, we strictly deduced mode field distribution of transmission-mode long period fiber gratings by using of couple mode theory and the theory of weak waveguide approximation, analyzed the relation between wavelength of resonance peaks and ambient refractive index changes. The experiment studied the principle of long-period fiber grating chemical sensing and refractive index sensitivity.
     6. Basic research on long period fiber grating chemical sensing
     Firstly put forward a new nitrite sensor based on long-period fiber grating, we studied three methods to enhance the sensitivity of the sensor.
     1) Etching the cladding of LPFG
     Cladding diameter was decreased using etching method by Hydrofluoric acid; this method can adjust the resonant wavelength and amplitude, extend the spectral range of LPFG to some extent, and enhance the sensitivity of it. The experiments indicated that the measurement sensitivity was enhanced by 14 times when the cladding of LPFG was etched compared with the naked LPFG. The lowest measurable nitrite concentration was 3×10-4mol/L, this value was better than the National standard of nitrite, which was 4.2×10-3mol/L.
     2) Self-assembled multilayers
     Built the sensing theory mode of LPFG which was coated by weak absorption thin film based on the sensing theory of LPFG, and analyzed the influence of refractive index on the transmission spectrum of LPFG. Polyelectrolyte (PSS,PDDA) was deposited on the surface of LPFG used self-assembled multilayers technology, We used this method (construct bimolecular multilayer) to change the morphology of the LPFG’s surface, adjust the effective refractive index of the cladding mode and improve the sensitivity of the LPFG, which was used to chemical and biological measurement. The experiment indicated that when the overlay was 70, the highest sensitivity of LPFG was obtained, the lowest measurable nitrite concentration was 3×10-4mol/L, this value was better than the National standard of nitrite, which was 4.2×10-3mol/L, and meet demand of National standard.
    
     3) Refractive index matching method
     Form the sensing theory of LPFG, we know that when the ambient refractive index match to the cladding refractive index, its sensitivity of refractive index sensing is highest. Hereby, we used the sucrose solution, which concentration was 65%, as the matching liquid of coated LPFG to measure nitrite; the sensitivity was enhanced by 30% in this condition.
     The experiment showed that any kinds of above methods or combined method can improve the sensitivity of LPFG. Compared with the chemical methods, this method has the characteristics of high precision, fast, non-toxic, no need of chemical reagent and low costs, and provides a new method on food safety inspection. The study above laid a theoretical and experimental foundation on the study of fast and undivided measurement of biochemical substances, such as protein, enzymes and DNA and so on, the study will provide theoretical and experimental basis to the fabrication and development of high sensitivity and multi-parametric biochemical sensor.
引文
[1] Vasiliev S A. Photoinduced Fiber Gratings. SPIE, 2001, 4357:1-12.
    [2] Canning J. Grating Confinement in a Photonic Crystal Fibre. Optics Communications, 2000, 176(1):121-124.
    [3] Bhatia V. Properties and Applications of Fiber Grating. SPIE, 2001, 4417:154-160.
    [4]李川,张以谟,赵永贵,李立京.光纤光栅原理、技术与传感应用.科学出版社, 2005.
    [5] K. O. Hill, Y. Fujii, D. C. Johnson, et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication.Appl. Phys. Lett., 1978, 32(10):647-649.
    [6] G. Meltz, W. W. Morey, and W. H. Glenn. Polarimetric heterodyning Bragg-grating fiber-laser sensor. Opt. Lett., 1993, 18:1976-1978.
    [7] P. Lemaire, and R. M. Alkins. High pressure H2 loadings as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres. Electron. Lett., 1993, 29(13):1191-1192.
    [8] Hill K O. Bragg grating fabricated in monomode photosensitive optical fiber by UV expose through a phase mask. Appl. Phys. Lett., 1993, 62(10):1035-1037.
    [9] Vengsarkar A M, Lemaire P J, Judkins J B, et al. Long-Period fiber gratngs as band-rejection filters. J. Lightwave Technol, 1996, 14(1):58-65.
    [10] Bhatia V, Vengsarkkar A M. Optical fiber Long-Period gratng sensors. Opt. Lett., 1996, 21:692-694.
    [11] Erdogan T. Fiber grating spectra. J. Lightwave Technol. 1997, 15(8):1277-1294.
    [12] Erdogan T. Cladding-mode resonances in short and long period fibre grating filters. J. Opt. Am. A, 1997, 14(8):1760-1773.
    [13] Davis D D, Gaylord T K, Glytsis E N, et al. Long-Period fiber gratng fabrication with focused CO2 laser pulses. Electron. Lett., 1998, 34(3):302-303.
    [14] Y. J. Rao, Y. P. Wang, Z. L. Ran. Novel fiber-optic sensors based on long- period fiber gratings written by high-frequency CO2 laser pulses.J.of Lightwave Technol. 2003, 21:1320-1322.
    [15] Y. Liu, K. S. Chiang. CO2 laser writing of long-period fiber gratings in optical fibers under tension. Opt. Lett. 2008,33(17):1933-1935.
    [16] H. W. Lee, Y. Liu, and K. S. Chiang, IEEE Photon. Technol. Lett., 2008, 20:132-134.
    [17] Yunqi Liu, and Kin Seng Chiang. CO2 laser writing of long-period fiber gratings in optical fibers under tension. Opt. Lett., 2008, 33(17):1933-1935.
    [18] S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh. Fiber Bragg gratings made with a phase mask and800-nm femtosecond radiation. Opt. Lett.. 2003, 28:995-957.
    [19] M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm. Opt. Lett., 2007, 32(5):454-456.
    [20] Jens Thomas, Christian Voigtl?nder, Damian Schimpf, Fabian Stutzki, Elodie Wikszak, Jens Limpert, Stefan Nolte, and Andreas Tünnermann, Continuously chirped fiber Bragg gratings by femtosecond laser structuring, Opt. Lett., 2008, 33(14):1560-1562.
    [21] Martin Bernier, Yunlong Sheng and Réal Vallée. Ultrabroadband fiber Bragg gratings writtenwith a highly chirped phase mask and Infrared femtosecond pulses. Opt. Express., 2009, 17(5):3285-3290.
    [22] B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale. Microstructured Optical Fiber Devices. Opt. Express., 2001, 9:698–713.
    [23] T. T. Alkeskjold, J. L?gsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T.Wu. All-opticalmodulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt. Express., 2004, 12:5857–5871.
    [24] T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J.Wojcik. Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres. Meas. Sci. Technol., 2006, 17:985–991.
    [25] P. Lesiak, T. R. Wolinski, K. Brzdakiewicz, K. Nowecka, S. Ertman, M. Karpierz, A. W. Domanski, and R. Dabrowski. Temperature tuning of polarization mode dispersion in single-core and two-core photonic liquid crystal fibers. Opt. Electronics Review., 2007, 15:27–31.
    [26] T. Erdogan, Fiber grating spectra. J. Lightwave Technol., 1997, 15:1277–1294.
    [27] M. D. Nielsen, G. Vienne, et al. Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber. Opt. Lett., 2003, 28:236-238.
    [28] P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton. Long period grating resonances in photonic bandgap fiber. Opt. Express., 2006, 14:3007–3014.
    [29] P. Steinvurzel, E. D. Moore, E. C. Magi, and B. J. Eggleton. Tuning properties of long period gratings in photonic bandgap fibers. Opt. Lett., 2006, 31:2103–2105.
    [30] Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi and K. Oh. Electrically controllable long-period liquid crystal fiber gratings. IEEE Photon. Technol. Lett., 2000, 12:519–521.
    [31] H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee, and S. D. Lee. Suppression of the cladding mode interference in cascaded long period fiber gratings with liquid crystal claddings. Mol. Cryst. Liq. Cryst., 2004, 413:399–406.
    [32] J. Li, and S. T. Wu. Extended Cauchy equations for the refractive indices of liquid crystals. J. Applied Physics., 2004, 95:896–901.
    [33] D. Lee, Y. Jung, Y. S. Jeong, and K. Oh. Highly polarization-dependent periodic coupling in mechanically induced long period grating over air–silica fibers. Opt. Lett., 2006, 31(3):296-298.
    [34] Yiping Wang, Wei Jin, Jian Ju, et al. Long period gratings in air-core photonic bandgap fibers. Opt. Expr., 2008, 16(4)2784-2790.
    [35] Jacques Albert. Grating formation in pure silica-core fibers. Opt. Lett., 2002, 27(10):809-811.
    [36] D. Nikogosyan.Multi-photon high-excitation-energy approach to fibre grating inscription. Meas. Sci. Technol., 2007, 18:R1.
    [37] E. Wikszak, J. Thomas, S. Klingebiel, B. Ortac, J. Limpert, S. Nolte, and A. Tünnermann, Opt. Lett., 2007, 32:2756.
    [38] E. Wikszak, J. Thomas, J. Burghoff, B. Ortac, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann. Opt. Lett., 2006, 31:2390.
    [39] Y. Lai, K. Zhou, K. Sugden, and I. Bennion. Point-by-point inscription of first-order fiber Bragg grating for C-band applications. Opt. Express., 2007, 15:18318-18325.
    [40] A. Martinez, I. Y. Khrushchev, and I. Bennion. Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser. Opt. Lett., 2006, 31:1603-1605.
    [41] C. Smelser, D. Grobnic, and S. Mihailov. Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask. Opt. Lett., 2004, 29:1730-1732.
    [42] S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation.. Opt. Lett., 2003, 28:995-997.
    [43] N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson. Stable high-power continuous-wave Yb3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating. Opt. Lett., 2007, 32:1486-1488.
    [44] J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann. Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique. Appl. Phys. A, 2007, 86:153-157.
    [45] Danny Noordegraaf, Lara Scolari, et al. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers Optical Society of America. Opt. Express., 2007, 15(13):7901-7912.
    [46] Christopher W. Smelser, Stephen J. Mihailov, and Dan Grobnic. Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask. Opt. Lett., 2004, 29(18):2127-2129.
    [47] S. A. Slattery, D. N. Nikogosyan, and G. Brambilla. Fiber Bragg gratinginscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication. J. Opt. Soc. Am. B, 2005, 22:354-361.
    [48] N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke. Application of an ARROW model for designing tunable photonic devices. Opt. Express., 2004, 12:1540–1550.
    [49] A. M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe. Long-period fiber gratings as band-rejection filters. J. Lightwave Technol., 1996, 14:58–65.
    [50] A. M. Vengsarker, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson. Long-period fiber-grating-based gain equalizers. Opt. Lett., 2006, 21:336–338.
    [51] V. Bhatia and A. M. Vengsarkar. Optical fiber long-period grating sensors. Opt. Lett., 1996, 21:692–694.
    [52] L. Rindorf, J. B. Jensen, M, et al. Photonic crystal fiber long-period gratings for biochemical sensing, Opt. Express., 2006, 14:8224-8231.
    [53] B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser. Grating resonances in air-silica microstructured optical fibers. Opt. Lett., 1999, 24:1460-1462.
    [54] A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell. Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves. Opt. Lett., 2000, 25:1499-1501.
    [55] J. Kim, G. J. Kong, U. C. Paek, K. S. Lee, and B. H. Lee. Demonstration of an ultra-wide wavelength tunable band rejection filter implemented with photonic crystal fiber. IEICE Trans. Electron., 2005, E88-C:920-924.
    [56] Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee, and B. Lee. Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding. Opt. Eng., 2003, 42:964–968.
    [57] E. Wikszak, J. Thomas, J. Burghoff, B. Orta?, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann. Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating. Opt. Lett., 2006, 31:2390-2392.
    [58] G. Androz, D.Faucher, M.Bernier, and R.Vallée. Monolithic fluoride-fiber laser at 1480 nm using fiber Bragg gratings. Opt. Lett., 2007, 32:1302-1304.
    [59] Y. Dai, X. Chen, J. Sun, and S. Xie. Wideband multichannel dispersion compensation based on a strongly chirped sampled Bragg grating and phase shifts. Opt. Lett., 2006, 31:311-313.
    [60] G. Brochu, S. LaRochelle, and R. Slavick. Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry-Pérot fiber lasers. J. Lightwave Technol., 2005, 22:44-53.
    [61] A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion. All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings.Appl. Phys. Lett., 1995, 66:1053-1055.
    [62] D. J. Kitcher, A. Nand, S. A. Wade, R. Jones, G. W. Baxter, and S. F. Collins. Directional dependence of spectra of fiber Bragg gratings due to excess loss. J. Opt. Soc. Am. A., 2006, 23:2906-2911.
    [63] M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming. Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation. IEEE Photon. Technol. Lett., 2000, 12:498-500.
    [64]程飞.基于长周期光纤光栅化学敏感性的研究[M].吉林长春:吉林大学电子科学与工程学院, 2007.
    [65] Andreas Othonos, and Kyriacos Kalli. Fiber Bragg gratings fundamentals and applications in telecommunications and sensing. Artech House Boston London.
    [66] C.R.Giles, and V.Mizrahi. Proc. IOOC’95:ThC-2.
    [67] Pan. J. J, and Y.shi. Steep skirt fibre Bragg grating fabrication using a new apodised phase mask. Electron. Lett., 1997, 33:1895-1896.
    [68] Y. J. Rao, D. J. Webb, et al. Bragg-grating temperature sensor system for medical applicati-ons. J. Lightwave Technol. 1997, 15:779-785.
    [69] R. M. Measures, S. Melle, and K. Liu. Wavelength demodulated Bragg grating fiber optic sensing systems for addressing smart structure critical issues. J. Smart Mater. Struc., 1992, 1:36.
    [70] A. M. Vengsarkar, Long-period fiber gratings shape optical spectra. Laser Focus World., 1996, 32:243-248.
    [71] R. Leberf, B. Landousies, T. Georges, et al. Theoretical study of the gain equalization of a stabilized gain EDFA for WDM applications. J. Lightwave Technol., 1997, 15:766.
    [72] C. D. Poole, J. M. Wiesenfeld, D. J. Di Giovanni, and A. M. Vengsarkar. Optical fiber-based dispersion compensation using higher order modes near cutoff. J. Lightwave Technol., 1994, 12:1746.
    [73] H. J. Patrick, C. C. Chang, and S. T. Vohra, Analysis of the response of long period fiber gratings to external index of refraction. Electron. Lett., 1998, 34:1773-74.
    [74] Wei Liang, Yanyi Huang, et al. Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett., 2005, 86:151122.
    [75] Ignacio Del Villar, Ignacio R. Matías, and Francisco. J. Arregui Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition. Opt. Express., 2005, 13(1)56-69.
    [76] Yunjiang Rao. In fiber Bragg grating sensors. Meas. Sci. Technol., 1997, 8:355-375.
    [77] A. D. Kersey, M. A. Davis, H. J. Patrick, et al. Fiber grating sensors. J. of Lightwave Technology. 1997, 15(8):1442-1461.
    [78] A. Ghali, and R. Favre. Concrete Structures: Stresses and Deformations. E & FN Spon, Chapman and Hall, London, 2ed. 1994.
    [79] Y. Wang, S. C. Tjin, J. Z. Hao, T. K. Lim, K. B. Tan, K. M. Chan, P. Moyo, and J. Brownjohn. Determination of Load-Strain Characteristics of Concrete Slabs by Using Embedded Fiber Bragg Grating. Proceedings of SPIE, 2000, 4073:297-304.
    [80] Remigius Zengerle, and Ottokar Leminger. Phase-shifted Bragg-grating filter with improved transmission characteristics. J. Lightwave Technol., 1995, 13(12):2354- 2358.
    [81] C.Martijn de Sterke and N.G.R.Broderick. Coupled-mode equations for periodic superstructure Bragg gratings. Opt. Lett., 1995, 20:2039-2041.
    [82] Jorg Hubner, Dan Zauner, and Martin Kristensen. Strong sampled Bragg gratings for WDM applications. IEEE Photonics Technol. Lett., 1998, 10:552-554.
    [83] Ming Yan, Shouyu Luo, et al. Step-changed period chirped long-period fiber gratings fabricated by CO2 laser. Opt. Commun., 2008, 281:2784–2788.
    [84]曹晔,刘波,开桂云,董孝义.光纤光栅传感技术研究现状及发展前景.传感器技术, 2005, 24(12):1-4.
    [85] Spirin V V, ShlyaginM G, Miridonov S V, et al. Fiber Bragg grating sensor for petroleum hydrocarbon leak detection [J]. Optics and Lasers in Engineering, 2000, 32:497-503.
    [86] Tomasel F G, Cortazar O D. Health monitoring of steel cables by interrogation of op tical fiber grating sensors[J]. Journal of Sound and Vibration. 2002, 252(3):573-576.
    [87] Yoshiyuki Kaji, YoshinoriMatsui, Satoshi Kita, et al. App lication of a fiber op tic grating strain sensor for the measurement of strain under irradiation environment [J]. Nuclear Engineering and De2 sign, 2002, 217:283-288.
    [88] Yoji Okabe, Ryohei Tsuji, Nobuo Takeda. App lication of chirped fiber Bragg grating sensors for identification of crack locations in composites[J]. Composites, 2004, 35:59-65.
    [89] Guan Bai, Tam Hwa, et al. Fiber Bragg Grating Tilt Sensor[J]. IEEE Photonics Technology Letters., 2004, 16 (1):224-226.
    [90] Lo Yu lung, Chue Bo rong, Xu Shao hong. Fiber torsion sensor demodulated by a high birefringence fiber Bragg grating[J]. Opt. Commun., 2004, 230:287-295.
    [91] Shoichi Takashima, Hiroshi Asanuma, Hiroaki Niitsuma. A water flowmeter using dual fiber Bragg grating sensors and cross correla tion technique[J]. Sensors and Actuators, 2004, 106:66-74.
    [92] Cicero Martelli. Strain and temperature characterization of photonic crystal fiber Bragg gratings. Opt. Lett., 2005, 30(14):1785-1787.
    [93] Ping Lu, and Qiying Chen. Fiber Bragg grating sensor for simultaneous measurement of flow rate and direction Meas. Sci. Technol., 2008, 19:125302.
    [94] Domenico Paladin, Agostino Iadicicc, et al. Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors. Opt. Experess., 2009, 17(2):1042-1054.
    [95] C.S.Kinm, Y.G.Han, J.N.Kim, etal. Enhancement and suppression of the thermal sensitivity of long period fiber gratings fabricated with a CO2 laser. CLE0. 1999: 131-132.
    [96] Sarfraz Khaliq, StephenW James and Ralph P Tatam. Enhanced sensitivity fiber optic long period grating temperature sensor. Meas. Sic. Technol. 13 (2002): 792-795.
    [97]何万迅,施文康,叶爱伦.基于长周期光纤光栅的高灵敏度温度传感方案.传感技术学报.2002,(l):60-63.
    [98] V.Bhatia, D.K.Campbell, D.Sherr, T.G.D’Alberto, etal, Temperature-insensitive and strain- insensitive long-period grating sensors for smart structures. Opt.Eng. 36(7)(1997): 1872-1876.
    [99] Shaohua Chen, Zhengrong Tong, Qida Zhao, etal. A smart bending sensor with a novel temperature-and strain-insensitive long period grating. Sensors and Actuators A.2004,116:103-106.
    [100] Joo-Nyung Jang, Se Yoon Kim, Sun-Wook Kim, etal. Temperature insensitive long-period fiber gratings.Elec.Lett.1999,35(24):2134-2136.
    [101] L.A.wang, C.Y.Lin and G W Chern..A torsion sensor made of a corrugated long period fiber grating. Measurement Science and Technology.2001,12:793-799.
    [102]王义平,饶云江,胡爱姿等.长周期光纤光栅扭曲传感器.光学学报. 2002, 22(9): 1096-1099.
    [103] Y.P.Wang and Y.J.Rao. Long period fiber grating torsion sensor measuring twist rate and determining twist direction simultaneously. Elec.Lett. 2004, 40(3): 164-166.
    [104] Y.Liu, L.Zhnag, J.A.R.Williams and J.Bennion. Bend sensing by measuring the resonance splitting of long-period fiber gratings. Optics Communications. 193(2001):69-72.
    [105] C.C.Ye, S.W.James and R.P.Tatam. Simultaneous temperature and bend sensing with long-period fiber gratings. Optics Lett.2000, 25(14):1007-1009.
    [106] Young-Geun Han,Ju Han Lee and Sang Bae Lee. Discrimination of bending and temperature sensitivities with phase-shifted long-period fiber gratings depending on initial coupling strength. Optics Express. 2004, 12 (14): 3204-3208.
    [107] Heather J.Patriek, Alan D.Kersey, etal. Analysis of the response of long-period fiber gratings to external index of refraction[J].J. of Lightwave Technology. 1998, 16(9): 1606-1612.
    [108]童治,魏淮,王目光等.环境折射率变化对长周期光纤光栅特性影响的研究.光学学报.2002,22(9):1087-1091.
    [109] Zhiyong Wang, J. R. Heflin, Rogers H. Stolen. Analysis of optical response of long period fiber gratings to nm-thick thin-film coatings. OPTICS EXPRESS,2005,13(8):2808-2813
    [110] Nicholas D. Rees, Stephen W. James, Ralph P. Tatam, and Geoffery J. Ashwell. Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays. Optics Letters. 2002, 27(9): 686-688.
    [111]李志全,王莉,黄丽娟等.基于长周期光纤光栅的折射率与浓度传感方案的研究.应用光学.2004,25(4):48-50.
    [112]魏淮,童治,王目光,简水生.镀金属长周期光纤光栅的研究.光学学报.2003, 23(8): 931-936.
    [113]张自嘉,施文康,高侃等.金属包层长周期光纤光栅的理论和实验研究.光学学报.2004, 24(7): 897-901.
    [114]刘云启.Bragg与长周期光纤光栅及其传感器特性研究.南开大学博士学位论文,2000,chapter 6:89-113
    [115] Yokota M, Oka H, Yoshino T. Mechanically induced long period fiber grating and its application for distributed sensing. Proc. 14th Inter. Conf. on OFS 2000, 4185:135-138.
    [116] Patrick H J, Williams G M, Kersey A D,etal. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photo. Tech. Lett.1996, 8(9): 1223-1225.
    [117] Wang Y P, Rao Z L, etal. Bend-insensitive long-period fiber grating sensors. Optics and Lasers in Engineering,2003,21(10):233-239
    [118] Allsop T, Zhang Webb L, D J and Bennion I. Discrimination between strain and temperature effects using first and second-order diffraction from a long-period grating. Optics Communications. 2002,211:103-108.
    [119] Pilevar S, Delisa M P, Zhang Z, etal. Evanescent wave antibody-antigen biosensor based on long period fiber bragg grating. Proc. 14th Inter. Conf. on OFS 2000, 314-317.
    [120] Luo S, Liu Y, Sucheta A, etal. Applications of LPFG fiber optical sensors for relative humidity and chemical-warfare-agents monitoring. In Advanced Sensor System and Applications, Proc. Inter. Conf. on APOC 2002,4920:193-204
    [121] P.Pilla, A.Iadicicco, L.Contessa, etal. Optical chemo-sensor based on long period gratings coated withδform syndiotactic polystyrene. IEEE Photonics Technology Letters, 2005, 17(8): 1713-1715.
    [122] K M Tan, C M Tay, S C Tjin, etal. High relative humidity measurements using gelatin coated long-period grating sensors. Sensors & Actuators: B. Chemical, 2005, 110(2): 335-341.
    [123]徐艳平,顾铮先,陈家璧.长周期光纤光栅薄膜传感器研究.上海理工大学学报, 2005, 27(3):215-218.
    [124] Jian Zhang, Xiling Tang et al, Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical .Optics Express. 2008, 16(11):8317-8323.
    [125] Ming Han, Yunjing Wang, Yunmiao Wang, and Anbo Wang .Fiber-optic physical and biochemical sensing based on transient and traveling long-period gratings Opt. Leet.. 2009,34(1): 100-102
    [126] G. Decher, J. DJHong, Makromol. Buildup of ultrathin multilayer films by a self-assembly process:Ⅰ.Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces .Chem. Symp, 1991, 46:321.
    [127] G. Decher, J. DJHong. Buildup of ultrathin multilayer films by a self-assembly process:II.Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber. Bunsen. Phys. Chem, 1991, 95:1430.
    [128] Gero Decher, Birgit Lehr, et al. New nanocomposite films for biosensors: layer by layer adsorbed films of polyelectrolytes. proteins or DNA Biosensors and Bioelectronics, 1994, 9(9-10):677-684.
    [129] Gero Decher. Fuzzy nanoassemblies:Toward layered polymeric multi-composites. Science, 1997, 277:1232.
    [130] G Decher, J D Hong. Schmitt Buildup of ultrathin multilayer films by a self-assembly process:III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces Thin Solid Films, 1992, 831(5):210-211.
    [131] Arregui F J, Liub Y, Matiasa I R and Claus R O. Optical fibre humidity sensor using a nano Fabry–Perot cavityformed by the ionic self-assembly method. Sensors and Actuators B: Chemical. 1999,59(1):54-59
    [132] Hong H, Davidov D, Chayet H, etal. Blue luminescence induced by confinement in self-assembled films [J].Macromolecules, 1997, 30 (1): 67-73.
    [133] P.T.Hammond. Form and Function in Multilayer Assembly: New Applications at the Nanoscale. Adv. Mater. 2004,16(15): 1271-1293
    [134] J.M.Levasalmi, T.J.McCarthy, Poly(4-methyl-l-pentene)-supported polyelectrolyte multilayer films:preparation and gas permeability . Macromolecules 1997, 30: 1752-1757
    [135] F.Van Ackern, L.Krasemann,B.Tieke. Ultrathin membranes for gas separation and pervaporation prepared upon electrostatic self-assembly of polyelectrolytes. Thin Solid Films 1998, 329:762-766
    [136] D.M.Sullivan,M.L.Bruening. Ultrathin, gas-selective polyimide membranes prepared from multilayer polyelectrolyte films.Chem.Mater.2003,15(1): 281-287
    [137] B.W.Stanton, J.J.Harris, M.D.Miller, M.L.Bruening. Ultrathin, multilayeredpolyelectrolyte films as nanofiltration membranes. Langmuir. 2003,19(7): 7038-7042
    [138] T.R.Farhat,J.B.Schlenoff,. Doping-controlled ion diffusion in polyelectrolyte multilayers: mass transport in reluctant exchangers. J.Am.Chem.Soc. 2003, 125(15): 4627-4636
    [149] M.L.Bruening, D.M.Sullivan. Enhancing the ion-transport selectivity of multilayer polyelectrolyte membranes.Chem.Eur.J.2002,8(17): 3832-3837
    [140] M.Onda,Y.Lvov,K.Ariga,T.Kunitake. Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption. Biotechnol.Bioeng. 1996,51(2): 163-167
    [141] D.Trau, R.Renneberg,. Encapsulation of glucose oxidase microparticles within a nanoscale layer-by-layer film: immobilization and biosensor applications. Biosensor and Bioelectron. 2003, 18(12): 1491-1499
    [142] E.S.Forzani, M.Otero, M.A.Perez, M.L.Teijelo, E.J.Calvo,. The Structure of Layer-by-Layer Self-Assembled Glucose Oxidase and Os(Bpy)2ClPyCH2NH?Poly(allylamine) Multilayers: Ellipsometric and Quartz Crystal Microbalance Studies.Langmuir 2002, 18(10): 4020-4029
    [143] T.Hoshi, H.Saiki, S.Kuwazawa, C.Tsuchiya, Q.Chen, J.Anzai. Selective Permeation of Hydrogen Peroxide through Polyelectrolyte Multilayer Films and Its Use for Amperometric Biosensors.Anal.Chem.2001, 73(21): 5310-5315.
    [144] C.A.Constantine, S.V.Mello, A.Dupont, X.H.Cao, D. Stantos, O.N.Oliveira, F.T.Strixino,E.C.Pereira,T.C.Cheng,J.J.Defrank,R.M.Leblanc. Layer-by-Layer Self-Assembled Chitosan/Poly(thiophene-3-acetic acid) and Organophosphorus Hydrolase Multilayers.J.Am.Chem.Soc.2003,125(7): 1805-1809.
    [145] C.A.Constantine, K.M.Gattas-Asfura, S.V.Mello, G.Crespo, V.Rastogi, T.C.Cheng, J.J.DeFrank, R.M.Leblanc. Layer-by-Layer Biosensor Assembly Incorporating Functionalized Quantum Dots. Langmuir. 2003,19(23): 9863-9867.
    [146] M.K.Ram, P.Bertoncello, H.Ding, S.Paddeu, C.Nicolini. Cholesterol biosensors prepared by layer-by-layer technique.Biosens.Bioelectron.2001,16(9-12): 849-856
    [147] Lchinosel, Tagawa H,Mizuki H. Ultrathin molybdenum polyoxometalate polyelectrolyte multilayer films [J].Langmuir, 1998,14(13): 3462-3465.
    [148] Caruso F, Kurth D G,Vo lkmerD, et al. Formation process of ultrathin multilayer films of molybdenum oxide by alternate adsorption of octamolybdate and linear polycations [J]. Langmuir, 1998, 14 (1): 187-192.
    [149] N.Anicet,C.Bourdillon, J.Moiroux,J.M.Saveant. Step-by-Step Avidin?Biotin Construction of Bienzyme Electrodes. Kinetic Analysis of the Coupling between the Catalytic Activities of Immobilized Monomolecular Layers of Glucose Oxidase and Hexokinase. Langmuir. 1999,15(19): 6527-6533
    [150] Ming Han, Yunjing Wang, Yunmiao Wang, and Anbo Wang. Fiber-optic physical and biochemical sensing based on transient and traveling long-period gratings. Opt.Lett.. 2009, 34(1): 100-10
    [1] M.C.Farries, K.Sugden, D.C.J.Reid, et al. Very broad reflection bandwidth (44nm) chirped fibre gratings and narrow bandpass filters produced by the use of an amplitude mask. Electron. Lett., 1994, 30:891-892.
    [2] K. O. Hill, S. Malo, F. Bilodeau, D. C. Johnson, and J. Albert. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett., 1993, 62:1035-1037.
    [3] Vengsarkar A. M, Lemaire P. J, Judkins J. E, et al. Long period fiber gratings as band-rejection filters[J]. Jounrnal of lightwave Technology, 1996, 14(1):58-65.
    [4] W.H.Loh, M.J.Cole, M.N.Zervas, S.Barcelos, and R.I.Laming. Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique. Optical Society of America, 1995, 20(20):2051-2053.
    [5]赵志勇,于永森,马玉刚,曹英辉,郑伟,钱颖,卓仲畅,郑杰,张玉书.基于啁啾光纤光栅的增益平坦器滤波器.吉林大学学报(理学版), 2004, 42(2):255-256.
    [6] K. O. Hill, B. Malo, K. A. Vineberg. et al., Efficient mode conversion in telecommunication fibre using externally written gratings, Electron. Lett., 1990, 26:1270-1272.
    [7] S. Y. Liu, H. Y. Tam, and M. S. Demokan, Low-cost microlens array for long-period grating fabrication, Electron. Lett., 1999, 35(1):79-81.
    [8] D. P. HangandP, and S. Russell. Photo induced refractive-index changes in germanosilicate fibers. Opt. Lett., 1991, 15:102.
    [9] J. Nishii, H. Yamanaka, H. HosonoandH. Kawazoe. Characteristics of 5-eV absorption band in sputter deposited GeO2-SiO2 thin glass films. Appl. Phys. Lett., 1994, 64:282.
    [10] D. P. Handand, and S. J. Russell. Photoinduced refractive-index changes in Germanosilicate fibers. Opt. Lett., 1990, 15:12-14.
    [11] D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainslie, Direct observation of UV induced bleaching of 240 nm absorption band in photosensitive germanosilicate glass fibres. Electron. Lett., 1992, 28:369-371.
    [12] J. Pbernardinand, and N. M. Lawandy. DynamicsoftheformationofBragggratings in germanosilicate optical fibers. Opt. Commun., 1990, 79:194-198.
    [13] K. Schiang, M. G. Sceats, and D. Johnson. Ultravioletphotolytic-induced changes in optical fibers: the thermal expansion coefficient. Opt. Lett., 1993, 18:965-968.
    [14] P. Cordier, J. C. Doulhan, E. Fertein, P. Bernage, P. Niay, J. F. Bayon, and T. Georges. TEM characterization of structural changes in glass associated to Bragg grating in scription in a germanosilicate opticalfibre perform. Opt. Commun., 1994, 111:269-271.
    [15] A. Inoue, M. Shigehara, M. Ito, M. Inai, Y. Hattori, and T. Mizuami. Fabbricationand application of fiber Bbragg grating-areview. Optoelectronics Devicesand Technologies. 1995, 10:119.
    [16]柏葆华,钱颖,孙英志等.掺Ge/B光纤紫外光敏性的研究.光电子.激光, 2000, 11(5):490-492.
    [17]裴丽,宁提纲,谢增华,简水生.光纤光栅制作方法.光纤与电缆及其应用技术, 2000, 5.
    [18]于永森. Bragg光纤光栅的制作及在传感器和光纤放大器中应用研究[D].吉林长春:吉林大学电子科学与工程学院,2005
    [19]秦莉.紫外写入长周期光纤光栅制作技术及特性研究[D].第5章,吉林长春:吉林大学电子科学与工程学院, 1999.
    [20] Ashish M. Vengsardar. Long period fiber grating as band-rejection filter [J]. Journal of Lightwave Technol, 1996, 14(1):58-65.
    [21]秦莉.紫外写入长周期光纤光栅制作技术及特性研究[D].第4章,吉林长春:吉林大学电子科学与工程学院, 1999.
    [22] Vikram Bhatia, and Ashish M. Vengsarkar. Optics Letters, 1996, 21:692.
    [23] Erdogan T. Cladding-mode resonances in short and long period fiber grating filters[J]. J. Opt. Soc. Am. A., 1997, 14(8):1760-1773.
    [24]江国舟.长周期光纤光栅谐振波长的研究[J].湖北师范大学学报(自然科学版), 2005, 25(3):25-28.
    [25] Sun Junqiang, Li Yi, and Liu Deming. Widely tunable Long Period Fiber Gratings with interpolymers as sensitivity-enhanced materials. Opt. Commun., 2005, 249: 193-200.
    [1]李川,张以谟,赵永贵,李立京.光纤光栅原理、技术与传感应用[M].北京:科学出版社, 2005.
    [2] Yariv A. Coupled-Mode Theory for Guided-Wave Optics. IEEE Journal of Quantum Electronics, 1973, 9:919-933.
    [3] Kogelnik H. Filter Response of Nonuniform Almost-Periodic Structures. Bell System Technical Journal, 1976, 55:109-126.
    [4] Winick K A. Effective-Index Method and Couple-Mode Theory for Almost Periodic Waveguide Gratings: A Comparison. Applied Optics, 1992, 31:757-764.
    [5] Yamada M, and Sakuda K. Analysis of Almost-Periodic Distributed Feedback Slab Waveguide Via a Fundamental Matrix Approach. Applied Optics, 1987, 26:3474-3478.
    [6] Weller-Brophy L A, Hall D G. Analysis of Waveguide Gratings: Application of Rouard’s Method. Journal of the Optical Society of America A, 1985, 2:864-871.
    [7] Frolik J L, and Yagle A E. An Asymmetric Discrete-Time Approach for the Design and Analysis of Periodic Waveguide Gratings. IEEE Journal of Lightwave Technology, 1995, 13:175-185.
    [8] Poladian L. Graphical and WKB Analysis of Nonuniform Bragg Gratings. Physical Reviews E, 1993, 48:4758-4767
    [9] Hirnon T, and Yoshikuni Y. A Hamiltonian Formulation for Couple Wave Equations. IEEE Journal of Quantum Electronics, 1974, 8:1751-1755.
    [10] Phladian L. Variational Technique for Nonuniform Gratings and Distributed Feedback Lasers. Journal of the Optical Society of America A, 1974, 11:1846-1853.
    [11] Russel St J. Bloch Wave Analysis of Distributed and Pulse Propagation in Pure Distributed Feedback Structures. Journal of Modern Optics, 1991, 38:1599-1619.
    [12] Born M, and Wolf E. Principles of Optics, 7th edition, Oxford University Press, London, 1999.
    [13]蔡圣善,朱耘,徐建军.电动力学[M],第二版.北京:高等教育出版社, 2002.
    [14]张克潜,李德杰.微波与光电子学中的电磁理论[M],第二版.北京:电子工业出版社, 2001.
    [15]陈秉乾,舒幼生,胡望雨.电磁学专题研究[M].北京:高等教育出版社, 2001.
    [16] Jackson J D. Classical Electrodynamics, 3rd Edition, John Wiley& Sons Inc, 1998.
    [17]叶培大,吴彝.光波导技术基本理论[M].北京:人民邮电出版社, 1981.
    [18]叶培大.光纤理论[M].上海:知识出版社, 1985.
    [19]余守宪.导波光学物理基础[M].北京:北京交通大学出版社, 2002.
    [20]李玉权,崔敏.光波导理论与技术[M].北京:人民邮电出版社, 2002.
    [21]廖延彪.光纤光学[M].北京:清华大学出版社, 2000.
    [22]张国顺,何家祥,肖桂香.光纤传感技术[M].北京:水利电力出版社, 1988.
    [23] Mizrahi V, and Sipe J E. Optical Properties of Photosensitive Fiber Phase Gratings. IEEE Journal of Lightwave Technology, 1993, 11:1513-1517.
    [24] Kogelnik H, and Shank C W. Couple Wave Theory of Distributed Feedback Lasers. Journal of Applied Physics, 1972, 43:2327-2335.
    [25] Kogelnik H. Theory of Optical Waveguides in Guided-Wave Opto-Electronics. Springer-Verlag, 1990.
    [26] Yariv A, and Yeh P. Optical Waves in Crystals. John-Wiley, New York, 1984.
    [27] Erdogan T. Fiber Grating Spectra. IEEE Journal of Lightwave Technology, 1997, 15:1277-1294.
    [28] Othonos A, Lee X, and Measure R M. Superimposed Multiple Bragg Gratings. Electronics Letters, 1994, 30(23): 1972-1973.
    [29] Sipe J E, Poladian L, Martijin de Sterke C. Propagation Through Nonuniform Grating Structures. Journal of the Optical Society of America A, 1994, 11:1307-1320.
    [30]廖延彪.光纤光学[M].北京:清华大学出版社, 2000.
    [1] Meltz G, Morey W W. Bragg grating formation and germanosilicate fiber photosensitivity. SPIE, 1991, 1516:185-199.
    [2] Kersey A D, and Marronr M J. Fiber Bragg grating high-magnetic-field probe. Proc SPIE Int Soc Opt Eng, 1994, 2360:53-56.
    [3] Botsev Y, Gorbatov N, Tur M, et al. Fiber Bragg grating sensing in smart Composite patch repairs for aging air craft[J]. Proc SPIE Int Soc Opt Eng, 2004, 5502:100-103.
    [4] Li H C H, Herszberg I, Mouritz A P, et al. Sensitivity of embedded fiber optical bragg grating sensor to disbonds in bonded composite ship joints Composite Structures, 2004,66(1-4):239-248.
    [5] Meissner K E, Wwanson J, Thomas H, et al. Enhancd resolution folded architecture spectral detector for fiber optical sensor. Proc SPIE Int Soc Opt Eng, 2004, 5502:418-422.
    [6] Ko J M, Ni Y O. Technology developments in structural health monitoying of large-scale bridges. Engineering Structures, 2005, 27:1715-1725.
    [7] Yoffe G W, Krug P A, and OueUette F. Passive temperature-compensating package for optical fiber gratings ppl. Optics, 1995, 34:6859-6861.
    [8]王目光,李唐军,卓锋,赵玉成,简水生.光纤光栅传感器应变和温度交叉敏感问题分析[J].光通信研究, 2001, (6):50-53.
    [9] Kersey A D, Berkoff T A, and Morey W W. Fiber-optic Bragg grating strain sensor with drift compensated high resolution interferometric wavelength-shift detection. Opt. Lett., 1993, 18(1):72-74.
    [10] Yoffe G W, Krug P A, and OueUette F. Passive temperature-compensating package for optical fiber gratings [J]. Appl. Optics., 1995, 34(30):6859-6861.
    [11] Xu M G, Archambaut J L, Reekie L, et al. Discrimination between strain and temperature effects using dua1-wavelength fibre grating sensors. Electron. Lett., 1994, 30(13):1085-1087.
    [12]钱颖,张鹰,于永森,郑伟,张玉书.基于特殊悬臂梁的光纤Bragg光栅应力传感器,吉林大学学报(工学版), 2006, 36(05):0757-0760.
    [13]孙安,乔学光,贾振安等.一种新颖的温度补偿光纤光栅应力传感测量技术.光学技术, 2003, 29(5):534-536.
    [1]李泽民,光纤通信(原理和技术),第二章.学技术文献出版社, 1992.
    [2] M. J. Adams. An Introduction to Optical Waveguide, Chapter 7. New York, 1981.
    [3] A. Yariv. Optical Electronics, Chapter 3. CBS College Publishing, 1985.
    [4] A.雅里夫, P.叶著,于荣金,金锋译.晶体中的光波.科学出版社, 1991.
    [5] T. Erdogan. Fiber grating spectra. J. Lightwave Technol, 1997, 15(8):1278-1294.
    [6]秦莉.紫外写入长周期光纤光栅制作技术及特性研究[D],第3章.吉林长春:吉林大学电子科学与工程学院, 1999.
    [7] Vengsarkar A M, Lemaire P J , Judkins J B, et al. Long-period Fiber Gratings as Band-Rejection Filters[J]. J Lightwave Technology, 1996, 14(1):58-65.
    [8] Shu Xuewen, Zhang Lin, and Bennion I. Sensitivity characteristics of long-period fiber gratings.J Lightwave Technology, 2002, 20(2):255-266.
    [9] Kong M, Tong, Wei H, and Zhou W. Cladding mode resonances in Long-period fiber gratings. Acta Photonica Sinica, 1998 ,27(5):433-437.
    [10] Vikram Bhatia, and Ashish M. Vengsarkar Optics Letters, 1996, 21:692-695.
    [11] Erdogan T. Cladding-mode resonances in short and long period fiber grating filters. J. Opt. Soc. Am. A., 1997, 14(8):1760-1773.
    [12]江国舟,长周期光纤光栅谐振波长的研究[J].湖北师范大学学报(自然科学版), 2005, 25(3):25-28.
    [13] Lee B H , Liu Y, Lee S B, et al. Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index[J]. Opt . Lett., 1997, 22(23):1769-1771.
    [14]刘云启.布喇格与长周期光纤光栅及其传感特性研究[D]. 2003, 03:102-103.
    [1] Vikram Bhatia, Optical fiber long-period grating sensors. Opt. Lett., 1996, 21(9):692-694
    [2] Stephen W J, Rames and Ralph P Tatam. Optical fibre long-period grating sensors characteristics and application,Meas. Sci. Technol., 2003, 14:49-61.
    [3] L. R. Chen. Phase-shifted long-period gratings by refractive index-shifting. Opt. Commun., 2001, 200(1-6):187-191.
    [4] Allsop T, Zhang L, and Bennion I. Detection of organic aro-matic compounds by a long period fibre grating optical sensor with optimized sensitivity[J]. Opt. Commun., 2001, 191(3-6):181-190.
    [5] M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley. Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor. Anal. Chem., 2000, 72(13):2895–2900.
    [6] A. Cusano, A. Iadicicco, et al. Cladding mode reorganization in high refractive index coated long-period gratings: effects on the refractive-index sensitivity. Opt. Lett., 2005, 30(19):2536-2538.
    [7] P. T. Hammond. Form and Function in Multilayer Assembly: New Applications at the Nanoscale. Adv. Mater., 2004, 16(15):1271-1293.
    [8] Ignacio Del Villar, and Ignacio. R. Matias. Long-Period Fiber Gratings With Overlay of Variable Refractive Index. IEEE Photonics Technology Letters, 2005, 17(9): 1893-1895.
    [9] Andrea Cusano, Agostino Iadicicco, et al. Cladding mode reorganization in high refractive index coated long-period gratings:effects on the refractive-index sensitivity. Opt. Lett., 2005, 30(19):2536-2538.
    [10] Falate R, Kamikawachi R C, Muller M, Kalinowski H J, and Fabris J L, Fiber optic sensors for hydrocarbon detection. Sensors and Actuators B, 2005, 105(2):430-436.
    [11] S. Yin, K. W. Chung, and X. Zhu, A novel all-optic tunable long-period grating using a unique double-cladding layer, Opt. Commun., 2001, 196(1-6):181-186.
    [12] P. Pilla, A.Ladicieco, et al. Optical Chemo-Sensor Based on Long Period Gratings Coated WithδForm Syndiotactic Polystyrene. IEEE Photon. Technol. Lett., 2005, 17(8):1713-1715.
    [13] J. L. Tang, S. F. Cheng, et al. Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating. Sens. Actuators. B, 2006,119(1):105-109.
    [14] Lee B H, Liu Y, Lee S B, et al. Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index[J]. Opt. Lett., 1997, 22(23):1769-1771.
    [15] G. Decher, J. DJHong, Makromol. Buildup of ultrathin multilayer films by a self-assembly process:Ⅰ.Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces .Chem. Symp, 1991, 46:321.
    [16] G. Decher, J. DJHong. Buildup of ultrathin multilayer films by a self-assembly process:II.Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber. Bunsen. Phys. Chem, 1991, 95:1430.
    [17] Gero Decher, Birgit Lehr, et al. New nanocomposite films for biosensors: layer by layer adsorbed films of polyelectrolytes. proteins or DNA Biosensors and Bioelectronics, 1994, 9(9-10):677-684.
    [18] Gero Decher. Fuzzy nanoassemblies:Toward layered polymeric multi-composites. Science, 1997, 277:1232.
    [19] G Decher, J D Hong. Schmitt Buildup of ultrathin multilayer films by a self-assembly process:III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces Thin Solid Films, 1992, 831(5):210-211.
    [20] Wang Z. Y, He?in J. R, Rogers H. S, and Siddharth R, Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayers. Appl. Phys. Lett., 2005, 86(22):223104.
    [21] D. R. Nicholas, W. J . Stephen, and P. T. Ralph. Optical fiber Long-period gratings with Langmuir-Blodgett thin-film overlays. Opt. Lett., 2002, 27(9):686-688.
    [22] R. Falciai, A. G. Mignani, and A. Vannini. Long-period gratings as solution concent ration sensors [J]. Sensors and Actuators, 2001, B74:74-77.
    [23] C. Tsao. Optical Fiber Waveguide Analysis[M]. Oxford University Press, 1992.
    [24] Ying Qian, Yong-Sen Yu, Qiu-Shun Li , Si-Zhu Wu, Bai-Liang Yang and Yu Shu Zhang. High sensitivity long period fiber grating sensor for detection of nitrite Chemical Reserch in Chinese Universities,have been received.
    [25] Qiushun Li, Ying Qian, Yongsen Yu, Gang Wu, Juntao Yan, and Hongyan Wang. Actions of Sodium Nitrite on Long Period Fiber Grating with Self-assembled.
    [26] S. Yoshida, S. Kuwano, and K. Iwashita. Gain-flattened EDFA with high Al concentration for multistagerepeatered WDM transmission systems.Electron. Lett. 1995, 31(20):1765-1767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700