土石坝的静动力分析研究及黄壁庄水库主坝安全评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄壁庄水库是全国病险库之一,为确保水库的安全运行,有必要对大坝进行安全鉴定。土石坝的应力应变分析,可找出坝体的应力和位移变化规律,确定拉应力区及剪切破坏区,判断可能形成裂缝的部位,为坝体的安全鉴定提供理论依据。本文对ANSYS进行了二次开发,利用APDL语言编制了土石坝二维线性、非线性静力有限元分析程序,非线性分析采用邓肯张E--B模型计算土石坝的应力和变形,结合坝体修建过程以及蓄水过程,采用中点增量法计算,对破坏的单元进行了无拉分析和剪坏处理;通过室内三轴试验,测定了黄壁庄水库主坝的邓肯张E-B模型的计算参数,并编写了相应的参数计算程序;根据土石坝动力计算的特点,开发了动力非线性计算程序,用于土石坝的地震反应分析,计算采用等效线性粘-弹性模型,此模型以线性粘弹性理论为基础,同时考虑了土体的非线性性质。ANSYS程序使用Newmark时间积分方法求解动力方程。通过算例,对程序全部进行了验证,所编程序可靠、准确。利用这些程序对黄壁庄水库主坝进行了线性、非线性静力、非线性动力分析计算,主坝坝体的应力、位移分布符合一般规律,在地震作用下主坝的动力反应较弱,对大坝的安全影响不大。所有计算分析表明,黄壁庄水库主坝的安全是可以得到保证的,为坝体的安全鉴定提供了理论依据。
Huangbizhuang Reservoir is one of the reservoirs which are prone to dangers and accidents. To ensure its safe working , it is necessary to appraise the dam's safety. According to the stress-strain analysis of the dam, the law of the stress and strain change can be found. Based on the stress or shear failure section, the location where the cracks will appear can be defined. Thus,the safety of the dam can be appraised. By using APDL language, the linear and nonlinear finite element method programs for static analysis of dam are developed in this paper. Duncan-Chang E-B Model is adopted in the nonlinear analysis. On the basis of the process of the construction and water conservancy , the method of midpoint increment is used in the calculation . The solutions of some failed elements are adjusted through no-tensile-stress analysis or shear-failure disposal. Besides, Duncan-Chang E-B Model parameters of materials have been determined by the triax
    ial shear test in the laboratory. Data processing program and parameter calculation program by APDL language are also developed. Furthermore, according to the characteristics of the dynamic calculation, nonlinear finite element method program is developed to calculate the dynamic response analysis of dam . The equivalent linear viscosity-elasticity model is adopted in the calculation. This model not only bases on the linear viscosity-elasticity theory but also considers the nonlinear nature of soil. The full method uses the full system matrices to calculate the transient response and the Newmark time integration technique is used to solve the dynamic equation in ANSYS program. The calculation examples show that the solution is highly accurate; all the programs are proved to be credible and satisfactory. By using these programs, the linear, nonlinear static analysis and nonlinear dynamic analysis of the Huangbizhuang major dam are finished. The distributions of the stress and strain have been worked out; the
    stress and displacement accord with the general rule. The dynamic response is very weak. The whole calculation and analysis can prove the safety of the major dam, and these provide the theoretical foundations for the Dam's Safety Appraisal Work.
引文
[1] 王宏硕,翁情达.水工建筑物 (专题部分) [M].北京:水利电力出版社,1990.205~250.
    [2] 郭诚谦,陈慧远.土石坝[M].北京:水利电力出版社,1992.576~628.
    [3] 郭诚谦.土石坝的若干发展[J].水利水电技术,1998,29(10):22~25.
    [4] 潘家铮.水工结构分析文集[C].北京:电力工业出版社,1981.100~154.
    [5] 郑北鹰.清除水库病险刻不容缓[N].光明日报,2000-07-21(B5).
    [6] 殷宗泽.土力学学科发展的现状与展望[J].河海大学学报,1999,27(1):1~5.
    [7] 沈珠江.现代土力学的基本问题[J].力学与实践,1998,(6):1~6.
    [8] 沈珠江.土体结构性的数学模型——21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95~97.
    [9] 章根德.土的本构模型及其工程应用[M].北京:科学出版社,1995.
    [10] 蒋彭年.土的本构关系[M].北京:科学出版社,1982.
    [11] 黄文熙.土的工程性质[M].北京:水利电力出版社,1983.54~71.
    [12] J.M. Duncan, et al, "Strength、Stress-Strain and Bulk Modulus Parameters of Finite Element Analysis of Stresses and Movements in Soil Masses" [R], Report NO. UCB/GT/80-O1, Stanford University, 1980.
    [13] Luis E,Vallejo. Shear stress and the hydraulic fracturing of earth dam soils. Soils and Foundations, 1993,33(3):14~27.
    [14] Rosecoe K H, Burland J B. On the generalized stress-strain behavior of wet clay[R]. In: Heyman, Lechie. Engineering Plasticity Cambridge. Cambridge Univ Press, 1968, 536~609
    [15] 郑颖人,龚晓南,岩土塑性力学基础[M].北京:中国建筑工业出版社,1989.18l~222.
    [16] 殷宗泽.一个土体的双屈服面应力——应变模型[J].岩土工程学报,1988,10(4):64~71.
    [17] 沈珠江.土体应力应变分析的一种新模型[A].第五届全国土力学及基础工程学术讨论会文集[C].北京:中国建筑工业出版社,1987.101~105.
    [18] 张广锋.大坝地震动反应与分析计算[D].焦作:焦作工学院,1998,
    [19] 高莲士,汪召华,宋文晶.非线性解耦K-G模型在高面板堆石坝应力变形分析中的应用[J].水利学报,2001.(10):1~7.
    [20] 孔宪京,娄树莲,邹德高等.筑坝堆石料的等效动剪切模量与等效阻尼比[J].水利学报,2001.(8):20~25.
    
    
    [21]刘汉龙,余湘娟.土动力学与岩土地震工程研究进展[J].河海大学学报,1999.27(1):6~15.
    [22]艾武.总岗山水库大坝安全鉴定的稳定与应力分析研究[D].成都:四川联合大学,1997.
    [23]连镇营.地基、土石坝静—动力分析及永久变形计算方法研究[D].大连:大连理工大学,1998.
    [24]陈愈炯.总强度指标的测定和应用[J].土木工程学报,2000,33(4):32~34.
    [25]陈慧远.土石坝有限元分析[M].南京:河海大学出版社,1988.
    [26]华东水利学院土力学教研室主编.土工原理与计算[M].北京:水利电力出版社,1982.285~319.
    [27]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994.65~112.
    [28]钱家欢,殷宗泽.土工原理与计算[M].北京:水利电力出版社,1994.54~71.
    [29]钱家欢,殷宗泽.土工数值分析[M].北京:中国铁道出版社,1991.185~250.
    [30]郑秀培.土石坝地基混凝土防渗墙设计与计算[M].北京:水利电力出版社,1980.215~241.
    [31]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.483~530.
    [32]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998,510~529.
    [33]殷宗泽.土坝非线性有限元计算程序[A].姜弘道.水工结构工程与岩土工程的现代计算方法及程序[C].南京:河海大学出版社,1992.266~275.
    [34]张璧成.水工建筑物的有限元分析[M].北京:水利电力出版社,1991.272~314.
    [35]蒋友谅.非线性有限元法[M].北京:北京工业学院出版社,1998.95~158.
    [36]张汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出版社,1990.142~157.
    [37]徐次达,华伯浩.固体力学有限元理论方法及程序[M].北京:水利电力出版社,1983.280~297.
    [38]徐兴,郭乙木,沈永兴.非线性有限元及程序设计[M].杭州:浙江大学出版社,1993.6~15.
    [39]刘汉东,张勇,贾金禄.岩土工程数值计算方法[M].郑州:黄河水利出版社,1995.30~55.
    [40]威廉姆 B.爱普生等.蓝春土石坝有限元变形分析与实测变形的比较[J].水电技术信息,2000,(1):59~73.
    [41]张文正,刘令瑶,陈祖煜等.铁山土坝应力变形的数值和观测分析[A].第五届全国土力学及基础工程学术讨论会文集[C].北京:中国建筑工业出版社,1987.554~558.
    [42]毛昶熙,段祥宝,李祖贻.渗流数值计算与程序应用[M].南京:河海大学出版社,1999.44-74.
    [43]毛昶熙.渗流计算分析与控制[M].北京:水利电力出版社,1990.98~119.
    [44]殷宗泽,赵航.土坝浸水变形[J].岩土工程学报,1990,12(2):1~8.
    
    
    [45] 李惟,姜淑慧,罗庆玲.正义峡水库土石坝心墙土料变形参数计算[J].水利水电工程设计,2000,19(1):33~35.
    [46] J. M. Duncan, R.B. Seed, et al, FEADAM84: A computer program for finite element analysis of dams [R], Geo. Eng. Research Report, NO. SU/GT/84-03, Stanford University.
    [47] Marco D. Boscardin, Hyperbolic parameters for compacted soils[J]. J. Geotechnical Engineering, 1990, 116(1): 88~104.
    [48] Duncan J M,Chang C Y,Nonlinear of stress and strain in soils[C]. Proc. ASCE,1970,96(SM5): 1629~1653.
    [49] Gan F K,Fredlund D G, Rahardjio H. Determination of Shear Parameters of Unsaturated Soil Using Direct Shear Test [J]. Canadian Geotechnique Jounal. 1988,25: 500~510.
    [50] Fredlund D G, Morgenstem N R, Widger R A. The Shear Strength of Unsaturated Soils[J]. Canadian Geotechnical Journal,1978, 15: 313~321.
    [51] 李书群,和秀芬.有限单元法在石河水库大坝安全鉴定中的应用[J].河北水利水电技术,2001,(1):18~20.
    [52] 田树玉,孟宪麒.土的非线性分析简化双曲线模型[J].水利学报,1994,(9):54~59,
    [53] 马秀媛.岭澳水库土坝在加固过程中岸坡段的应力调整[D].济南:山东工业大学,1999.
    [54] 夏风敏.河口地区土坝护坡稳定分析[D].济南:山东工业大学,1999.
    [55] 王锤琦等.岩土工程测试技术[M].北京:中国建筑工业出版社,1986.114~117.
    [56] 王立民.水工建筑物检测与维修[M].北京:水利电力出版社,1993.97~120.
    [57] 朱俊高,殷宗泽.土体本构模型参数的优化确定[J].河海大学学报,1996,24(2):68~73.
    [58] 朱俊高,殷宗泽.高土石坝混凝土防渗墙弹塑性应力变形[J].水利学报,1997,(7):19~23.
    [59] 华东水利学院主编.水工设计手册(第四卷)—土石坝[M].北京:水利电力出版社,1984.76~88.
    [60] 唐益群,叶为民.土木工程测试技术手册[M].上海:同济大学出版社,1999.403~501.
    [61] 杨熙章.土木试验与原[M].上海:同济大学出版社,1993.82~98.
    [62] 陈春霖,张惠明.饱和砂土三轴实验中的若干问题[J].岩土工程学报,2000.22(6):659~663.
    [63] 刘晓红,郝晋升,陈顒.三轴实验中应变测量的一个问题[J].岩土工程学报,1983.5(2):126~127.
    [64] 徐日庆,龚晓南.土的应力路径非线性行为[J].岩土工程学报,1995,17(4):56~60.
    [65] 张建强.心墙土石坝湿化变形计算与分析[D].大连:大连理工大学,1996.
    
    
    [66]龚晓南.土塑性力学[M].杭州:浙江大学出版社,1990.54~73.
    [67]张学言.岩土塑性力学[M].北京:人民交通出版社,1993.60~87.
    [68]徐献芝,蔡键,李传亮等.考虑孔隙比变化的粘弹性土体本构模型[J].土木工程学报,2000,33(3):108~110.
    [69]殷宗泽.土体本构模型剖析[J].岩土工程学报,1996,18(4):95~97.
    [70]谢定义.考虑土结构性的本构关系[J].土木工程学报,2000,33(4):35~41.
    [71]卢肇钧.粘性土抗剪强度研究的现状与展望[J].土木工程学报,1999,32(4):3~9.
    [72]陈星柏.土体抗剪强度的基本模式[J].水利学报,1993,(12):76~80.
    [73]日本电力土木技术协会编.陈慧远,徐关泉,李鸿俊等译.最新土石坝工程学(修订版)[M].北京:水利电力出版社,1986.246~265.
    [74]华东水利学院主编.水工设计手册(第一卷)—基础理论[M].北京:水利电力出版社,1984.541~581.
    [75]Verdugo R, Ishihara K. The steady state of sandy soils[J]. Soils and Foundations,1996,36(2):81~91.
    [76]Rowe P W, Barden L. Importance of free ends in triaxial testing[J]. Soil Mechanics and Foundations Division, ASCE, 1964,90(1):1~27.
    [77].带混凝土防渗墙土石坝应力应变分析[J].河海大学学报,1987.6:.
    [78]陈慧远.土石坝坝基混凝土防渗墙的应力和变形[J].水利学报,1990.(4):11~21.
    [79]Desai C S, Nagaraj B K. Modeling for normal and shear behavior of interfaces[J]. Journal of Engineering Mechnics, ASCE, 1988, 114(7): 1198~1217.
    [80]K G Sharma, Desai. Analysis and implementation of thin-layer element for interfaces and joints[J]. Journal of Engineering Mechnics, ASCE, 1992,118(12): 2442~2462.
    [81]Matusoka H, Sakakihara K. A constitutive model for sands and clays evaluating principal stress rotation[J].Soils and Foundations, 1987, 27(4): 73~88.
    [82]Yoshimine M, Ishihara K, Nargas W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sands[J]. Soils and Foundations, 1998, 38(3): 179~188.
    [83]卢廷浩,鲍伏波.接触面薄层单元耦合本构模型[J].水利学报,2000.(2):71~75.
    [84]沈珠江,王剑平.横山水库土石坝有效应力应变分析[J].水利学报,1990.(4):59~65.
    [85]殷宗泽,曾益山.花凉亭土坝应力应变分析[J].岩土工程学报,1982.4(4):128~145.
    
    
    [86]王复来,郭俊仃.碧口土石坝与混凝土防渗墙在各运用期的应力与位移的分析[J].岩土工程学报,1984.6(6):1~17.
    [87]陈慧远,施群,唐仁杰.沥青混凝土心墙土石坝的应力应变分析[J].岩土工程学报,1982.4(4):146~158.
    [88]高莲士,郁琼华.高土石坝与基础防渗墙的应力应变分析[J].岩土工程学报,1983.5(2):73~87.
    [89]朱建华,李春毕.漳泽水库土坝异常变形分析[J].岩土工程学报,1994.16(2):98~106.
    [90]卢廷浩,汪荣大.瀑布沟土石坝防渗墙应力变形分析[J].河海大学学报,1998.26(2):41~44.
    [91]卢廷浩,汪荣大.瀑布沟土石坝心墙应力变形分析[J].河海大学学报,1997.25(4):26~30.
    [92]邵松桂,向大润.土石坝空间非线性和弹塑性的应力应变分析[J].河海大学学报,1987.15(5):1~11.
    [93]于玉贞,濮家骝,刘凤德.土石坝基础塑性混凝土防渗墙材料力学特性研究[J].水利学报,1995.(8):21~27.
    [94]王国强.实用工程数值模拟技术及其在.ANSYS上的实践[M].西安:西北工业大学出版社,1999.48~132.
    [95]ANSYS入门手册(上).美国ANSYS公司北京办事处.1998.
    [96]ANSYS入门手册(下).美国ANSYS公司北京办事处.1998.
    [97]ANSYS非线性分析指南.美国ANSYS公司北京办事处.1998.
    [98]APDL使用指南.美国ANSYS公司北京办事处.1998.
    [99]潘厚志,孙克利,王晖等.基于ANSYS-APDL语言实现深埋结构与土体相互作用数值分析中迭代算法的二次开发及其应用[J].谷安涛,邵慰严,刘有军.2000年ANSYS中国用户年会议文集[C].成都:2000.135~140.
    [100]黄文熙.土坝弹塑性应力分析简捷法[J].岩土工程学报,1989.11(6):1~8.
    [101]卢肇钧.土的破坏机理和土力学计算理论问题[J].岩土工程学报,1989,11(6):65~74.
    [102]江见鲸,宋昆仑,傅德炫.土建工程实用计算程序选编[M].北京:地震出版社,1992.154~157.
    [103]司洪洋.土石坝应力应变计算参数的测定[J].人民黄河,1982.(6):34-37.
    [104] Gunther E. Bauer: The stability of tailings stuctures[R]. Budapest: Proc. A,1st Intern. Mine water congress, 1982.323~333.
    [105] Bishop A W, Alpan L,Blight G E, et al. Factor Controlling the Strength of Partly Saturated Cohesive Soils[R]. In: ASCE Research Conference on the Shear Strength of Cohesive Soils. Univ. of Colorado, 1960, 503~532.
    
    
    [106] Bishop A W, Blight G E. Some Aspects of Effective Stress in Saturated and Partly Satuated Soils[J]. Geotechnique, 1963,13(3):177~179
    [107] Lefebvre G, Duncan J M, Wilson E L. Three Dimensional Finite Element Analysis of Dams[J]. JSMFD ASCE, 1973, 99(SM7): 495~507.
    [108] 王敏强,王素芳,郭艳阳.清江高坝洲水利枢纽溢流坝段抗滑稳定分析[J].谷安涛,邵慰严,刘有军.2000年ANSYS中国用户年会议文集[C].成都:2000.55~58.
    [109] Eisenstein Z, Simons J V. Three Dimensional Analysis of Mica Dam[R]. Criteria and Assumptions for Numerical Analysis of Dam, Proc Int Symp, Held at Swanse, UK, 1975:8~11.
    [110] Murayama S. A Theoretical Consideration on a Behavior of Sand. Proc IUTAM Symposium on Geology and Soil Mechanics, Grenoble, 1964:146~159.
    [111] Matsuoka H. Stress--Strain Relationship of Sand Based on the Mobilized Plane. Soils and Foundations, 1974, 14(2): 47~61.
    [112] Matsuoka H and Nakai T. Stress--Deformation and Strength Characteristics of Soil under Three Different Principle Stress[J]. Proc JSCE, 1974; (232): 59~70.
    [113] Nakai T and Matsuoka H. Shear Behaviors of Sand and Clay under Three—Dimensional Stress Condition. Soils and Foundations, 1983. 23(2): 26~52.
    [114] Lade P V, Duncan J M. Cubical Trixial Test on Cohesionless soil[J]. JSMFD, ASCE, 1973. 99(SM10): 793~812.
    [115] 李桂青.抗震结构计算理论和方法[M].北京:地震出版社,1985.
    [116] 王亚勇.我国2000年抗震设计模式规范展望[J].建筑结构,1999,(6):32-36.
    [117] Lin Su, Goodarz, Ahmadi等. A Comparative study of Performances of Various Base Isolation Systems. Part Ⅱ:Sensitivity Analysis[J].Earthquake Engineering and structural Dynamics, 1990, Vol. 19: 21-23.
    [118] A. Aprile, A. Benedetti. On Nonlinear Dynamic Analysis in the Frequency Domain、Algorithms and Applications. Earthquake Engineering and Structural Dynamics, 1994, Vol. 23:363-388.
    [119] YuChen, Gooddarz, Ahmadi. Performance of a High Damping Rubber Bearing Base Isolation System For a Shear Beam Strueture. Earthquake Engineering and Structural Dynamics, 1994, Vol. 23: 729-744.
    
    
    [120] Chan Ghee Koh, Thambina jan Balendra. Seismic Response of Base Isolated Buildings Including P-Δ Effects of Isolation Bearings. Earthquake Engineering and Structural Dynamics, 1989, Vol. 18: 461-473.
    [121] M. Novak, P. Henderson. Base-Isolated Buildings with Soil-Structure Interaction. Earthquake Engineering and Structural Dynamics, 1989, Vol. 18: 751-765.
    [122] Chan GHee Kon, James M. Kelly. Application of Fractional Derivatives to Seismic Analysis of Base-Isolated Models. Earthquake Engineering and Structural Dynamics, 1990,Vol.19: 229-241.
    [123] Robinson, W.H., Tucher. A.G. A Lead-Rubber Damper[J]. Bull. New Zealand Nat. Soc. Earthquake Engrg., 1977 (10): 151-153.
    [124] M.C. Constantinou, I.G. Tadjbakhsh. Hysteretic Dampers in Base Isolation[J]. Random Approach. J. Struct. Engrg. ASCE, 1985, 111(4): 705-832.
    [125] D.R.J 欧文,E.辛顿著.曾国平,刘忠,徐家礼译.塑性力学有限元——理论与应用[M].北京:兵器工业出版社,1989
    [126] 王依群,李忠献.不同阻尼特性材料组合结构的弹塑性动力时程响应计算[J].地震工程与工程震动,1999,19(2):76-80.
    [127] 赵雷,陈虬,路湛沁.钢筋混凝土结构非线性随机地震响应分析[J].工程力学,1999,16(5):21-32.
    [128] 李万红.无粘性土的动力非线性模式和混凝土基础防渗墙土坝的地震响应研究[D].北京:水力水电科学研究院,1989.
    [129] 韩啸.小浪底土坝及滤层料物动力特性和抗震稳定性研究[D].北京:清华大学,1989.
    [130] 潘发明.土坝在地震作用下的弹塑性有限元分析[D].太原:太原工业大学,1995.
    [131] 俞培基,郭锡荣.现场和室内测定土坝填土的动力变形特性[J].水利学报,1986.(12):30~36.
    [132] 刘祖德.土石坝变形计算的若干问题[J].岩土工程学报,1983.5(1):1~13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700