金川二矿区下向分层采矿充填体力学行为及其作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金川二矿区是金川集团最大的主力矿山,为了在矿岩稳固性差且地应高的采矿环境下安全有效回收宝贵资源,二矿区采用机械化下向分层水平进路胶结充填采矿法开采。多年的生产实践证明,使用该方法开采二矿区矿体是安全、经济和高效的。随着二矿区开采深度向下延伸,地层中的原岩应力呈随开采深度增加而增大的趋势。进路胶结充填体是采矿生产作业的直接顶板,关乎人员和设备安全、企业效益。然而,在高水平构造应力条件下,充填体的稳定性机制至今仍缺少深入系统的研究,探索下向分层充填法中充填体的力学行为及其作用,具有重要意义。
     本文通过现场调研,采用理论分析、室内材料试验、基于FLAC3D二次开发的三维力学数值分析相结合的方法,主要根据金川二矿区下向分层充填采矿的生产实践,对充填体力学行为及其作用进行了系统研究,主要研究内容如下:
     (1)采用结构理论中的三弯矩方程,研究相邻分层进路不同布置条件下,胶结充填形成的人工假顶结构(注:抽象为连续梁)中的内力(M、FQ)状态,得到了相邻分层进路垂直交错布置、相邻分层进路斜交及平行交错布置下,人工假顶结构内力的分布状态方程,为人工假顶设计逐渐由经验设计阶段向定量设计过渡提供了可能。初步揭示了竖向约束(支座)的变化,对人工假顶内力变化产生影响的趋势;建议设计人工假顶时,应采用合理技术措施,如留中间支座、相邻进路充填体采用抗剪连接,以期消除假顶截面中因最大弯矩和最大剪力过度集中而产生的张拉、剪切失效的隐患。
     (2)目前大多数简化充填体模型没有考虑带筋充填体中的材料构造,难以适应因采动影响产生的复杂加载方式,也无法客观反映加载路径变化产生的影响。针对这些简化模型存在的问题,本文根据金川二矿区生产实际,把进路充填体的主要力学作用,归结由砂浆固结后形成的胶结体和其中的构造钢筋(吊筋和底筋)共同承担,率先提出金川二矿区充填体的基本结构是一种二元结构,也就是,充填体基本结构由砂浆胶结体连续介质(简称“充填体”)和连续介质中的钢筋构件组成;进一步地,根据充填体内钢筋构件主要受拉和受压的力学特点,利用FLAC3D中锚索结构单元,对钢筋构件进行力学数值模拟,进而建立起更接近于实际情况的基于二元结构的充填体FLAC3D数值力学模型。
     (3)利用Google Earth(GE),通过在线提取二矿区周围地形地表高程的方法,获得了一定网度的地形三维坐标,形成矿山外围地形图及模型地表DTM模型。解决了已收集地表地形数据范围不足以覆盖模型表面的问题,为二矿区大范围全局建模提供了前提条件。
     利用矿业软件Surpac建立了金川二矿区富矿、贫矿、地表等部分的实体模型、含矿块体单元数据库、地表块体模型及各类约束条件。采用分步建立各部分块体模型的方法,通过坐标变换、数据圆整等措施保证各部分块体模型衔接部分精确对接,再将Surpac含矿块体模型、地表块体模型数据转化FLAC3D数据,加上发散过渡部分最终生成FLAC3D力学模型。克服了直接采用FLAC3D建立复杂地质体模型的困难,为利用FLAC3D程序进行矿山生产过程的力学仿真奠定了基础。
     (4)应用VC++、数据库技术、Fish语言和FLAC3D相关命令集,开发出FLAC3D力学仿真程序代码生成系统(generating code system for FLAC3D, GCS)。该系统按空间、次序、结构功能及工程地质体属性,对金川二矿区回采、充填等生产过程进行剖分,形成可编程的组件;着重解决了模型单元质心定位、单元捕捉、重组和应用程序变量到FLAC3D变量、函数、语句、数据结构之间映射等问题;
     开发的GCS应用程序,以模型单元数据库为数据源,通过一系列与用户交互的界面,由用户对回采过程所需步骤和参数进行选择和确认,并将这些步骤和参数传递给仿真代码生成系统,由系统自动完成FLAC3D力学仿真代码的生成,能实现金川二矿区生产顺序、回采过程、充填进路布置、钢筋布设、充填等主要生产过程的三维力学仿真。该系统可大大提高编制FLAC3D三维力学仿真代码的效率,降低程序编制的出错率。
     (5)基于金川二矿区生产过程的FLAC3D数值模拟,对下向分层充填采矿的采动影响下,采空区中胶结充填体、临时矿柱、近矿围岩等介质的应力重新分布特点、位移规律、地表岩移趋势、充填体破坏状态、钢筋受力状态变化等因素,以及这些因素之间相互作用的力学行为,进行了系统分析和归纳,获得结果初步揭示了维护金川二矿区充填体稳定性的机制。
     (6)通过室内试验,对比研究不同充填材料在布筋和不布筋两种构造下所形成试件的抗折强度,进一步对比研究了有/无抗剪连接梁拼板试件的抗剪强度,结果表明:①布筋可明显提高试件的抗折强度,加筋试件破坏特征更接近于弹塑性材料,而无配筋试件的破坏特征表现为脆性材料。②同不设置抗剪连接筋的梁拼板试件相比,在梁拼板试件增设抗剪连接筋,明显增加了梁充填体界面之间的抗剪强度;适度施加正压力,对梁充填体界面之间的抗剪强度有一定影响。材料试验结果间接证明:在进路充填体中配筋,以及在同一分层相邻进路充填体界面之间增设抗剪连接筋,对提高用作人工假顶的充填体强度和稳定性,起着积极的重要作用。
     本文密切结合现场重要技术难题,立足于学科前沿,综合运用结构理论、材料试验、GE和三维矿业软件、基于FLAC3D二次开发的三维力学数值仿真等方法,建立了一整套针对下向分层充填采矿之复杂生产过程的三维力学分析方法,获得了系统性的有益成果,具有重要的理论意义和工程应用价值。
Jinchuan No.2Mine was one of underground mines with the hardest mining conditions all over the world. Its rockmass stability was extremely poor, and it was subjected to higher tectonic strata stress. In order to achieve the goal of efficiently extracting mine deposit under safe mining operation, different mining methods including top slicing and caving, cut-and-fill mining and underhand cut-and-fill mining, had been carried out in decades, and the mechanized underhand cut-and-fill mining with drift (MUCFMD) was finally selected as the mine's primary mining method due to the method's merit in mining productivity and operation safety.
     With the mining levels extending downwards, the strata stress increased gradually with the increase in the mining depth. For MUCFMD, the backfilling was the artificial roof of mining drift which was located in the next mining slice, and its stability directly influenced the safety of miners and operation devices. Whereas, there still was lacking in systematic insight into the stability mechanism of backfilling under the mining conditions of higher tectonic strata stress. It was positive that the investigation on the mechanical behaviour and function of backfilling was carried out.
     Mainly based on the in-site mining engineering situation in Jinchuan No.2mine with MUCFMD in the extremely poor mining conditions, the study on the mechanical behaviour and function of backfilling was systematically carried out in the work by means of comprehensive ways, mainly including field surveying, theoretical analyse, material model test, and3D numerical modelling with FLAC3D and FLAC3D secondary development programmed by the author. The main research contents and conclusions were as follows.
     (1) Under change in the layout of mining drifts in conjunctive mining slices, the internal forces(M, FQ) state in the artificial roofs, which were supposed as continuous beam structure, was studied according to the 'three-moment equation'of the structural theory. The equations of internal forces were derived. Further, the quantitative distribution of internal forces for three types of artificial roofs, which respectively corresponded to the three drifts layout (the drifts in upper slice perpendicular to those in next slice, the drifts in upper slice parallel to those in next slice, and the drifts in upper slice oblique with those in next slice), were given. The tension or shear failure in artificial roof adjacent to intermediate supports, which actually were temporary ore ribs or artificial ribs made of backfilling, might be controlled or eliminated by optimizing the span among the supports.
     (2) As most simplified backfilling models did not consider construction of steel in thin reinforced backfilling, it was difficult for the simplified models to resolve and reflect the change in both stress state and loading paths of steel parts in backfilling resulting from mining operation in extreme geological conditions. For Jinchuan No.2mine, its basic mechanical structure of backfilling was abstracted as a dualistic structural model by author. That is, the backfilling consisted of continuous-homogeneous cemented motar and steel rod, and both of them together undertook the loading. The "cable" element of FLAC3D Platform was acted as steel parts in the mine's backfilling, and the change in both stress state and loading paths of the steel parts was numerically simulated. The numerical modelling result for steel parts in backfilling was basically proved by the steel deformation or failure found from the in-site survey.
     (3) Using Google Earth(GE), the three-dimensional coordinates of topography had been obtained by extracting the elevation of surface around the Jinchuan No.2mine in term of a certain degree of flat networknet on line. Further, topographic map and DTM model of surface around the mine were established. These works addressed the problem that the range of data collected were insufficient to cover the surface of model, and provided the preconditions for global modeling of Jinchuan No.2mine.
     Utilizing mining software Surpac established rich ore model, lean ore model of Jinchuan No.2mine, and other parts of the solid model surface, the ore-bearing block unit database, and various constraints. Using step modeling approach, by coordinate transformation, round of data and other measures to ensure the various parts of the whole block some accurate docking model of convergence, then transforming Surpac ore-bearing block model, surface block model data into Flac3D, adding some of the resulting divergent transition, final the Flac3D mechanical model was established. These methods overcame the difficulties using Flac3D to establish complex geological models directly, and make the foundation to apply Flac3D to simulate the production process of mine.
     (4) Through the secondary development of Flac3D, the Generating Code System for Flac3D, GCS, had been developed. The programmable components formed by dividing the mining&filling process of Jinchuan No.2mine according space position, order, structural function and attribution of engineering geological body were researched. The problem of the model unit centroid localization, unit capture, restructure, application variables, Flac3D variables, function, sentence, the mapping between data structure etc were resolved.
     Developed by VC++, This application program used the database of cell model as a data resource, through a series of steps, the process and parameters of excavation process necessary can been selected and confirmed, which can been transferred to the simulation code generation system, and then the Flac3D codes would be generated by the application program. By the system, the three-dimensional mechanical simulation for the main production process of Jinchuan No.2mine, such as production order, mining process, layout of mining drifts, layout of reinforcement, filling etc., can be realized. The system can greatly improve the efficiency and reduce the error rate of programming the3D mechanical simulation code.
     (5) Through the more accurate simulation by Flac3D for the production process of Jinchuan No.2mine, the mechanical behaviours associated with the backfilling of No. mine, such as the features of the stress redistribution and the law of the displacement movement in the backfilling, pillar and near-ore rock, the law of the rock movement on the surface, the destructive state of backfilling, the stress state and changes of force in the reinforcement, were fully described and induced, and the backfill stable mechanism was revealed.
     (6) Two sorts of comparative investigation into mechanical performance of physical models made of different backfill motars, including beam models (BM) and slab models (SM) formed with joining three pieces of beam together, was carried out by indoor model test. In BM sort investigation, the flexural strength of beam models, including reinforced beam models (RBM) and plain beam models (PBM), was comparatively tested and analysed. The results of BM sort showed that the flexural strength of RBM was obviously bigger than that of PBM the failure characteristics of RBM was closer to that of elastic-plastic materials, and the failure of PBM was characterized in brittle fracture. In SM sort investigation, the shear strength of weak interfaces existing in slab models, including the slab models with reinforced interfaces by shear connecting element (RSM) and other slab models with plain interfaces existing naturally (PSM), was comparatively tested and analysed as well. The results of SM sort showed that, under like conditions, the shear strength of RSM was bigger than that of PSM. It was good for backfilling stability to be improved by suitably reinforcing drift backfilling and by suitably installing shear connecting elements along interfaces between drift backfill.
     This paper closely combines the important technical problems of the engineering practice, stands on subject frontier, comprehensively uses the means of material model tests,3D mining software, secondary development of Flac3D and3D numerical simulation of mechanics, establishes a set of3D mechanical analysis method for the complex production process of mine, obtains systematic beneficial results, has important theoretical significance and engineering value.
引文
[1]刘可任.充填理论基础[M].北京:冶金工业出版社,1982
    [2]蔡嗣经.矿山充填力学基础[M].北京:冶金工业出版社,1994
    [3]刘同有等.充填采矿技术与应用[M].北京:冶金工业出版社,2001
    [4]刘同有等.中国镍钴矿山现代化开采技术[M].北京:冶金工业出版社,1995
    [5]E. De Souza, D. Degagne, J. F. Archibald. Minefill applications, practices and trends in Canadian mines [C]. IN:Proceedings of the 7th international symposium on mining with backfill. Seattle:Scoiety for Mining, Metallurgical and Exploration Inc, 2001:255-256
    [6]刘同有.中国有色矿山充填技术的现状及发展[J].中国矿业,2002,11(1):28-34
    [7]廖椿庭,施兆贤.金川矿区原岩应力实测及在矿山设计中的应用[J].岩石力学与工程学报,1983,2(1):103-112.
    [8]蔡美峰,乔兰,于波,等.金川二矿区深部地应力测量及其分布规律研究[J].岩石力学与工程学报,1999,18(4):414-418.
    [9]吴满路,马宇,瘳椿庭,等.金川二矿区深部1000m中段地应力测量及应力状态研究[J].岩石力学与工程学报,2008,27(9):3785-3790.
    [10]Dougill J W, Lau J C and Burt N J. Mechanics in Eng. ASCE. EMD.,1976:222-355
    [11]KRAJEINOVIC d. Creep of structure-a continuous damage mechanics approach [J]. J. of Structure Mechanics,1983,11(1):121-137
    [12]刘志祥,李夕兵,戴塔根,曹平.尾矿胶结充填体损伤模型及与岩体的匹配分析[J].岩土力学,2006,27(9):1442-1446
    [13]邓代强.安庆铜矿特大型采场充填体力学性能、损伤及稳定性研究[D].长沙:长沙矿山研究院,2005.
    [14]邓代强,杨耀亮,姚中亮.拉压全过程充填体损伤演化本构方程研究[J].采矿与安全工程学报,2006,23(4):485-488
    [15]邓代强,姚中亮,唐绍辉.单轴拉伸条件下充填体的力学性能研究[J].地下空间与工程学报,2007,3(1):32-34,49
    [16]唐礼忠,彭续承.尾砂胶结充填体变形及强度试验研究[J].中南工业大学学报,1996,27(2):145-148.
    [17]姚志全,张钦礼,胡冠宇.充填体抗拉强度特性的试验研究[J].南华大学学报,2009,23(3):10-13
    [18]Terzaghi, K and Peck. R. B, soil mechanics in engineering practice [M]. John Wiley and Sons, Inc,1967
    [19]卢平.胶结充填矿柱强度的设计.江西有色金属,1990,(2):48-52
    [20]付宝杰,徐金海,陈荣华.沿空留巷中充填体的强度控制[J].黑龙江科技学院学报,2006,16(2):85-87
    [21]李一帆,张建明,邓飞等.深部采空区尾砂胶结充填体强度特性试验研究.岩土力学,2005,26(6):865-868
    [22]余斌.影响尾砂胶结充填强度的若干因素分析[J].河北冶金,2001,(3):3-6
    [23]刘志祥,李夕兵.尾砂分形级配与胶结强度的知识库研究.岩石力学与工程学报,2005,24(10):1769-1793
    [24]黄玉诚,孙恒虎,刘文永.下向进路充填采矿力学模型的探讨[J].有色金属,1999,51(4):1-3,7
    [25]袁家谦.关于下向高进路胶结充填采矿法进路尺寸的确定和顶板混凝土中钢筋的敷设[C].见:刘同有主编,金川镍矿开采的工程地质与岩石力学问题(下册).金川有色金属公司,中国岩石力学与工程学会金川分会,1996:645-651
    [26]孙恒虎,刘文永,黄玉诚等著.高水固结充填采矿[M].北京:机械工业出版社,1998
    [27]侯哲生,李晓.金川二矿区水平矿层几何非稳定性分析的突变模型[J].岩石力学与工程学报,2007,26(7):2868-2871.
    [28]侯哲生.金川二矿区水平矿层灾变失稳问题研究[D].北京:中国科学院地质与地球物理研究所,2004
    [29]Brown E. T, Brady B. H. G,冯树仁等译.地下采矿岩石力学[M].北京:煤炭工业出版社,1986
    [30]H. A. D. Kirsten, T. R. Stacey.充填在低下沉量采场中的支护机理.国外金属矿山充填采矿技术的研究与应用.中国矿业协会采矿专业委员会等,1997
    [31]U. Yanaguchi, J. Yanatomi. A consideration on the effect of the ground stability. IN: Proc. the Internat. Symp. on Mining with Backfill. Lulea.7-9 June,1984
    [32]华东水利学院.岩石力学[M].水利出版社,1981:15-21
    [33]蔡嗣经,童光煦,高华林.胶结充填法采场围岩与充填体相互作用研究[J].江西有色金属,1992,(6):93-101
    [34]于学馥.岩石记忆与开挖理论[J].北京:冶金工业出版社,1993
    [35]B.H.阿巴林.矿井深部开采非线性力学特点[J].辽宁工程技术大学学报,2009,28(5):785-787
    [36]鲁全胜,高谦.金川二矿区采场巷道围岩与充填体收敛变形监测研究[J].岩石力学与工程学报,2003,22(sup2):2633-2638
    [37]吴统顺,朱毓新,叶粤文,黄少洲.龙首矿下向高进路采场胶结充填体的力学 机理研究[J].长沙矿山研究院季刊,1982,2(1):10-18
    [38]阎学增,苏跃武,肖国清.高进路下向胶结充填采矿法[J].长沙矿山研究院季刊,1982,2(3):57-66
    [39]把多恒,王永才.金川镍矿1#矿体稳定性问题研究[J].岩石力学与工程学报,2003,22(sup2):2607-2614
    [40]周先明.下向胶结充填采场充填体作用机理的研究[J].长沙矿山研究院季刊,1988,8(3):1-8
    [41]周先明,张鸿恩,张卫煜等.金川二矿区1号矿体大面积充填体一岩体稳定性有限元分析[J].岩石力学与工程学报,1993,12(2):95-104
    [42]于学馥.信息时代岩石力学与采矿计算初步[M].北京:科学出版社,1991
    [43]郭金刚.综采放顶煤工作面高冒空巷充填技术[J].中国矿业大学学报,2002,31(6):626-629
    [44]柏建彪,侯朝炯,张长根等.高水材料充填空巷的工业性试验[J].煤炭科学技术,2000,26(10):30-31,9
    [45]胡际平.现代地下采矿方法典型实例(三)——下向分层充填采矿法[J].国外金属矿山,1990,(4):35-37,34
    [46]Whyatt J K, Williams T J, Pariseau W G. Trial underhand longwall stope instrumentation and model calibration at the Lucky Friday Mine, Mullan, Idaho, USA[C].IN:Rock Mechanics Proceedings of the 33rd U.S. Symposium,Santa Fe, NM, USA.Jun,1992:511-516
    [47]Werniuk J. Smooth sailing at duck ponds:Mining is back in central Newfoundland[J]. Can Min J,2006,127(6):15-23
    [48]Bajzelj U. Underhand cut-and-fill stoping experiments in carboniferous schists at the Idrija mine[C]. IN:Geomechanics Applications in Underground Hardrock Mining, Soc of Mining Engineers of AIME, New York, NY, USA.1984,163-183
    [49]Japan Oil, Gas and Metals National Corporation (Lukio Co., Ltd.). Underhand cut and fill stoping with artificial roof[R].2005
    [50]Pakalnis R, Caceres C, Clapp K, etc. Design spans:underhand cut-and-fill mining[C]. IN:Canadian Institute of Mining, Metallurgy and Petroleum (ed), Proc 107th CIM-AGM, April 24-27,2005, Toronto & Montreal,Canada:1-9
    [51]刘同有,周成浦.金川镍矿充填采矿技术的发展[J].中国矿业,1999,8(4):1-4
    [52]高建科.大规模下向胶结充填采矿法在金川镍矿的应用[J].金属矿山,2005,(sup):36-39,59
    [53]陈宗林,贾稳宏.机械化盘区下向分层水平进路胶结充填采矿法存在问题的 分析和改进措施[J].金川科技,2005,(5):4-7
    [54]李晓,路世豹,廖秋林,等.充填法开采引起的地裂缝分布特征与现场监测分析[J].岩石力学与工程学报,2006,25(7):1361-1369.
    [55]高直,张海军,郭慧高,等.金川二矿区地表裂缝沉降变化规律及形成机制分析[J].采矿技术,2008,8(4):40-44.
    [56]马崇武,慕青松,宜晨虹,等.金川二矿区地表开裂过程的数值模拟[J].矿业研究与开发,2007,27(4):9-11,42.
    [57]赵奎,王晓军,刘洪兴.布筋尾砂胶结充填体顶板力学性状试验研究[J].岩土力学,2011,32(1):9-14,20
    [58]Timoshenko S P, Young D H. Theory of structures (Second edition)[M].北京:清华大学出版社,McGraw-Hill Companies, Inc,2002
    [59]樊健生,聂建国,张彦玲.钢—混凝土组合梁抗裂性能的试验研究[J].土木工程学报,2011,44(2):1-7
    [60]余志武,郭风琪.部分预应力钢—混凝土连续组合梁负弯矩区裂缝宽度试验研究[J].建筑结构学报,2004,25(4):55-59
    [61]袁国干,扬健.钢筋混凝土连续粱抗剪强度研究[J]中国公路学报,1995,12(Sup):31-39
    [62]Hope-Gill M C, Johnson R P. Test on three-span continuous composite beams[J]. Proceedings of the Institution of Civil Engineers, part2,1976,61(6):367-381
    [63]Ansourian P. Experiments on continuous composite beams[J]. Proceedings of the Institution of Civil Engineers, Part 1-Design & Construction,1981,71(12):25-51
    [64]Basu Prodyot K, Sharif Alfarabi M, Ahmed Nesar U. Partially prestressed continuous composite beams [J]. J Struct Eng,ASCE,1987,113(9):1909-1925
    [65]抗剪强度专题研究组.钢筋混凝土连续梁和约束粱的抗剪强度[J].建筑结构学报,1989,(1):1-8
    [66]胡贵琼,文武松译.钢筋混凝土连续深梁的试验研究[J].国外桥梁,1998,(3):45-54
    [67]李淑琴,万水,陈建兵.一种新型抗剪连接件试验研究[J].桥梁建设,2009,(4):17-19
    [68]Chen Lihua, Li Aiqun, Lou Yu, etc. Ultimate negative bending-moment capacity of outer-plated steel-concrete continuous composite beams[J]. Journal of Southeast University(English Edition),2009,25(1):89-93
    [69]陈峰,郑建岚.自密实混凝土与老混凝土粘结强度的直剪试验研究[J].建筑结构学报,2007,28(1):59-63
    [70]倪彬.提高金川二矿区胶结充填体稳定性的试验研究[D].长沙:中南大学,2007
    [71]卜良桃,全玥.高性能水泥复合砂浆与混凝土粘结的剪切性能试验研究[J].四川建筑科学研究,2008,34(6):64-67
    [72]王兰,郭子雄.石材受弯构件复合加固界面粘结性能试验[J].华侨大学学报(自然科学版),2010,31(1):78-82
    [73]王明华.工程岩体三维地质建模与可视化研究[D].武汉:中科院武汉岩土力学研究所,2004.
    [74]Raper J F. Key 3D modeling concepts for geoscientific analysis. In:Turner A K(ed), Three-Dimensional with Geoscientific Information Systems [M]. NATO ASI, Dordrecht, Kluwer Academic Publishers,1992:215-232.
    [75]Thomas R. Fisher. Use of 3D Geographic Information Systems in Hazardous WasteSite Investgations [M]. Oxford University Press. Environmental Modeling with GIS,1993.
    [76]Li Rong-xing. Data structures and application issues in 3D geographic information systems [J]. GEOMATICA,1994,48(3):209-224.
    [77]Erarlan, Kaan. Practical approach for 3D modeling of ore bodies and the design of development for underground of mines [J]. Mineral Resources Engineering,2000, 9(3):12-16.
    [78]Lemon A M, Jones N L. Building solid models from boreholes and user-defined cross-sections [J]. Computers&Geosciences,2003,29(3):547-555.
    [79]Simon W. Houlding. Practical geostatistics, modeling and spatial analysis [M]. New York and Heideburg, Springer-Verlag,2000.
    [80]刘晓明.金属矿隐患空区三维信息获取及其动力失稳数值分析技术研究[D].长沙:中南大学,2010.
    [81]蔡明,P. K. Kaiser, L. Cotesta, A. Dasys共通地质模型和虚拟现实在地下工程规划与设计中的应用[J].岩石力学与工程学报,2006,25(6):1182-1189
    [82]李清泉.基于混合结构的三维GIS数据模型与空间分析研究生[D].武汉:武汉测绘科技大学,1998.
    [83]王纯祥,白世伟,贺怀建.三维地层可视化中地质建模研究[J].岩石力学与工程学报,2003,22(10):1722-1726
    [84]Gemcom Software International Inc. Surpac vision soft-ware user manual [M]. Beijing:Surpac software International,2004.
    [85]Zhang Li-Qiang, Tan Yu-Min, Kang Zhi-Zhong. A method logy for 3D modeling and visualization of geological objects [J]. Science in China Series D:Earh Sciences, 2009,52(7):1022-1029.
    [86]Wang Yi-ming, Wu Ai-xiang, Chen Xue-song, et al. New mining technique with big panels and stops in deep mine [J]. Transactions of Nonferrous Metals Society of China,2008,18(1):183-189.
    [87]邹艳红,周胜,陈进.基于三维可视化环境的地质体空间形态分析[J].地理信息世界,2008,6(5):33-38.
    [88]贾建红,周传波,张亚海.基于DATAMINE的三维采矿工程可视化建模技术研究[J].金属矿山,2009,(3):111-115.
    [89]蒋京名,王李管DIMINE矿业软件推动我国数字化矿山发展[J].中国矿业,2009,(10):90-92.
    [90]房智恒,王李管.基于DIMINE软件的采矿方法真三维设计研究与实现[J].金属矿山,2009,(5):129-131,137.
    [91]陈爱兵,秦德先,张学书.基于MICROMINE矿床三维立体模型的应用[J].地质与勘探,2004,40(5):77-80.
    [92]曾庆田,王李管,李德.云南某铜矿资源及开采环境评价可视化建模技术[J].金属矿山,2006,(12):46-51.
    [93]姜华,秦德先,陈爱兵.国内外矿业软件的研究现状及发展趋势[J].矿产与地质,2005,19(4):442-445.
    [94]王李管,马紫娟,荆永滨.基于块段模型的复杂地质体三维数值模拟技术.矿冶工程,2008,28(5):1-4.
    [95]贾明涛,潘长良.集成可视化矿床建模软件DMS在某矿山的应用[J].中南工业大学学报,2000,31(5):396-399
    [96]刘云,盖俊鹏,刘颖.利用3DMine软件建立矿山地质三维模型[J].矿业工程,2009,7(5):58-60.
    [97]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.
    [98]Itasca Consulting Group.Fast Lagrange Analysis of Continua in Three Dimensions[M].America:Itasca Consulting Group.,1997.
    [99]M.A. Coulthard. Applications of numerical modelling in underground mining and construction[J]. Geotechnical and Geological Engineering,1999,17(3-4):373-385
    [100]Iwan Couchard, Alain Van Cotthem, Servais Hick. The Belgian High-Speed Railway Soumagne Tunnel Project[M]. Lecture Notes in Earth Sciences,2004, Volume 104, Engineering Geology for Infrastructure Planning in Europe,475-484.
    [101]Sangki Kwon, Jong-Won Choi. Thermo-mechanical Stability Analysis for a Multi-level Radioactive Waste Disposal Concept[J]. Geotechnical and Geological Engineering,2006,24(2):361-377
    [102]Jonny Rutqvist, Deborah Barr, Jens T. Birkholzer et al. A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories[J]. Environmental Geology,2009,57(6): 1347-1360.
    [103]Jonny Rutqvist, Ann Backstrom, Masakazu Chijimatsu et al. A multiple-code simulation study of the long-term EDZ evolution of geological nuclear waste repositories[J]. Environmental Geology,2009, Volume 57, Number 6,1313-1324.
    [104]T. N. Singh, A. Gulati, L. Dontha et al. Evaluating cut slope failure by numerical analysis—a case study[J]. Natural Hazards,2008, Volume 47, Number 2,263-279.
    [105]Amit K. Verma, T. N. Singh. Modeling of a jointed rock mass under triaxial conditions[J]. Arabian Journal of Geosciences,2010, Volume 3, Number 1, 91-103.
    [106]M. Kuhn, K. Gessner. Testing Hypotheses for the Mount Isa Copper Mineralisation with Numerical Simulations[J]. Surveys in Geophysics,2009, Volume 30, Number 3,253-268.
    [107]K. Gessner, M. Kuhn, V. Rath et al. Coupled Process Models as a Tool for Analysing Hydrothermal Systems[J]. Surveys in Geophysics,2009,30(3): 133-162.
    [108]Klaus Gessner. Coupled Models of Brittle-plastic Deformation and Fluid Flow: Approaches, Methods, and Application to Mesoproterozoic Mineralisation at Mount Isa, Australia[J]. Surveys in Geophysics,2009,30(3):211-232
    [109]Raj H. Sharma, Heinz Konietzky, Ken'ichirou Kosugi. Numerical analysis of soil pipe effects on hillslope water dynamics[J]. Acta Geotechnica,2010,5(1):33-42
    [110]江学良,杨慧,曹平.基于SURPAC模型的采空区与露采边坡相互影响的FLAC-(3D)分析[J].岩土力学,2011,32(4):1234-1240
    [111]魏力,刘文连,许利东FLAC-(3D)在云锡卡房分边坡稳定性分析中的应用[J].科学技术与工程,2010,(23):5724-5727.
    [112]曹平,董志明,姚劲松.岩质边坡稳定性的FLAC-(3D)数值模拟分析[J].西部探矿工程,2006,18(9):268-270.
    [113]刘洋,王铁林.基于FLAC-(3D)的多煤层开采应力分布影响的数值模拟[J].微计算机信息,2010,(31):197-198,210.
    [114]何忠明,彭振斌,曹平,等.双层空区开挖顶板稳定性的FLAC-(3D)数值分析[J].中南大学学报(自然科学版),2010,40(4):1066-1071.
    [115]寇向宇,贾明涛,王李管,等.用于FLAC-(3D)力学分析的矿床块段模型优化[J].金属矿山,2011,(1):15-18.
    [116]苏军,王文哲,杨小聪.应用FLAC3D研究地下开采对围岩的影响范围[J].有色金属,2009,61(4):161-165.
    [117]吕淑然,刘红岩.矿体开采的FLAC-(3D)数值模拟分析[J].矿冶,2006,15(4):1-4,20.
    [118]章求才,贺桂成.急倾斜矿体充填法回采的FLAC-(3D)模拟[J].南华大学学报(自然科学版),2008,22(4):46-50.
    [119]李洪勇.基于FLAC3D的龙江特大桥边坡稳定性分析[J].武汉理工大学学报,2010,32(3):61-64.
    [120]寇晓东,维垣,杨若琼FLAC-3D进行三峡船闸高边坡稳定分析[J].岩石力学与工程学报,2001,20(1):6-10.
    [121]刘建华,朱维申,李术才,等.小浪底水利枢纽地下厂房岩体流变与稳定性FLAC-(3D)数值分析[J].岩石力学与工程学报,2005,24(14):2484-2489
    [122]左双英,肖明,来颖.基于FLAC-(3D)的某水电站大型地下洞室群开挖及锚固效应数值分析[J].武汉大学学报(工学版),2009,42(4):432-436.
    [123]杨为民,陈卫忠,李术才,等.快速拉格朗日法分析巨型地下洞室群稳定性[J].岩土工程学报,2005,27(2):230-234
    [124]曾静,盛谦,廖红建,等.佛子岭抽水蓄能水电站地下厂房施工开挖过程的FLAC-(3D)数值模拟[J].岩土力学,2006,27(4):637-642.
    [125]张利洁,黄正加,雷菁FLAC-3D在边坡岩体稳定性分析中的应用[J].岩土力学,2005,26(sup2):61-64.
    [126]武科,马秀媛,赵青FLAC-(3D)在土坝劈裂灌浆防渗稳定性分析中的应用[J].岩土力学,2005,26(3):484-487
    [127]王祖强,张贵金,王明,等.用FLAC3D模拟流固耦合评价病险土坝防渗加固效果[J].湖南水利水电,2009,(2):41-43.
    [128]闫长斌,徐国元,李夕兵.爆破震动对采空区稳定性影响的FLAC-(3D)分析[J].岩石力学与工程学报,2005,24(16):2894-2899.
    [129]苏国韶,张小飞,符兴义,等.爆炸荷载作用下岩体振动特性的DE-FLAC-(3D)数值模拟方法[J].北京理工大学学报,2009,29(6):471-474.
    [130]林杭,曹平,周正义FLAC3D模拟全长注浆锚杆的作用效果[J].岩土力学,2005,26(sup2):167-170.
    [131]江文武,徐国元,马长年FLAC-(3D)的锚杆拉拔数值模拟试验[J].哈尔滨工业大学学报,2009,41(10):129-133.
    [132]孙焱,邓金根,牟善波,等.定向射孔完井FLAC-(3D)模型的建立与力学仿真[J].断块油气田,2010,17(2):250-253.
    [133]王文哲,杨小聪,郭利杰,等.FLAC-(3D)用于充填模拟分界面力学特性研究[J].矿冶,2010,19(2):1-4.
    [134]张胤,戴妙林,匡义,等.基于FLAC-(3D)结构单元的边坡抗滑桩加固模拟及应用[J].水电能源科学,2010,(12):95-97.
    [135]徐平,李云鹏,丁秀丽,等.FLAC-(3D)粘弹性模型的二次开发及其应用[J].长江科学院院报,2004,21(2):10-13.
    [136]褚卫江,徐卫亚,杨圣奇,等.基于FLAC-(3D)岩石黏弹塑性流变模型的二次开发研究[J].岩土力学,2006,27(11):2005-2010.
    [137]陈新泽,唐辉明,杨有成,等.基于FLAC-(3D)强度折减法滑坡三维稳定性研究——以三峡库区白果树古滑坡群为例[J].水文地质工程地质,2008,(2):24-29.
    [138]袁海平,王金安,赵奎,等Flac3D单元等效结点力的计算与应用研究[J].江西理工大学学报,2009,30(6):1-3.
    [139]胡军,朱巨建.应变软化模型在FLAC-(3D)二次开发中的应用[J].水电能源科学,2009,(6):120-123.
    [140]何竹叶,任旭华,刘燕.基于FLAC-(3D)和粒子群优化算法的初始地应力场反演[J].水电能源科学,2010,(8):46-48.
    [141]刘姗姗,赵同彬.粘弹性广义Kelvin模型的FLAC-(3D)二次开发[J].山东科技大学学报(自然科学版),2010,29(4):20-23.
    [142]常来山,王家臣,李慧茹,等.节理岩体边坡损伤力学与FLAC-3D耦合分析[J].金属矿山,2004,(9):16-18,27.
    [143]杨文东,张强勇,张建国,等.基于FLAC-(3D)的改进Burgers蠕变损伤模型的二次开发研究[J].岩土力学,2010,31(6):1956-1964.1ing
    [144]凌影.基于FLAC3D及BP神经网络的厂区初始地应力场反演分析[J].广东水利水电,2010,(11):93-95.
    [145]廖秋林,曾钱帮,刘彤,等.基于ANSYS平台复杂地质体FLAC-(3D)模型的自动生成[J].岩石力学与工程学报,2005,24(6):1010-1013.
    [146]姬保静,刘伟韬,任强FLAC-(3D)中复杂模型的三维建模技巧[J].安全与环境学报,2006,6(sup):69-72.
    [147]董鹏,李长洪.基于ANSYS软件的FLAC3D实体建模[J].山西建筑,2007,(1):350-351.
    [148]邓红卫,朱和玲,周科平.基于FLAC-(3D)数值模拟的前后处理优化研究[J]. 矿业研究与开发,2007,38(2):60-62.
    [149]柴红保,龙雪鸣.复杂地质体FLAC-(3D)模型快速生成[J].矿业工程研究,2009,24(2):25-28.
    [150]周永利.基于AutoCAD与ANSYS建立FLAC3D模型的边坡稳定性分析[J].中国科技信息,2009,(19):90-92.
    [151]刘心庭,唐辉明FLAC-(3D)复杂网络模型的构建及其工程应用[J].金属矿山,2010,(11):108-111
    [152]田树昆,曹兰柱.基于CAD与ANSYS的FLAC-(3D)边坡模拟分析[J].微计算机信息,2010,(11):259-260.
    [153]陈飞,杨诗义,王家成,等.用ANSYS和FLAC3D软件求解边坡稳定安全系数的比较分析[J].水利与建筑工程学报,2010,8(1):104-106.
    [154]杨宇宏,许胜.基于Surfer和ANSYS复杂地质体的FLAC-(3D)实体建模[J].山西建筑,2010,(2):63-64.
    [155]徐文杰,胡瑞林.基于逆向工程的三维复杂地质体精细建模及ADINA前处理在FLAC-(3D)建模中的应用[J].工程地质学报,2008,16(5):703-709.
    [156]张玉灯.基于ADINA平台的FLAC-(3D)建模[J].西北水电,2008,(4):73-75.
    [157]崔芳鹏,胡瑞林,刘照连,等.基于Surfer平台的FLAC-(3D)复杂三维地质建模研究[J].工程地质学报,2008,16(5):699-702.
    [158]王树仁,张海清MIDAS/GTS-FLAC-(3D)耦合建模新方法及其应用[J].土木建筑与环境工程,2010,32(1):12-17.
    [159]侯恩科,吴立新,李建民.三维地学模拟与数值模拟的耦合方法研究[J].煤炭学报,2002,27(4):388-392
    [160]夏艳华,白世伟,倪才胜.某水利枢纽厂房开挖三维可视化与数值模拟耦合研究[J].岩土力学,2005,26(6):968-972
    [161]钟登华,李明超,杨建敏.复杂工程岩体结构三维可视化构造及其应用[J].岩石力学与工程学报,2005,24(4):575-580
    [162]钟登华,李明超,王刚.大型水电工程地质信息三维可视化分析理论与应用[J].天津大学学报,2004,37(12):1046-1052
    [163]李明超,钟登华,等.基于三维地质模型的工程岩体结构精细数值建模[J].岩石力学与工程学报,2007,26(9):1893-1898
    [164]赵晓东,谷晓松,王海龙.GIS和FLAC-(3D)耦合下的采场上覆岩层破坏空间分布[J].煤炭学报,2010,35(9):1436-1439.
    [165]房晓敏,孟祥瑞,徐铖辉3DGIS构模与FLAC-(3D)建模网格数据融合技术研究[J].煤炭技术,2010,29(4):161-163.
    [166]薛雷,李维朝,孙强,等.基于数字图像像素单元建立准三维FLAC-(3D)模型[J].岩土力学,2010,31(6):2001-2004.
    [167]林杭,曹平,李江腾,等.基于SURPAC的FLAC-(3D)三维模型自动构建[J].中国矿业大学学报,2008,37(3):339-342.
    [168]寇向宇,贾明涛,王李管,等.基于CMS及DIMINE-FLAC-(3D)耦合技术的采空区稳定性分析与评价[J].矿业工程研究,2010,25(1):31-35.
    [169]胡斌,张倬元,黄润秋,等FLAC-(3D)前处理程序的开发及仿真效果检验[J].岩石力学与工程学报,2002,21(9):1387-1391.
    [170]丁秀美,黄润秋,刘光士FLAC-3D前处理程序开发及其工程应用[J].地质灾害与环境保护,2004,15(2):68-73.
    [171]汪吉林,丁陈建,吴圣林.基于FLAC-(3D)的复杂地貌三维地质建模[J].地质力学学报,2008,14(2):149-157.
    [172]高盛翔,叶容章,唐伟励,等.应用MATLAB接口程序建立复杂地质体FLAC3D模型[J].煤田地质与勘探,2009,37(5):51-53.
    [173]荆永滨,王李管,贾明涛,等.基于TetGen的复杂FLAC-(3D)模型可视化建模方法[J].岩土力学,2010,31(8):2655-2660.
    [174]颜荣贵.地基开采沉陷及其地表建筑[M].北京:冶金工业出版社,1995
    [175]刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:中国工业出版社,1965
    [176]张玉卓.煤矿地表沉陷的预测与控制——世纪之交的回顾与展望[C].见:煤炭学会第五届青年科技学术研讨会论文集.北京:煤炭工业出版社,1998
    [177]阿维尔申著.煤矿地下开采的岩层移动[M].北京:煤炭工业出版社,1959
    [178]赴波兰考察团.波兰采空区地面建筑[M].北京:科学技术文献出版社,1979
    [179][波]M.鲍莱茨基,M.胡戴克著.于振海,刘天泉译.矿山岩体力学[M].北京:煤炭工业出版社,1985
    [180]Berry D S And Sales T W.An Elastic Treatment of Ground Movement Due to Mining.J.Mech.Phys Solids 1961, (9):52-62
    [181]Berry D S. Ground Movement Considered as An Elastic Phenomenon. Min. Engr.1963, (123):28-41
    [182]Salamon.M.D.G.Elastic analysis of displacements and stresses induced by the mining of seam or roof deposis.J.S. Afr,Inst.M etal.1963,63
    [183]Salamon M.D.G.Rock M echanics of Underground Excavations.Advances in Rock Mechanics,Proc.3rd congr, Int.Soc.Rock Mech. Denver,1974,951-1099
    [184]KratzschH.Mining Subsidence Engineering. Springerveflag[M]. Berlin Heidelberg New York,1983
    [185]Brauner. Subsidence due to underground mining[R]. Bureau of Mines,USA,1973
    [186]何国清,马伟民,王金庄.威布尔型影响函数在地表移动的计算中的应用[J].中国矿业学院学报,1982,(1):1-20
    [187]白矛,刘天泉.条带法开采中条带尺寸的研究[J].煤炭学报,1983,(4):19-26
    [188]张玉卓,仲惟林,姚建国.岩层移动的错位理论解与边界元法计算[J].煤炭学报,1987,(2):21-31
    [189]李增琪.使用富氏积分变换计算开挖引起的地表移动[J].煤炭学报,1983,(2):18-25
    [190]李增琪.用富氏积分变换计算开挖引起的地表移动之二-水平煤层空间问题[J].煤炭学报,1985,(1):18-22
    [191]张玉卓,仲惟林,姚建国.断层影响下地表移动的统计和数值模拟研究[J].煤炭学报,1989,(1):23-31
    [192]何万龙,孔照壁.山区地表移动及变形预计[J].矿山测量,1986,(2):24-30
    [193]杨硕,张有祥.水平移动曲面的力学预测法[J].煤炭学报,1995,20(2):214-218
    [194]邓喀中.开采沉陷中的岩体结构效应研究[D].徐州:中国矿业大学,1993
    [195]邓喀中,马伟民,何国清.开采沉陷中的层面效应研究[J].煤炭学报,1995,20(4):56-58
    [196]邹友峰,何满潮.条带开采地表沉陷预计的新理论[J].水文地质工程地质,1994,(2):1-5
    [197]于广明.分形及损伤力学在开采沉陷中的应用研究[D].中国矿业大学北京研究生部,1997
    [198]谢和平,陈至达.非线性大变形有限元分析及在岩层移动中的应用[J].中国矿业大学学报,1988,(2):94-105
    [199]崔希民,杨硕.开采沉陷的流变模型探讨[J].中国矿业,1996,5(2):52-55
    [200]戴华阳.基于倾角变化的开采沉陷模型及其GIS可视化应用研究[D].中国矿业大学北京研究生部,2000
    [201]郭增长,韩六合,邓智毅,等.极不充分开采地表移动和变形特征[J].矿山测量,2002,(2):55-57
    [202]苏仲杰,刘文生,杨伦,等.地表下沉力学模型的建立及应用[J].力学与实践,2003,(2):45-47
    [203]杨帆.急倾斜煤层采动覆岩移动模式及机理研究[D].辽宁工程技术大学,2006
    [204]尹德潜.损伤理论在金属矿岩移理论研究中的应用[D].长沙:中南工业大学,1993
    [205]曾卓乔.钨矿深部地压研究一摄影测量观测井巷及空区围岩变形[R].中南工 业大学科研报告,1988.1
    [206]张锋.自然崩落法矿体崩落状态的监测[J].金属矿山,1997,(9):9-13
    [207]曹阳,颜荣贵,贺跃光,等。崩落法开采急倾斜矿床地表变形预计新方法[J].矿冶,2002,11(4):5-8
    [208]尹德潜,曾卓乔,寇新建.金属矿山岩移预计的损伤力学模型[J].中国有色金属学报,1991,(1):12-17
    [209]贺跃光,颜荣贵,曾卓乔.急倾斜矿体开采地表沉陷与概化地应力研究[J].中南大学学报(自然科学版),2001,32(2):122-126
    [210]李春雷.崩落法开采矿山地表沉陷机理及其预测预报研究[R].2007.1
    [211]方建勤,彭振斌,颜荣贵.构造应力型开采地表沉陷规律及其工程处理方法[J].中南大学学报(自然科学版),2004,35(6):506-510.
    [212]北京有色冶金设计研究总院.金川有色金属公司二矿区修改初步设计[R].1985,01
    [213]中国有色工程设计研究总院.金川集团有限公司二矿区850m中段开采工程初步设计书[R].2003,06.马凤山.“金川矿区地表岩移的GPS监测及变形规律研究”阶段成果报告[R].北京:中科院地质与地球物理研究所,2008.
    [214]马凤山.《金川矿区地表岩移的GPS监测及变形规律研究》阶段成果报告[R].北京:中科院地质与地球物理研究所,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700