Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr合金组织性能及沉淀析出行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型Al-Cu-Mg-Ag系合金由于具有优良的高温及损伤容限性能成为下一代超音速飞行器蒙皮的候选材料。本文在选择Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr合金合理的单级固溶工艺的基础上,研究了单级时效对合金性能的影响,通过定性和半定量的分析方法研究了单级时效过程中沉淀相的析出行为,并进一步研究了多级断续时效对合金组织和性能的影响,最后评价了单级时效态合金的疲劳性能和高速冲击性能。主要工作及结果包括:
     研究了固溶温度和时间对Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr合金组织性能的影响。合金的合理的单级固溶温度为520℃-525℃之间,合理的单级固溶时间为2h左右。
     研究了单级时效温度和时间对Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr合金电导率、硬度和室温拉伸性能的影响。在自然时效时,合金的电导率先减小后趋于稳定,合金的硬度先增大后趋于稳定;在确定的人工时效温度下,随着时效时间的延长,合金的电导率先增大后趋于稳定,合金的硬度先增大后减小。时效温度为160℃左右时,合金的峰值硬度最高,约为HV=166。
     重点研究了160℃和180℃单级时效对Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr合金拉伸性能的影响。在两个温度下时效时,合金峰值力学性能无明显差异,峰值抗拉强度为510MPa左右,峰值屈服强度为475MPa左右,对应的延伸率在14%左右;两个温度下的时效强化响应速度具有明显的差异,温度越高,强度增加越快,在较高的时效温度下,峰时效后强度的下降速度加快。
     定性研究了单级时效下Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr合金沉淀相的析出行为。在较低温度(65℃)时效时,合金的主要沉淀相为θ'相,无明显的Ω相析出特征;在中等温度(160-180℃)时效时,合金的沉淀相为Ω相和少量的θ'相;在较高温度(>200℃)时效时,合金的沉淀相与中等温度时效相同,但长大速度明显加快。重点研究了中等温度时效对合金组织的影响,在时效初期,沉淀相尺寸均匀细小,不发生交义;随着时效时间的延长,沉淀相的尺寸出现不均匀特征,且发生明显的交接和交义现象,在交接、交义区与基体的界面附近出现位错,说明沉淀相的交接和交义需要位错协调。
     研究分析了固溶淬火态Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr合金在差示扫描量热试验中的三个放热效应所对应的析出反应。三个放热峰的峰值温度分别约为Ⅰ:171℃,Ⅱ:230℃和Ⅲ:276℃,Ⅰ峰对应的反应是GP区的结构调整,Ⅱ峰对应的是Ω相的析出,Ⅲ峰对应的主要是θ'相的析出。
     利用HREM半定量分析了中等温度时效Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr合金Ω相的析出行为。时效温度越高,Ω相的厚度和径向尺寸越大,峰值面积分数基本一致,但达到峰值面积分数的时间不同,温度越高,时间越短。
     利用小角度X散射研究了合金单级时效过程中沉淀相的析出行为。在160-200℃范围内,随着时效时间的延长,散射花样由同心圆过渡到枝权状花样,且时效温度越高,出现枝权的时间越短;枝权花样是盘状沉淀相在倒易空间中傅里叶变换引起的,通过测量枝权间的角度可以识别枝权在正空间中对应的沉淀相种类;此外,文章计算了沉淀相的回转半径和积分强度。
     研究了多级断续时效制度对Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr合金组织和性能的影响。断续时效在保持单级时效强度的条件下,可提高合金的断裂韧性。微观组织分析表明,断续时效与中等温度单级时效对组织影响的差异主要在于第二级低温时效时,合金的沉淀相为均质形核的θ'相,无明显的Ω相析出特征。
     研究了时效制度对Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr合金疲劳和高速冲击性能的影响。峰时效态合金具有良好的抗疲劳性能,疲劳极限为291MPa,且欠、峰、过时效态合金均具有较低的疲劳裂纹扩展速率,其中峰时效态合金的最低;霍普金森试验表明,160℃/2h、14h和50h处理后合金具有不同的应变强化效应,其中50h处理后的合金在低速和高速冲击下屈服强度差异最大,2h和14h时效后合金在高速和低速冲击下的屈服强度差异较小。
A novel series of Al-Cu-Mg-Ag alloy with excellent elevated temperature properties and damage-tolerance was developed and became a candidate skin alloy for next generation of supersonic aircraft. The variation of microstructure and properties of a novel Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr alloy in solution and single ageing process was studied in this thesis. Furthermore, the effect of Muti-step ageing on properties and microstructure was also investigated. The fatigue and dynamic properties were estimated at the last part of this thesis. The main results were drawn as below:
     The effect of solution temperature and time on microstructure and properties on Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr alloy was studied. The rational single solution temperature is in the range of 520℃-525℃. The rational single solution time is about 2 hours.
     The influence of single ageing temperature and time on electrical conductivity, hardness and ambient tensile properties was investigated. Under the condition of natural ageing, the electrical conductivity of alloy decreases initially and then approaches to a stable value, while the hardness increases initially and then trends to a stable value. Under the condition of artificial ageing, the electrical conductivity of alloy increases initially and then trendes to a stable value, while hardness increases initially and then decreases after having reached the top value. When the ageing temperature reaches 160℃,the top value of hardness is the highest among all the ageing temperatures, i.e.HV=166.
     The focal discussion was put on the effect of ageing at 160℃and 180℃on the tensile properties of Al-4.8Cu-0.5Mg-0.3 Ag-0.15Zr alloy. When ageing at these two temperatures, the peak values of tensile property are not significantly different from each other. The peak value of UTS is about 510MPa, while YTS is about 475MPa, and the corresponding value of Elongation is about 14%. However, the responding of ageing-hardening is different. The higher ageing temperature, the faster increment of strength is obtained. The speed of reduction of strength after peak ageing increased with the increment of ageing temperature.
     The ageing behavior of Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr alloy in the process of single ageing was studied qualitatively. At low ageing temperature (65℃), the precipitate is mainly 0'phase without visible characteristic ofΩphase. At moderate ageing temperature (160-180℃), the precipitates areΩphase and small quantitative ofθ' phase. At elevated ageing temperature (>200℃), the type of precipitates is the same with that of the ageing at moderate temperature, but the speed of growth increases. The effect of moderate temperature on microstructure of the experimental alloy was studied emphatically. At the early ageing period, the size of precipitates is uniform and the precipitates are not crossed with each other. As increment of ageing time, the size of precipitates becomes heterogeneous. Apparent joining of precipitates and crossing zone starts to happen. Beside the field between the joining or crossing zone and the matrix, apparent dislocations are visible, which suggests the joining or crossing of precipitates requires dislocations to coordinate the different structure.
     The precipitation reactions corresponding to three exothermic effects in DSC experiment of Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr was studied. The peak temperatures of the three effects areⅠ=171℃,Ⅱ=230℃andⅢ=276℃.The corresponding reactions are arrangement of GP zone structure, the precipitation ofΩphase and the precipitation of 0' phase.
     The ageing behavior of Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr alloy at moderate temperature was semi-quantitatively investigated. The higher the temperature is, the greater the size of thickness and diameter ofΩphase is obtained. The peak value of fractions ofΩphase at 160℃and 180℃are nearly equal to each other, but the time corresponding to the peak values are different. The higher the temperature is, the shorter the time is required.
     Small angle X-Ray scattering was used to study the ageing behavior of the experimental alloy. Within the ageing temperature range of 160-200℃,as increase of the ageing time, the scattering patterns changed from concentric cycles to branches. The higher the ageing temperature is, the shorter the time for branches to appear is obtained. The branches are the result of Fourier transformation of plate-like precipitates. The corresponding precipitate of a branch can be identified by the angles between branches. Furthermore, the Guinier radius and integrated intensity were measured using SAXS. The tendency of the SAXS results is different significantly from that of HREM.
     The influence of typical Muti-step ageing processes on the microstructure and properties was studied. Muti-step ageing can rise the fracture toughness while keeping the strength and elongation of single ageing. The results indicate that the difference between Muti-step ageing and single ageing arises from 0'being separated out homogenously without any visible characteristic ofΩphase during the second low temperature ageing of Muti-step ageing,.
     The effect of ageing condition on fatigue and dynamic properties of Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr was investigated. The alloy that undergoes ageing at peak conditions has an excellent fatigure property. The fatigue limit is about 291 MPa. The crack propagation resistant of the alloy under different ageing conditions is low. In addition, the results of Hopkinson showes that the strain hardening behavior are different when the alloy is aged at the condition of 160℃/2h,160℃/14h and 160℃/50h. Under low and high attacking speeds, YTS of the alloy aged at 160℃for 50h significantly varies while that of the alloy aged at 160℃for 2h and 160℃for 14h are indistinctively.
引文
[1]Polmear I J, Pons G, Octor H, et al. After Concorde:Evaluation of an Al-Cu-Mg-Ag alloy for use in the proposed European SST [J]. Materials Science Forum 1996,217-222:1759-1764.
    [2]Lumley R N, Morton A J, Polmear I J. Enhanced creep performance in an Al-Cu-Mg-Ag alloy through underageing [J]. Acta Materialia,2002,50(14): 3597-3608.
    [3]Lumley R N, Polmear I J. The effect of long term creep exposure on the microstructure and properties of an underaged Al-Cu-Mg-Ag alloy [J]. Scripta Materialia,2004,50(9):1227-1231.
    [4]Polmear I J, Pons G, Barbaux Y, et al. After Concorde:evaluation of creep resistant Al-Cu-Mg-Ag alloys [J]. Materials Science and Technology,1999,15(8):861-868.
    [5]Auld J H, Vietz J T. The Mechanism of Phase Transformation in Crystalline Solids [M]. London:The Institute of Metals,1969.
    [6]Ringer S P, Yeung W, Muddle B C, et al. Precipitate stability in Al-Cu-Mg-Ag alloys aged at high-temperature [J]. Acta Metallurgica Et Materialia,1994,42(5): 1715-1725.
    [7]Polmear I J. The effects of small additions of silver on the ageing of some aluminum alloy [J]. Trans Met Soc AJME,1964,230:1331-1338.
    [8]Vietz J T, Polmear I J. The influence of silver on ageing of Al-Cu-Mg alloys [J]. J. Inst. Met.,1966,94:410-416.
    [9]Chester R J, Polmear I J. The Investigation of Precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg Alloys [J]. Micron,1980,11(3-4):311-312.
    [10]Polmear I J, Coper M J. Design Development of An Experimental Wrought Aluminium Alloy for use at Elevated Temperature [J]. Metallurtical Transaction A, 1988,19(4):1027-1034.
    [11]Kazanjian S M, Wang N, Starke E A. Creep behavior and microstructural stability of Al-Cu-Mg-Ag and Al-Cu-Li-Mg-Ag alloys [J]. Materials Science and Engineering 1997,234:571-574.
    [12]Cho A, Bes B. Damage tolerance capability of an Al-Cu-Mg-Ag alloy(2139) [J]. Materials Science Forum,2006,519-521:603-608.
    [13]Gao X, Nie J F, Muddle B C. Effects of Si additions on the precipitation hardening response in Al-Cu-Mg(-Ag) alloys [J]. Mater. Sci. Forum,1996,217-212: 1251-1256.
    [14]Auld J H. Structure of metastable precipitate in some Al-Cu-Mg-Ag alloys [J]. Materials Science and Technology,1986,2(8):784-787.
    [15]Muddle B C, Polmear I J. The precipitate Ω-phase in Al-Cu-Mg-Ag alloys [J]. Acta Metallurgica,1989,37(3):777-789.
    [16]Garg A, Howe J M. Convergent-beam electorn diffraction analysis of the Ω phase in an Al-4.0Cu-0.5Mg-0.5Ag alloy [J]. Acta Metall. Mater.,1991,8:1939-1946.
    [17]Xiao D H, Wang J N, Ding D Y, et al. Effect of Cu content on the mechanical properties of an Al-Cu-Mg-Ag alloy [J]. Journal of Alloys and Compounds,2002, 343(1-2):77-81.
    [18]Raviprasad K, Hutchinson C R, Sakurai T, et al. Precipitation processes in an Al-2.5Cu-1.5Mg (wt.%) alloy microalloyed with Ag and Si [J]. Acta Materialia, 2003, (51):5037-5050.
    [19]Xiao D H, Wang J N, Ding D Y, et al. Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy [J]. Journal of Alloys and Compounds,2003,352(1-2):84-88.
    [20]Chen D Q, Zheng Z Q, Li S C, et al. Mechanism of stress ageing in Al-Cu(-Mg-Ag) alloys [J]. Transactions of Nonferrous Metals Society of China,2004,14(4): 779-784.
    [21]Zhu A W, Gable B M, Shiflet G J, et al. Trace element effects on precipitation in Al-Cu-Mg-(Ag, Si) alloys:a computational analysis [J]. Acta Materialia,2004, 52(12):3671-3679.
    [22]Hono K, Sakurai T, Polmear I J. Pre-precipitation clustersing in an Al-Cu-Mg-Ag alloy [J]. Scripta Metallurgica Et Materialia,1994,30(6):695-700.
    [23]Ringer S P, Muddle B C, Polmear I J. Effects of cold work on precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) alloys [J]. Metallurgical and Materials Transaction A,1995,26(7):1659-1671.
    [24]Villars P, Prince A, Okamoto H. Handbook of ternary alloy phase diagrams [M]. Materials Park:Materials Park,1994.
    [25]刘志义,李云涛,刘延斌,等Al-Cu-Mg-Ag合金析出相的研究进展[J].中国有色金属学报,2007,17(12):1905-1915
    [26]Hono K, Sano N, Babu S S, et al. Atom probe study of the precipitation process in an Al-Cu-Mg-Ag alloys [J]. Acta Metallurgica Et Materialia,1993,41(3):829-838.
    [27]Chester R J, Polmear I J. TEM investigation of precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg alloys [J]. Micron,1980,11(3-4):311-312.
    [28]Chopra H D, Liu L J, Muddle B C, et al. The structure of metastable{111} α preeipitates in an Al-2.swt%Cu-1.swt%Mg-0.5wt%Ag alloy [J]. Philosophical Magazine Letters,1995,71(6):319-324.
    [29]Ringer S P, Quan G C, Sakuraib T. Solute clustering, segregation and micro structure in high strength low alloy Al-Cu-Mg alloys [J]. Materials Science and Engineering A,1998,250(1):120-126
    [30]Gable B M, Shiflet G J, E.A. Starke J. Alloy development for the enhanced stability of Ω precipitates in Al-Cu-Mg-Ag alloys [J]. Metallurgical and materials transactions A,2006,37A(4):1091-1105.
    [31]Kerry S, Scott V D. Structure and origntation relationship of precipitates formed in Al-Cu-Mg-Ag alloys [J]. Metal Science,1984,18(6):289-294.
    [32]Scott V D, Kerry S, Trumper R L. Nucleation and growth of precipitates in Al-Cu-Mg-Ag alloys [J]. Materials Science and Technology,1987,3(10):827-835.
    [33]Rainforth W M, Rylands L M, Jones H. Nano-beam analysis of Omega precipitates in a Al-Cu-Mg-Ag alloy [J]. Scripta Materialia,1996,35(2):261-265.
    [34]Auld J H. Structrue of a metastable precipitate in an Al-Cu-Mg-Ag alloy [J]. Acta Crystallographica,1972,28A:S98.
    [35]Sano N, Hono K, Sakurai T, et al. Atom-probe analysis of Ω and θ'phases in an Al-Cu-Mg-Ag alloys [J]. Scripta Metallurgica Et Materialia,1991,25(2):491-496.
    [36]Hutchinson C R, Fan X, Pennycook S J, et al. On the origin of the high coarsening resistance of Ω plates in Al-Cu-Mg-Ag alloys [J]. Acta Materialia,2001,49(14): 2827-2841.
    [37]Howe J M. Analytical transmission electron microscopy analysis of Ag and Mg segregation to{111} thetas precipitate plates in an Al-Cu-Mg-Ag alloy [J]. Philosophical Magazine Letters,1994,70(3):111-120.
    [38]Knowles K M, Stobbs W M. The structure of{111} age-hardening precipitates in Al-Cu-Mg-Ag alloys [J]. Acta Crystallographica Section B-Structural Science,1988, 44:207-227.
    [39]马秀梅Al-Cu-Mg-Ag(-Ce)合金析出相的电子显微研究[D].北京:北京工业大学,2006.
    [40]Zhang K, Dai S 1, Huang M, et al. Ageing precipitation behavior of high purity Al-Cu-Mg-Ag alloy [J]. Chinese Journal of Nonferrous Metals,2007,3:417-421.
    [41]宋旼,陈康华,黄兰萍Al-Cu-Mg-(Ag)合金中时效析出相的析出及生长动力学[J].中国有色金属学报,2006,16(8):1313-1318.
    [42]Garg A, Howe J M. Nucleation and growth of Ω phase in Al-4.0 Cu-0.5 Mg-0.5 Ag alloy-An in situ hot-stage TEM study [J]. Acta Met Mater,1991,39(8):1925-1937
    [43]Taylor J A, Parker B A, Polmear I J. Precipitation in Al-Cu-Mg-Ag casting alloy [J]. Metal Science,1978,12(10):478-482.
    [44]Cousland S M, Tate G R. Structural change associated with solid-state reactions in Al-Cu-Mg-Ag alloys [J]. J Appl. Cryst.1986,19:174-180.
    [45]Lim M S, Tibballs J E, Rossiter P L. Assessment of Thermodynamic Equilibria in the Ag-Al-Cu-Mg Quaternary System in Relation to Precipitation Reactions [J]. Z. Metallkd,1997,88:236-245.
    [46]Ringer S P, Hono K, Polmear I, et al. Nucleation of precipitates in aged Al-Cu-Mg-(Ag) alloys with high Cu:Mg ratios [J]. Acta Materialia,1996,44(5): 1883-1898.
    [47]Suh I S, Park J K. The effect of misfit strain energy on the formation of Omega phase in Al-Cu-Mg-(Ag) alloys [A]. Proceedings of an International Conference on Solid-Solid Phase Transformations,1994:159-164.
    [48]Cui Q, Itoh,, Kanno M. Effect of silver addition on the precipitation of the Ω-phase in an Al-Cu-Mg alloy [J]. Journal of the Japan Institute of Metals,1995,59 (5): 492-501.
    [49]Reich L, Murayama M, Hono K. Evolution of Q phase in an Al-Cu-Mg-Ag alloy-A three-dimensional atom probe study [J]. Acta Materialia.,1998,46(17):6053-6062.
    [50]Murayama M, Hono K. Three dimensional atom probe analysis of pre-precipitate clustering in an Al-Cu-Mg-Ag alloy [J]. Scripta Materialia,1998,38(8):1315-1319.
    [51]Reich L, Murayama M, Hono K.3DAP study of the effect of Mg and Ag additions on precipitation in Al-Cu-(Li) alloys [A]. Proceedings of 6th International Conference on Aluminum Alloys, USA Georgia,1998:5-10.
    [52]Chang Y C, Howe J M. In-Situ HRTEM study of Ω-precipitate dissolution in an Al-Cu-Mg-Ag alloy [J]. Ultramicroscopy,1993,51(1-4):46-63.
    [53]Doherty R D, Rajab K E. Kinetics of growth and coarsening of faceted hexagonal precipitates in an f.c.c. matrix-Ⅱ. Analysis [J]. Acta Metallurgica,1989,37(10): 2723-2731.
    [54]夏卿坤,刘志义,余日成,等.时效制度对Al-Cu-Mg-Ag合金组织和性能的影响[J].热加工工艺,2006,35(18):22-24.
    [55]Chaturvedi M C, Chung D W, Doucette R A. Effect of thermomechanical treatment on structure and properties of 2036 aluminum alloy [J]. Met. Sci.,1979,13(1): 34-40.
    [56]肖代红,王健农,丁冬雁.预拉伸处理对Al-5.3Cu-0.8Mg-0.3Ag合金性能和时效过程影响[J].热加工工艺,2003,4:1-5.
    [57]刘延斌,刘志义,余日成,等.预拉伸对Al-Cu-Mg-Ag合金室温性能的影响[J].金属热处理,2007,32(04):64-67.
    [58]曾苏民.影响铝合金固溶保温时间的多因素相关规律[J].中国有色金属学报,1999,9(1):79-82.
    [59]张宝昌.有色金属及热处理[M],北京:国防工业出版社,1995.
    [60]赵宇,陈莉,雷宇.YL12铝合金的过烧组织及其力学性能[J].热加工工艺,2004,11:27-28.
    [61]邓永瑞,许洋,赵青.固态相变[M].北京:冶金工业出版社,1996.
    [62]Starink M J. Analysis of aluminium based alloys by calorimetry:quantitative analysis of reactions and reaction kinetics [J]. International Materials Reviews,2004, 49:3-4.
    [63]Beffort O, Solenthaler C, Uggowitzer P J, et al. High toughness and high strength spray-deposited AlCuMgAg-base alloys for use at moderately elevated temperatures [J]. Materials Science and Engineering A,1995,191:121-134.
    [64]李世晨,郑子樵.计算机模拟Al-Cu-(Mg)-(Ag)时效初期原子分布状态[J].中南工业大学学报(自然科学版),2000,31(5):441-444.
    [65]Li Q, Shenoy R N. DSC and TEM characterizations of thermal stability of an Al-Cu-Mg-Ag alloy [J]. Journal of Materials Science,1997,32(13):3401-3406.
    [66]进藤大辅,平和贤二,.材料评价的高分辨电子显微方法[M]:刘安生译,北京:冶金工业出版社,2002.
    [67]I.J.Polmear. Light alloys:From Traditional Alloys to Nanocrystals [M]. Burlington: Butterworth-Heinemann,2006.
    [68]费豪文著.物理冶金学基础[M].卢光熙译.上海:上海科学技术出版社,1980.
    [69]宋旼,肖代红,黄伯云Al-Cu-Mg-Ag合金中半共格Ω析出相与位错的交互作用[J].北京工业大学学报,2008,34(10):1093-1097.
    [70]Shercliff H R, Ashby M F. A process model for age hardening of aluminium alloys-Ⅱ. the model [J]. Acta metall.mater,1990,38(10):1789-1802.
    [71]Deschamps A, Brechet Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy-Ⅱ. modeling of precipitation kinetics and yield stress [J]. Acta mater,1999, 47(1):293-305.
    [72]Zhu A W, Starke E A J R. Strengthening effect of unshearable particles of finite size: a computer experimental study [J]. Acta mater,1999,47(11):3263-3269.
    [73]刘刚,张国君,丁向东,等.具有盘片状/棒/针状析出相铝合金的时效屈服强度变化模型[J].稀有金属材料与工程,2003,32(12):971-975.
    [74]Starink M J, Gao N, Davin L, et al. Room temperature precipitation in quenched Al-Cu-Mg alloys:a model for the reaction kinetics and yield strength development. [J]. Philosophical Magazine,2005,85,:1395-1417.
    [75]Song M. Modeling the hardness and yield strength evolutions of aluminum alloy with rod/needle-shaped precipitates [J]. Materials Science and Engineering A,2007, 443:172-177.
    [76]Khan I N, Starink M J, Yan J L. A Model for Precipitation Kinetics and Strengthening in Al-Cu-Mg Alloys [J]. Materials Science & Engineering A 2008, 472(1-2):66-74
    [77]Yan-hui H, Yan-xia G, Zhi-yi L, et al. Modeling of whole process of ageing precipitation and strengthening in Al-Cu-Mg-Ag alloys with high Cu-to-Mg mass ratio [J]. Trans. Nonferrous Met. Soc. China,2010,20:863-869.
    [78]张国君,刘刚,丁向东,等.铝合金时效-屈服强度的实验与模型化研究[J].金属学报,2003,39(8):803-808.
    [79]Shercliff H R, Ashby M F. A process model for age hardening of aluminium alloys-Ⅱ. the model [J]. Acta metall.mater,1990,38(10):1789-1802.
    [80]Guinier A. Small-Angle Scattering of X-Rays [M]. New York:John Wiley,1955.
    [81]Du Z W, Sun Z M, Shao B L, et al. Quantitative evaluation of precipitates in an Al-Zn-Mg-Cu alloy after isothermal ageing [J]. Materials Characterization,2006, 56:121-128.
    [82]宁爱林,蒋寿生,彭北山.铝合金的力学性能及其电导率[J].轻金属材料,2005,6:34-36.
    [83]张坤,戴圣龙,黄敏,等.高纯Al-Cu-Mg-Ag合金的多级断续时效工艺研究[J].航空材料学报,2007,27(04):1-5.
    [84]Lumley R N, Buha J, Polmear I J, et al. Secondary Precipitation in Aluminium Alloys & its Role in Modern Heat Treatment [J]. Materials Science Forum 2006, 519-521:283-290.
    [85]Massazza M, Riontino G Secondary ageing in Al-Cu-Mg [J]. Philosophical Magazine Letters,2002,82(9):495-502.
    [86]Marceau R K W, Sha G, Lumley R N, et al. Evolution of solute clustering in Al-Cu-Mg alloys during secondary ageing [J]. Acta Materialia,2010,58(5): 1795-1805.
    [87]Ferragut R, upasquier A D, Macchi C E, et al. Vacancy-solute interactions during multiple-step ageing of an Al-Cu-Mg-Ag alloy [J]. Scripta Materialia,2009,60: 137-140.
    [88]R.G.O'Donnell, Lumley R N, Polmear I J. Observations of Deformation in Secondary Aged Aluminium Alloys [A]. Proceedings of the 9th International Conference on Aluminium Alloys,2004:975-980.
    [89]Al-Rubaie K S, Barroso E K L, Godefroid L B. Fatigue crack growth analysis of pre-strained 7475-T7351 aluminum alloy [J]. International Journal of Fatigue,2006, 28:934-942.
    [90]王仁智,吴培远.疲劳失效分析[M].北京:机械工业出版社,1987.
    [91]Ziegenbein A, Hahner P, Neuhauser H. Propagating Portevin-LeChatelier deformation bands in Cu-15 at.% Al polycrystals:experiments and theoretical description [J]. Materials Science and Engineering A,2001,309-310:336-339.
    [92]Draheim K J, Schlipf J. Simulation of dynamic strain ageing and the Portevin-Le Chatelier effect [J]. Computational Materials Science,1996,5(1-3):67-74.
    [93]Schwink C, Nortmann A. The present experimental knowledge of dynamic strain ageing in binary f.c.c. solid solutions [J]. Materials Science and Engineering A,1997, 234-236:1-7
    [94]Weaver M L, Noebe R D, Kaufman M J. Observations of dynamic strain ageing in polycrystalline NiAl [J]. Intermetallics,1996,4(8):593-600
    [95]Bross S, Hahner P, Stecka E A. Mesoscopic simulations of dislocation motion in dynamic strain ageing alloys [J]. Computational Materials Science,2003,26:46-55
    [96]Hong S-G, Lee S-B. Dynamic strain ageing under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel [J]. Journal of Nuclear Materials,2004,328(2-3):232-242
    [97]Fressengeasa C, Beaudoin A J, Lebyodkin M, et al. Dynamic strain ageing:A coupled dislocation-Solute dynamic model [J]. Materials Science and Engineering:A, 2005,400-401:226-230.
    [98]高志国,张新明,陈明安,等.温度对2519A铝合金高应变速率下动态屈服应力及显微组织的影响[J].稀有金属材料与工程,2009,38(5):881-886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700