胃癌Skp2、Heparanase、NF-κB和PPARγ的表达及15d-PGJ_2和RNA干扰沉默PPARγ对胃癌细胞生长的影响及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:胃癌是消化道最常见的高度恶性肿瘤,其预后差,治疗难度大,死亡率高。因此,探讨胃癌的发病机制,寻找新的预防和治疗靶点以及有效的治疗药物,对降低胃癌发病率和死亡率,提高生存率和延长患者的寿命,将有十分重要的意义。
     S期激酶相关蛋白2(S-phase kinase-associated protein 2,Skp2)促进泛素介导的细胞周期素依赖激酶抑制剂p27蛋白降解,是细胞由G1期进入S期所必需。研究发现,Skp2过表达参与细胞转化和肿瘤形成,肿瘤抑制蛋白PTEN通过调节Skp2调节泛素依赖的p27的降解。Skp2可能是一些抑制细胞周期的抗肿瘤药物的新靶点。
     乙酰肝素酶(Heparanase,HPA)是目前发现的哺乳动物细胞中唯一能切割细胞外基质和基底膜中硫酸乙酰肝素的内源性糖苷酶。HPA在炎症、血管生成、肿瘤侵袭和转移等过程中起决定性的作用,被认为是抗肿瘤治疗的新靶点。核转录因子κB(NF-κB)是二聚体转录因子,参与调解炎症和凋亡有关基因的表达。最近研究表明,NF-κB也是基质金属蛋白酶-9(MMP-9)和尿激酶型纤溶酶原激活剂(uPA)的转录因子,与肿瘤转移有关,最近体外研究还表明,NF-κB也调节HPA的表达。
     过氧化物酶体增殖物激活受体γ(Peroxisome proliferators-activated receptorγ,PPARγ)属核激素受体超家族的成员,在介导脂肪细胞分化和调节脂肪代谢中起重要作用,参与动脉粥样硬化、炎症、肥胖、糖尿病、免疫反应和衰老等的病理生理过程。最近研究表明,PPARγ除了这些经典作用以外,也与肿瘤形成有关,PPARγ的天然配体和合成配体在一些肿瘤有抗肿瘤的作用。但也有研究显示,PPARγ的配体对肿瘤细胞生长的影响具有与浓度有关的双重作用,低浓度促进生长,高浓度抑制生长。最近,PPARγ的选择性和不可逆性拮抗剂GW9662也被鉴定。
     RNA干扰(RNA interference, RNAi)是由双链RNA(double-stranded RNAs, dsRNA )分子介导的序列特异性转录后基因沉默( post-
Objectives: Gastric carcinoma is one of the most common malignant tumors. Its prognosis is poor, therapy is very difficult and mortality is enormous high. Therefore, it is extremely important to investigate pathogenesis and search new target of prevention and therapy and effective drug in gastric carcinoma for decreased morbidity and mortality, increased survival rate and prolonged life span of gastric carcinoma patients.
     S-phase kinase-associated protein 2 (Skp2) is a positive regulator of G1-S transition and promotes ubiquitin-mediated proteolysis of the cyclin- dependent kinase inhibitor p27. Some research have shown that Skp2 overexpression has been implicated in cell transformation and oncogenesis, and tumor suppressor protein PTEN may regulate ubiquitin-mediated p27 proteolysis through regulating Skp2. Skp2 may provide a new target for anticancer therapy drugs inhibiting cell cycle proceeding.
     Heparanase (HPA) is the only endoglycosidase in mammal cell so far that degrades heparan sulfate in extracellular matrix and basement membrane. HPA plays a central role in inflammation, angiogenesis and invasiveness and metastasis of diverse malignant tumors. Perhaps it is a new target for anticancer therapy. NF-κB is a dimeric transcription factor that is involved in the regulation of genes associated with inflammation and apoptosis. Recent studies have shown that NF-κB is also a transcriptional factor of matrix metalloproteinases 9 (MMP9) and urokinase plasminogen activator (uPA) and plays a role in the metastatic process of malignant tumor. Recent studies in vitro have shown that NF-κB also regulated HPA expression.
     Peroxisome proliferators-activated receptorγ(PPARγ) that belongs to the
引文
1 Philipp-Staheli J, Payne SR, Kemp CJ. p27(Kip1): regulation and functionof a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res, 2001, 264(1): 148-168
    2 Slingerland J, Pagano M. Regulation of the cdk inhibitor p27 and its incancer. J Cell Physiol, 2000, 183(1): 10-17
    3 Pagano M, Tam SW, Theodoras AM, et al. Role of the ubiquitin- proteasome pathway in regulating abundance of the cyclin- dependent kinase inhibitor p27. Science (Wash. DC), 1995, 269(5224): 682-685
    4 Eguchi H, Herschenhous N, Kuzushita N, et al. Helicobacter pylori increases proteasome-mediated degradation of p27kip in gastric epithelial cells. Cancer Res, 2003, 63(15): 4739-4746
    5 Carrano AC, Eytan E, Hershko A, et al. Skp2 is required for ubiquitin- mediated degradation of the CDK inhibitor p27. Nat Cell Biol, 1999, 1(4): 193-199
    6 Tsvetkov LM, Yeh KH, Lee SJ, et al. p27 (Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol, 1999, 9(12): 661-664
    7 Mamillapalli R, Gavrilova N, Mihaylova VT, et al. PTEN regulates the ubiquitin- dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(Skp2). Curr Biol, 2001, 11(4): 263-267
    8 Kudo Y, Kitajima S, Sato S, et al. High expression of S-phase kinase- interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res, 2001, 61(19): 7044-7047
    9 Gstaiger M, Jordan R, Lim M, et al. Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA, 2001, 98(9): 5043-5048
    10 Signoretti S, Di Marcotullio L, Richardson A, et al. Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest, 2002, 110(5): 633-641
    11 Yang G, Ayala G, De Marzo A, et al. Elevated Skp2 Protein Expression in Human Prostate Cancer: Association with Loss of the Cyclin-dependent Kinase Inhibitor p27 and PTEN and with Reduced Recurrence-free Survival. Clin Cancer Res, 2002, 8(11): 3419-3426
    12 郑祥毅, 丁伟, 谢立平, 等. Skp2 和 p27kip1 在前列腺癌组织中的表达与临床病理特征的相关性研究. 癌症, 2004, 23(2): 215-218
    13 Hershko D, Bornstein G., Ben-Izhak O, et al. Inverse relation betweenlevels of p27~(Kip1) and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer, 2001, 91(4): 1745-1751
    14 Gottschalk AR, Basila D, Wong M, et al. p27~(Kip1) is required for PTEN- induced G1 growth arrest. Cancer Res, 2001, 61(5): 2105-2111
    15 Yang L, Kuang LG, Zheng HC, et al. PTEN encoding product: a marker for tumorigenesis and progression of gastric carcinoma. World J Gastroenterol, 2003, 9(1): 35-39
    16 Myung N, Kim MR, Chung IP, et al. Loss of p16 and p27 is associated with progression of human gastric cancer. Cancer Lett, 2000, 153(1-2): 129-136
    17 Koga H, Harada M, Ohtsubo M, et al. Troglitazone induces p27Kip1- associated cell-cycle arrest through down-regulating Skp2 in human hepatoma cells. Hepatology. 2003, 37(5): 1086-1096
    18 Shibahara T,Onishi T,Franco OE,et al. Down-regulation of Skp2 is correlated with p27-associated cell cycle arrest induced by phenylacetate in human prostate cancer cells. Anticancer Res, 2005, 25(3B): 1881-1888
    1 Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature, 2001, 411(6835): 375–379
    2 Vlodavsky I. Involvement of the extracellular matrix, heparan sulphate proteoglycans, and heparan sulphate degrading enzymes in angiogenesis and metastasis. In: Bicknell R, Lewis CE, Ferrara N, editors. Tumour angiogenesis. Oxford (U.K.): Oxford University Press, 1997.p. 125–140
    3 Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer, 2003, 3(6): 422–433
    4 Timpl R. Macromolecular organization of basement membranes. Curr Opin Cell Biol, 1996, 8(5): 618–624
    5 Bernfield M, Gotte M, Park PW, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem, 1999, 68: 729–777
    6 Vlodavsky I, Bar-Shavit R, Ishai-Michaeli R, et al. Extracellular sequ- estration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem Sci, 1991, 16(17): 268–271
    7 Vlodavsky I, Friedmann Y, Elkin M, et al. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med, 1999, 5(7): 793–802
    8 Hulett MD, Freeman C, Hamdorf BJ, et al. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 1999, 5(7): 803–809
    9 Kussie PH, Hulmes JD, Ludwig DL, et al. Cloning and functional expression of a human heparanase gene. Biochem Biophys Res Commun, 1999, 261(1): 183–187
    10 Toyoshima M, Nakajima M. Human heparanase, Purification, charac- terization cloning, and expression. J Biol Chem, 1999, 274(34): 24153– 24160
    11 Vlodavsky I, Eldor A, Haimovitz-Friedman A, et al. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis, 1992, 12(2): 112–127
    12 Vlodavsky I, Mohsen M, Lider O, et al. Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion Metastasis. 1994-95, 14(1-6): 290-302
    13 Vlodavsky I, Friedmann Y. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest, 2001, 108(3): 341–347
    14 Nakajima M, Irimura T, Nicolson GL. Heparanases and tumor metastasis. J Cell Biochem, 1988, 36(2): 157–167
    15 Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta, 2001, 1471(3): M99–108.
    16 Bond M, Fabunmi RP, Baker AH, et al. Synergistic upregulation of meta- lloproteinase-9 by growth factors and inflammatory cytokines:an absolute requirement for transcription factor NF-κB. FEBS Lett, 1998, 435(1): 29- 34
    17 Newton TR, Patel NM, Bhat-Nakshatri P, et al. Negative regulation of transactivation function but not DNA binding of NF-kappaB and AP-1 by IkappaBbeta1 in breast cancer cells. J Biol Chem. 1999, 274(26): 18827- 18835
    18 Andela VB, Schwarz EM, Puzas JE, et al. Tumor metastasis and the reci- procal regulation of prometastatic and antimetastatic factor by nuclear factor kappa B. Cancer Res, 2000, 60(23): 6557-6562
    19 Wang T, Wang Y, Wu MC, et al. Activating mechanism of transcriptor NF-kappaB regulated by hepatitis B virus X protein hepatocellular carcinoma. World J Gastroenterol, 2004, 10(3): 356-360
    20 Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis: a new sign- ificant and independent prognostic indicator in early stage breast carcinoma. J Natl Cancer Inst, 1992, 84(24): 1875-1887
    21 Dong J, Kukula AK, Toyoshima M, et al. Genomic organization and chromosome localization of the newly identified human heparanase gene. Gene, 2000, 253(2): 171- 178
    22 Vlodavsky I, Elkin M, Pappo O, et al. Mammalian heparanase as mediator of tumor metastasis and angiogenesis. Isr Med Asscc J, 2000, 2 Suppl: 37-45
    23 Elkin M, Cohen I, Zcharia E, et al. Regulation of heparanase geneexpression by estrogen in breast cancer. Cancer Res, 2003, 63(24): 8821- 8826
    24 Takahashi Y, Kitadai Y, Bucana CD, et al. Expression of vascular endo- thelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res, 1995, 55 (18): 3964-3968
    1 Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature, 2000, 405(6785): 421-424
    2 Morosetti R, Servidei T, Mirabella M,et al. The PPARgamma ligands PGJ2 and rosiglitazone show a differential ability to inhibit proliferation and to induce apoptosis anddifferentiation of human glioblastoma cell lines. Int J Oncol, 2004, 25(2): 493-502
    3 Matthiessen MW, Pedersen G, Albrektsen T, et al. Peroxisome proliferator- activated receptor expression and activation in normal human colonic epithelial cells and tubular adenomas. Scand J Gastroenterol, 2005,40(2): 198-205
    4 Leesnitzer LM, Parks DJ, Bledsoe RK, et al. Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry, 2002, 41: 6640-6650
    5 Schaefer KL, Wada K, Takahashi H, et al. PPARγ inhibition prevents adhesion to the extracellular matrix and induces anoikis in hepatocellular carcinoma cells. Cancer Res, 2005, 65(6): 2251-2259
    6 郭鸣雷, 李锦军, 李宏年, 等. 过氧化物酶体增殖激活性受体 γ(PPARγ)在肝癌组织中的差异性表达. 肿瘤, 2005, 25(5): 413-415
    7 Konturek PC, Kania J, Kukharsky V, et al. Implication of peroxisome proliferator-activated receptorγ and proinflammatory cytokines in gastric carcinogenesis: Link to Helicobacter pylori-infection. J Pharmacol Sci, 2004, 96(2): 134-143
    8 Masuda T, Wada K, Nakajima A, et al. Critical role of peroxisome proliferator-activated receptorγ on anoikis and invasion of squamous cell carcinoma. Clin Cancer Res, 2005, 11(11): 4012-4021
    9 Han S, Rivera HN, Roman J. Peroxisome proliferator-activated receptor- gamma ligands inhibit alpha5 integrin gene transcription in non-small cell lung carcinoma cells. Am J Respir Cell Mol Biol, 2005, 32(4): 350-359
    10 Shiau CW, Yang CC, Kulp SK, et al. Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARgamma. Cancer Res, 2005, 65(4): 1561-1569
    11 Shen ZN, Nishida K, Doi H, et al. Suppression of chondrosarcoma cells by
    15-deoxy-Delta 12,14-prostaglandin J2 is associated with altered expression of Bax/Bcl-xL and p21. Biochem Biophys Res Commun, 2005, 328(2): 375-382
    12 Han S, Roman J. Suppression of prostaglandin E2 receptor subtype EP2 by PPARgamma ligands inhibits human lung carcinoma cell growth. Biochem Biophys Res Commun, 2004, 314(4): 1093-1099
    13 Na HK, Surh YJ. Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands as bifunctional regulators of cell proliferation. Biochem pharmacol, 2003, 66(8): 1381-1391
    14 Azuma Y, Watanabe K, Date M, et al. Induction of proliferation by 15- deoxy-delta12, 14-prostaglandin J2 and the precursors in monocytic leuk- emia U937. Pharmacology, 2004, 71(4): 181-191
    15 Clay CE, Namen AM, Atsumi G, et al. Magnitude of peroxisome proliferator-activated receptor gamma activation is associated with important and seemingly opposite biological responses in breast cancer cells. J Investig Med, 2001, 49(5): 413-420
    16 Azuma Y, Watanabe K, Date M, et al. Possible involvement of p38 inmechanisms underlying acceleration of proliferation by 15-deoxy- Delta (12,14)-prostaglandin J2 and the precursors in leukemia cell line THP-1. J Pharmacol Sci, 2004, 94(3): 261-270
    17 Ray S, Ponnatpur V, Huang Y, et al. 1-beta-D-arabinofuranosylcytosine-, mitoxantrone-, and paclitaxel-induced apoptosis in HL-60 cells: improved method for detection of internucleosomal DNA fragmentation. Cancer Chemother Pharmacol., 1994, 34(5): 365-371
    18 Lu M, Kwan T, Yu C, et al. Peroxisome proliferators-activated receptor gamma agonists promote TRAIL-induced Apoptosis by Reducing Survivin levels via CyclinD3 Repression and Cell Cycle Arrest. J Boil Chem, 2005, 280: 6742-6751
    19 Li F, Ambrosini G, Chu EY, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 1998, 396(6711): 580-584
    20 Fulda S, Debatin KM. Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chenopreventive agent Resveratrol. Cancer Res, 2004, 64: 337-346
    21 Philipp-Staheli J, Payne SR, Kemp CJ. p27(Kip1):regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res, 2001, 264(1): 148-168
    22 Carrano AC, Eytan E, Hershko A, et al. Skp2 is required for ubiquitin- mediated degradation of the CDK inhibitor p27. Nat Cell Biol, 1999, 1(4): 193-199
    23 马秀梅, 刘江惠, 郭建文, 等. 胃癌组织 Skp2 表达的意义及其与 P27、 PTEN 表达的关系, 癌症, 2006, 25(1): 56-61
    24 Straus DS, Pascual G, Li M, et al. 15-deoxy-Delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci USA, 2000, 97(9): 4844-4849
    25 Morrita D, Ichikura T, Mochizuki H, et al. The expression of PPARγ in gastric cancer. Nippon Rinso, 2001,5 9 Suppl 4: 595-597
    26 Konturek PC, Kania J, Kukharsky V, et al. Implication of peroxisome proliferator-activated receptorγ and proinflammatory cytokines in gastriccarcinogenesis: Link to Helicobacter pylori-infection. J Pharmacol Sci, 2004, 96(2): 134-143
    27 Takahashi N, Okumura T, Motomura W, et al. Activation of PPARγ inhibits cell growth and induces apoptosis in human gastric cancer cell. FEBS Lett, 1999, 455(1-2): 135-139
    28 Lu J, Imamura K, Nomura S, et al. Chemopreventive effect of peroxisome proliferator-activated receptor gamma on gastric carcinogenesis in mice. Cancer Res. 2005, 65(11): 4769-4774
    1 Panigraphy D, Shen LQ, Kieran MW, et al. Therapeutic potential of thiazolidinediones as anticancer agents. Expert Opin Investig Drugs, 2003, 12(12): 1925-1937
    2 Martelli ML, Luliano R, Lepera I, et al. Inhibitory effects of peroxisome poliferator-activated receptorγ on thyroid carcinoma cell growth. J Clin Endocrinol Metab, 2002; 87:4728-4735
    3 Lefebvre AM, Chen I, Desreumaux P, et al. Activation of the Peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6J-APC Min/+ mice. Nature med, 1998, 4(9): 1053-1057
    4 Saez E, Tontonoz P, Nelson MC, et al. Activators of the nuclear receptor PPARγ enhance colon polyp formation. Nat med,1998;4(9): 1058-1061.
    5 Sarraf P, Mueller E, Jones D, et al. Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nat med, 1998; 4(9): 1046-1052
    6 Schaefer KL, Wada K, Takahashi H, et al. PPARγ inhibition prevents adhesion to the extracellular matrix and induces anoikis in hepatocellular carcinoma cells. Cancer Res, 2005, 65(6): 2251-2259
    7 郭鸣雷, 李锦军, 李宏年, 等. 过氧化物酶体增殖激活性受体 γ(PPARγ) 在肝癌组织中的差异性表达. 肿瘤, 2005, 25(5):413-415
    8 Saez E, Rosenfeld J, Livolsi A, et al. PPAR gamma signaling exacerbates mammary gland tumor development [J]. Gene Dev, 2004, 18: 528-540
    9 Jansson EA, Are A, Greicius G, et al. The Wnt β-catenin signalingpathway targets PPAR activitty in colon cancer cells[J]. Proc Natl Acad Sci U S A, 2005, 102: 1460-1465
    10 Morrita D, Ichikura T, Mochizuki H, et al. The expression of PPARγ in gastric cancer. Nippon Rinso, 2001,5 9 Suppl 4:595-597
    11 Konturek PC, Kania J, Kukharsky V, et al. Implication of peroxisome proliferator-activated receptorγ and proinflammatory cytokines in gastric carcinogenesis: Link to Helicobacter pylori-infection. J Pharmacol Sci,2004, 96(2): 134-143
    12 Takahashi N, Okumura T, Motomura W, et al. Activation of PPARγ inhibits cell growth and induces apoptosis in human gastric cancer cell. FEBS Lett, 1999, 455(1-2): 135-139
    13 Lu J, Imamura K, Nomura S, et al. Chemopreventive Effect ofPeroxisome Proliferator-Activated Receptor gamma on Gastric Carcinogenesis in Mice. Cancer Res. 2005, 65(11): 4769-4774
    14 马秀梅, 左连富, 刘江惠, 等. 人胃癌组织中 PPARγ 的表达及其配体对胃癌细胞生长的影响. 基础医学与临床, 2006, 26(3):294-301
    15 Scottk MH, Emily B, David B, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosphila cells. Nature, 2000, 404 (6775): 293-296
    16 Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA direct the ATP-dependent cleavage of mRNA at 21-23 nucleotide intervals. Cell, 2000, 101(1): 25-33
    17 Carthew RW. Gene silencing by double-stranded RNA. Curr Opin Cell Biol, 2001, 13(2): 244-248
    18 Schramke V, Allshire R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science, 2003, 301:1069-1074
    19 Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A, 2002, 99(9): 6047-6052
    20 Holen T, Amarzguioui M, Wiiger MT, et al. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res, 2002, 30(8): 1757-1766
    21 Masuda T, Wada K, Nakajima A, et al. Critical role of peroxisome proliferator- activated receptorγ on anoikis and invasion of squamous cell carcinoma. Clin Cancer Res, 2005, 11(11): 4012-4021
    22 Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836): 494-498
    23 Lewis DL, Hagstrom JE, Loomis AG, et al. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet, 2002, 32(1): 107-108
    24 Mccaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice. Nature, 2002, 418(6893): 38-39
    1 Michalik L, Wahli W. Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions. Curr Opin Biotechnol, 1999, 10(6): 564 – 570
    2 Ruyter B, Andersen O, Dehli A, et al. Peroxisome proliferator activated receptors in atlantic salmon (salmo salar): effects on PPAR transcription and a-cyl-CoA oxidase activity in hepatocytes by peroxisome proliferatorsand fatty acids. Biochim Biophys Acta, 1997, 1348(3): 331 - 338
    3 Dreyer C, Krey G, Keller H, et al. Control of the peroxisomal beta- oxidation pathway by a novel family of nuclear hormone receptors. Cell, 1992, 68(5): 879- 887
    4 Houseknecht KL, Bidwell CA, Portocarrero CP, et al. Expression and cDNA cloning of porcine peroxisome proliferator-activated receptor gamma (PPARγ). Gene, 1998, 225(1-2): 89 –96
    5 Zhu Y, Alvares K, Huang Q, et al. Cloning of a new member of the pero- xisome proliferator-activated receptor gene family from mouse liver. J Biol Chem, 1993, 268(36): 26817–26820
    6 Elbrecht A, Chen Y, Cullinan CA, et al. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Commun, 1996, 224(2): 431–437
    7 Willson TM, Brown PJ, Sternbach DD, et al. The PPARs: from orphan receptors to drug discovery. J Med Chem, 2000, 43(4): 527-550
    8 Leesnitzer LM, Parks DJ, Bledsoe RK,et al. Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry, 2002, 41(21): 6640-6650
    9 Lehmann JM, Moore LB, Smith2Oliver TA, et al. Anantidiabetic thia- zolidinedione is a high affinity ligand for peroxisome proliferator- activated receptor gamma (PPAR gamma). J Biol Chem, 1995, 70(22): 12953 – 12956
    10 Reddy KA, Lohray BB, Bhushan V, et al. Novel antidiabetic and hypolipidemic agents. 5. Hydroxyl versus benzyloxy containing chroman derivatives. J Med Chem, 1999, 42(17): 3265-3278
    11 Henke BR, Blanchard SG, Brackeen MF, et al. N-(2-Benzoylphenyl)-L- tyrosine PPARgamma agonists.1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J Med Chem, 1998, 41(25): 5020-5036
    12 Shibata T, Matsui K, Nagao K, et al. Pharmacological profiles of a noveloral antidiabetic agent, JTT-501, an isoxazolidinedione derivative. Eur J Pharmacol, 1999, 364(2 - 3): 211-219
    13 Elbrecht A, Chen Y, Adams A, et al. L-764406 is a partial agonist of human peroxisome proliferator2 activated receptor gamma. The role of Cys313 in ligand binding. J Biol Chem, 1999, 274(12): 7913-7922
    14 Oberfield JL, Collins JL, Holmes CP, et al. A peroxisome proliferator- activated receptor gamma ligand inhibits adipocyte differentiation. Proc Natl Acad Sci USA, 1999, 96(11): 6102-6106
    15 Krey G, Braissant O, L′Horset F, et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator- activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol, 1997, 11(6): 779-791
    16 Forman BM, Tontonoz P, Chen J, et al. 15-Deoxy-delta12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell, 1995, 83(5): 803-812
    17 Jardat MS, Noonan DJ, Wu B, et al. Pseudolaric acid analogs as a new class of peroxisome proliferator-activated receptor agonists. Planta Medica, 2002, 68(8): 667-671
    18 Davies SS, Pontsler AV, Marathe GK, et al. Oxidized alkyl phospholipids are specific, high affinity peroxisome proliferator-activated receptor gamma ligands and agonists. J Biol Chem, 2001, 276(19): 16015-16023
    19 Nakashiro K, Begum NM, Uchida D, et al. Thiazolidinediones inhibit cell growth of human oral squamous cell carcinoma in vitro independent of peroxisome proliferator-activated receptor gamma. Oral Oncol,2003,39(8): 855-861
    20 Nikitakis NG, Siavash H, Hebert C, et al. 15-PGJ2, but not thia- zolidinediones, inhibits cell growth, induces apoptosis, and causes downregulation of Stat3 in human oral SCC cells. Br J Cancer, 2002, 87 (12): 1396-403
    21 Nikitakis NG, Hebert C,Lopes MA,et al. PPARγ mediated antineoplastic effect of NSAID sulindac on human oral squamous carcinoma cells. Int JCancer, 2002, 98(6): 817-823
    22 Siavash H, Nikitakis NG, Sauk JJ. Abrogation of IL-6-mediated JAK signalling by the cyclopentenone prostaglandin 15d-PGJ2 in oral squamous carcinoma cells. Br J Cancer, 2004, 91(6): 1074-1080
    23 Siavash H, Nikitakis NG, Sauk JJ. Targeting of epidermal growth factor receptor by cyclopentenone prostaglandin 15-Deoxy-Delta12, 14-pros- taglandin J2 in human oral squamous carcinoma cells. Cancer Lett, 2004,211(1): 97-103
    24 Masuda T, Wada K, Nakajima A, et al. Critical role of peroxisome proliferator-activated receptorγ on anoikis and invasion of squamous cell carcinoma. Clin Cancer Res, 2005, 11(11): 4012-4021
    25 Chang TH, Szabo E. Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor gamma in non-small cell lung cancer. Cancer Res, 2000, 60(4): 1129-1138
    26 Chang TH, Szabo E. Enhanced growth inhibition by combination differentiation therapy with ligands of peroxisome proliferator-activated receptor-gamma and inhibitors of histone deacetylase in adenocarcinoma of the lung. Clin Cancer Res, 2002, 8(4): 1206-1212
    27 Theocharis S, Kanelli H, Politi E, et al. Expression of peroxisome proliferator activated receptor-gamma in non-small cell lung carcinoma: correlation with histological type and grade. Lung Cancer, 2002, 36(3): 249-255
    28 Allred CD, Kilgore MW. Selective activation of PPARγ in breast, colon, and lung cancer cell lines. Mol Cell Endocrinol, 2005, 235(1-2): 21-29
    29 Han S, Roman J. Suppression of prostaglandin E2 receptor subtype EP2 by PPARgamma ligands inhibits human lung carcinoma cell growth. Biochem Biophys Res Commun. 2004, 314(4): 1093-1099
    30 Han S, Rivera HN, Roman J. Peroxisome Proliferator-Activated Receptor-{gamma} Ligands Inhibit {alpha}5 Integrin Gene Transcription in Non-Small Cell Lung Carcinoma Cells. Am J Respir Cell Mol Biol, 2005, 32(4): 350-359
    31 Keshamouni VG, Arenberg DA, Reddy RC, et al. PPAR-gamma activation inhibits angiogenesis by blocking ELR+CXC chemokine production in non-small cell lung cancer. Neoplasia, 2005, 7(3): 294-301
    32 Avis I, Martinez A, Tauler J, et al. Inhibitors of the arachidonic acid pathway and peroxisome proliferator-activated receptor ligands have superadditive effects on lung cancer growth inhibition. Cancer Res, 2005, 65(10): 4181-4190
    33 Terashita Y, Sasaki H, Haruki N, et al. Decreased peroxisome proliferator-activated receptor gamma gene expression is correlated with poor prognosis in patient s wit h esophageal cancer. Jpn J Clin Oncl, 2002, 32(7): 238
    34 Takashima T, Fujiwara Y, Hamaguchi M, et al. Relationship between peroxisome proliferator-activated receptor-gamma expression and differentiation of human esophageal squamous cell carcinoma. Oncol Rep, 2005, 13(4): 601-606
    35 Morrita D, Ichikura T, Mochizuki H, et al. The expression of PPARγ in gastric cancer. Nippon Rinso, 2001, 59 Suppl 4: 595-597
    36 Konturek PC, Kania J, Kukharsky V, et al. Implication of peroxisome proliferator-activated receptorγ and proinflammatory cytokines in gastric carcinogenesis: Link to Helicobacter pylori-infection. J Pharmacol Sci,2004, 96(2): 134-143
    37 Lu J, Imamura K, Nomura S, et al. Chemopreventive Effect of Peroxisome Proliferator-Activated Receptor {gamma} on Gastric Carcinogenesis in Mice. Cancer Res, 2005, 65(11): 4769-4774
    38 Takahashi N, Okumura T, Motomura W, et al. Activation of PPARγ inhibits cell growth and induces apoptosis in human gastric cancer cell. FEBS Lett, 1999, 455(1-2): 135-139
    39 Sato H, Ishihara S, Kawashima K, et al. Expression of peroxisome proliferator-activated receptor (PPAR) gamma in gastric cancer and inhibitory effects of PPARγ agonists. Br J Cancer, 2000, 83(10): 1394-400
    40 Lefebvre AM,Chen I,Desreumaux P,et al. Activation of the Peroxisomeproliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6J-APC Min/+ mice. Nature Med, 1998, 4(9): 1053-1057
    41 Yang K, Fan KH, Lamprecht SA, et al. Peroxisome proliferator-activated receptor gamma agonist troglitazone induces colon tumors in normal C57BL/6J mice and enhances colonic carcinogenesis in Apc1638 N/+ Mlh1+/- double mutant mice. Int J Cancer, 2005, 116(4): 495-499
    42 Girnun GD, Smith WM, Drori S, et al. APC-dependent suppression of colon carcinogenesis by PPARgamma.Proc Natl Acad Sci USA. 2002, 99(21): 13771-13776
    43 Chen F, Harrison LE. Ciglitazone-induced cellular anti-proliferation increases p27kip1 protein levels through both increased transcriptional activity and inhibition of proteasome degradation. Cell Signal, 2005, 17(7): 809-816
    44 Chen F, Harrison LE. Ciglitazone induces early cellular proliferation and NF-kappaB transcriptional activity in colon cancer cells through p65 phosphorylation. Int J Biochem Cell Biol, 2005, 37(3): 645-654
    45 Kulke MH, Demetri GD, Sharpless NE, et al. A phase II study of troglitazone, an activator of the PPARγ receptor, in patients with chemotherapy-resistant metastatic colorectal cancer. Cancer J, 2002, 8(5): 395-399
    46 Matthiessen MW, Pedersen G, Albrektsen T, et al. Peroxisome proliferator-activated receptor expression and activation in normal human colonic epithelial cells and tubular adenomas. Scand J Gastroenterol, 2005, 40(2): 198-205
    47 Yoshizumi T, Ohta T, Ninomiya I, et al. Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation- promoting effects. Int J Oncol, 2004, 25(3): 631-639
    48 Shimada T, Kojima K, Yoshiura K, et al. Characteristics of the peroxisome proliferator activated receptor gamma (PPARγ) ligand induced apoptosis in colon cancer cells. Gut, 2002, 50(5): 658-664
    49 Grau R, Iniguez MA, Fresno M. Inhibition of activator protein 1 activation, vascular endothelial growth factor, and cyclooxygenase-2 expression by 15-deoxy-Delta12, 14-prostaglandin J2 in colon carcinoma cells: evidence for a redox-sensitive peroxisome proliferator-activated receptor gamma independent mechanism. Cancer Res, 2004, 64(15): 5162-5171
    50 Baek SJ, Kim JS, Nixon JB, et al. Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J Biol Chem, 2004, 279(8): 6883-6892
    51 Osawa E, Nakajima A, Wada K, et al. Peroxisome proliferator-activated receptor gamma ligands suppress colon carcinogenesis induced by azoxymethane in mice. Gastroenterology, 2003, 124(2): 361-367
    52 Kohno H, Suzuki R, Sugie S, et al. Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands. BMC Cancer, 2005, 5(1): 46
    53 Motomura W, Okumura T, Takahashi N, et al. Activation of peroxisome proliferators-activated receptor gamma by troglitazone inhibits cell growth through the increase of p27kip1 in human pancreatic carcinoma cells. Cancer Res, 2000,60(19): 5558-5564
    54 Sasaki T, Fujimoto Y, Tsuchida A, et al. Activation of peroxisome proliferator-activated receptor gamma inhibit s t he growth of human pancreatic cancer. Pathobiology, 2001, 69 (5): 258-265
    55 Hashimoto K, Farrow BJ, Evers BM. Activation and role of MAP kinases in 15d-PGJ2-induced apoptosis in the human pancreatic cancer cell line MIA PaCa-2. Pancreas, 2004, 28(2): 153-159
    56 Schaefer KL, Wada K, Takahashi H, et al. PPARγ inhibition prevents adhesion to the extracellular matrix and induces anoikis in hepatocellular carcinoma cells. Cancer Res, 2005, 65(6): 2251-2259
    57 郭鸣雷, 李锦军, 李宏年, 等. 过氧化物酶体增殖激活性物受体 γ (PPARγ) 在肝癌组织中的差异性表达. 肿瘤, 2005, 25(5): 413-415
    58 Koga H, Harada M, Ohtsubo M, et al. Troglitazone induces p27Kip1 associated cell-cycle arrest through down-regulating Skp2 in human hepa-toma cells. Hepatology. 2003, 37(5): 1086-1096
    59 Okano H, Shiraki K, Inoue H, et al. Peroxisome proliferator-activated receptor gamma augments tumor necrosis factor family-induced apoptosis in hepatocellular carcinoma. Anticancer Drugs. 2002, 13(1): 59-65
    60 Yang Z, Bagheri-Yarmand R, Balasenthil S, et al. HER2 regulation of peroxisome proliferator-activated receptor gamma (PPARγ) expression and sensitivity of breast cancer cells to PPARγ ligand therapy. Clin Cancer Res, 2003, 9(8): 3198-3203
    61 Rubin GL, Zhao Y, Kalus AM, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy. Cancer Res, 2000, 60(6): 1604-1608
    62 Patel L, Pass I, Coxon P, et al. Tumor suppressor and anti-inflammatory actions of PPARγ agonists are mediated via upregulation of PTEN. Curr Biol, 2001, 11(10): 764-768
    63 Yin F, Wakino S, Liu Z, et al. Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators. Biochem Biophys Res Commun, 2001, 286(5): 916-922
    64 Clay CE, Atsumi GI, High KP, et al. Early de novo gene expression is required for 15-deoxy-Delta 12, 14-prostaglandin J2-induced apoptosis in breast cancer cells. J Biol Chem, 2001, 276(50): 47131-47135
    65 Sun H, Berquin IM, Edwards IJ. Omega-3 polyunsaturated fatty acids regulate syndecan-1 expression in human breast cancer cells. Cancer Res, 2005, 65(10): 4442-4447
    66 Liu H, Zang C, Fenner MH, et al. PPARγ ligands and ATRA inhibit the invasion of human breast cancer cells in vitro. Breast Cancer Res Treat, 2003, 79(1): 63-74
    67 Michael MS, Badr MZ, Badawi AF. Inhibition of cyclooxygenase-2 and activation of peroxisome proliferator-activated receptor-gamma syne- rgistically induces apoptosis and inhibits growth of human breast cancer cells. Int J Mol Med, 2003, 11(6): 733-736
    68 Clay CE, Namen AM, Atsumi G, et al. Magnitude of peroxisome proliferator-activated receptor-gamma activation is associated with important and seemingly opposite biological responses in breast cancer cells. J Investig Med, 2001, 49(5): 413-420
    69 Yee LD, Young DC, Rosol TJ, et al. Dietary (n-3) polyunsaturated fatty acids inhibit HER-2/neu-induced breast cancer in mice independently of the PPARgamma ligand rosiglitazone. J Nutr. 2005; 135(5): 983-988
    70 Clay CE, Monjazeb A, Thorburn J, et al. 15-Deoxy-delta12, 14-pros- taglandin J2 induced apoptosis does not require PPARγ in breast cancer cells. Lipid Res, 2002, 43(11): 1818-1828
    71 Zhang GY,Ahmed N, Riley C, et al. Enhanced expression of peroxisome proliferator-activated receptor gamma in epithelial ovarian carcinoma. Br J Cancer, 2005, 92(1): 113-119
    72 Sakamoto A, Yokoyama Y, Umemoto M, et al. Clinical implication of expression of cyclooxygenase-2 and peroxisome proliferator activated- receptor gamma in epithelial ovarian tumours. Br J Cancer, 2004, 91 (4): 633-638
    73 Subbarayan V, Sabichi AL, Kim J, et al. Differential peroxisome prol- iferator-activated receptor-gamma isoform expression and agonist effects in normal and malignant prostate cells. Cancer Epidemiol Biomarkers Prev, 2004, 13(11 Pt 1): 1710-1716
    74 Hisatake JI, Ikezoe T, Carey M, et al. Down-Regulation of prostate- specific antigen expression by ligands for peroxisome proliferator-activated receptor gamma in human prostate cancer. Cancer Res, 2000, 60(19): 5494 -5498
    75 Shiau CW, Yang CC, Kulp SK, et al. Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARγ. Cancer Res, 2005, 65(4): 1561-1569
    76 Mueller E, Smith M, Sarraf P, et al. Effects of ligand activation of pero- xisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci USA, 2000, 97(20): 10990-10995
    77 Han SW, Greene ME, Pitts J, et al. Novel expression and function of pero- xisome proliferator-activated receptor gamma (PPARγ) in human neur- oblastoma cells. Clin Cancer Res, 2001, 7(1): 98-104
    78 Emmans VC, Rodway HA, Hunt AN, et al. Regulation of cellular processes by PPARγ ligands in neuroblastoma cells is modulated by the level of reti- noblastoma protein expression. Biochem Soc Trans, 2004, 32(5): 840-842
    79 Kim EJ, Park KS, Chung SY, et al. Peroxisome proliferator-activated receptor-gamma activator 15-deoxy-Delta12, 14-prostaglandin J2 inhibits neuroblastoma cell growth through induction of apoptosis: association with extracellular signal-regulated kinase signal pathway. J Pharmacol Exp Ther, 2003, 307(2): 505-517
    80 Morosetti R, Servidei T, Mirabella M, et al. The PPARγ ligands PGJ2 and rosiglitazone show a differential ability to inhibit proliferation and to induce apoptosis and differentiation of human glioblastoma cell lines. Int J Oncol, 2004, 25(2): 493-502
    81 Azuma Y, Watanabe K, Date M, et al. Induction of proliferation by 15- deoxy-delta12, 14-prostaglandin J2 and the precursors in monocytic leuk- emia U937. Pharmacology, 2004, 71(4): 181-191
    82 Azuma Y, Watanabe K, Date M, et al. Possible involvement of p38 in mechanisms underlying acceleration of proliferation by 15-deoxy- Delta (12,14)-prostaglandin J2 and the precursors in leukemia cell line THP-1. J Pharmacol Sci, 2004, 94(3): 261-270
    83 Liu J, Lu H, Huang R, et al. Peroxisome proliferator activated receptor- gamma ligands induced cell growth inhibition and its influence on matrix metalloproteinase activity in human myeloid leukemia cells. Cancer Chemother Pharmacol, 2005, 56(4): 400-408
    84 Zang C, Liu H, Posch MG, et al. Peroxisome proliferator-activated receptor gamma ligands induce growth inhibition and apoptosis of human B lymp- hocytic leukemia. Leuk Res, 2004, 28(4): 387-397
    85 Eucker J, Bangeroth K, Zavrski I, et al. Ligands of peroxisome proliferator- activated receptor gamma induce apoptosis in multiple myeloma. Anticancer Drugs, 2004, 15(10): 955-960
    86 Ray DM, Bernstein SH, Phipps RP. Human multiple myeloma cells express peroxisome proliferator-activated receptor gamma and undergo apoptosis upon exposure to PPARγ ligands. Clin Immunol, 2004, 113(2): 203-213
    87 Shen ZN, Nishida K, Doi H, et al. Suppression of chondrosarcoma cells by 15-deoxy-Delta 12,14-prostaglandin J2 is associated with altered expression of Bax/Bcl-xL and p21. Biochem Biophys Res Commun, 2005, 328(2): 375-382
    1 Jorgensen R. Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol, 1990, 8(12): 340-344
    2 Guo S, Kemphues KJ. Par-1, a gene required for establishing polarity in C.elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81(4): 611-620
    3 Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811
    4 Hamilton AJ, Baulcombe DC. A species of small antisense RNA in post-transcriptional gene silencing in plants. Science, 1999, 286(5441): 950-952
    5 Zamore PD, Tusch T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101(1): 25-33
    6 Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature,2000, 404(6775): 293-296
    7 Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22- nucleotide RNAs. Genes Dev, 2001, 15(2): 188-200
    8 Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev, 2002, 16(8): 948-958
    9 Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNA for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J,2001, 20(23); 6877-6888
    10 Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol, 2002, 20(5): 500-505
    11 Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol, 2004, 22(3): 326-330
    12 Ding Y, Lawrence CE, A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res, 2003, 31(24): 7280-7301
    13 Amarzguioui M, Holent, Babaie E, et al. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res, 2003, 31(2):589-595
    14 Hamada M, Ohtsuka T, Kamaida R, et al. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifactions at the 3-ends of siRNAs. Antisense Nucleic Acid Drug Dev, 2002, 12(5): 301-309
    15 Kumar R, Conklin DS, Mittal V. High-throughput selection of effective RNAi probes for gene silencing. Genome Res, 2003, 13(10): 2333-2340
    16 Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836): 494-498
    17 Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 2002, 419(6907): 624-629
    18 Williams NS, Gaynor RB, Scoggin S, et al . Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin Cancer Res, 2003, 9(3): 931-946
    19 Masuda T,Wada K,Nakajima A,et al. Critical role of peroxisome proliferator-activated receptorγ on anoikis and invasion of squamous cell carcinoma. Clin Cancer Res, 2005, 11(11): 4012-4021
    20 Lin Y, Lashuel HA, Choi S. et al. Discovery of inhibitors that elucidate the role of UCH-LI activity in the H1299 lung cancer cell line. Chem Biol, 2003, 10(9): 837-846
    21 Kamath RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003, 421(6920): 231-237
    22 Ashrafi K, Chang FY, Watts JL, et al. Genome wide RNAi analysis of the Caenorhabditis elegans fat regulatory genes. Nature, 2003, 421(6920): 268-272
    23 Sen G, Wehrman TS, Myers JW, et al. Restriction enzyme-generatetd siRNA (REGS) vectors and libraries. Nat Genet, 2004, 36(2): 183-189
    24 Shirane D, Sugao K, Namiki S, et al. Enzymatic production of RNAi libraries from cDNAs. Nat Genet, 2004, 36(2): 190-196
    25 Berns K, Hijmans EM, Mullenders J, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 2004, 428(6981): 431-437
    26 Paddison PJ, Silva JW, Conklin DS, et al. A resource for large-scale RNA-interference based screens in mammals. Nature, 2004, 428(6981): 431-437
    27 Brumrnelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002, 296(5567): 550-553
    28 Yoshinouchi M, Yamada T, Kizaki M, et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol Ther, 2003, 8(5): 762-768
    29 Lin SL, Chuong CM, Ying SY. A Novel mRNA-cDNA interference phenomenon for silencing bcl-2 expression in human LNCaP cells. Biochem Biophys Res Commun, 2001, 281(3): 639-644
    30 Crans-Vargas HN. Landaw EM, Bhatia S, et al. Expression of cyclic adenosine monophosphate response-element binding protein in acute leukemia. Blood, 2002, 99(7): 2617-2619
    31 吴强,杨述华,叶树楠,等. RNA 干扰沉默缺氧诱导因子-1α 治疗骨肉瘤的实验研究.中华医学杂志, 2005, 85(6): 409-413
    32 Bruno S, Ghiotto F, Fais F, et al. The PML gene is not involved in the regulation of MHC class I ex-pression in human cell lines. Blood, 2003, 101: 3514-3519
    33 Zhang L, Yang N, Mohamed-Hadley A. et al. Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun, 2003, 303(4): 1169- 1178
    34 Bertrand JR, Pottier M, Vekris A, et al. Comparison of antisens, oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun, 2002, 296(4): 1000-1004
    35 Nieth C, Priebsch A, Stege A, et a1. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett, 2003, 545(2-3): 144-150
    36 Wang Y, Decker SJ, Sebolt-Leopold J. Knockdown of Chkl, Weel and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther, 2004, 3(3): 305-313
    37 Peng Y, Zhang Q. Nagasawa H, et aL Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation- induced chromosome damage cell killing, and mutation. Cancer Res, 2002, 62(22): 6400-6404
    38 Tatsuo K, Yuri K, Osamu Y, et al. Inhibition of hepatitis B virus expression and replication of RNA interference. Hepatology, 2003, 37(4): 764-770
    39 Jiang M, Milner J. Selective silencing of viral gene E6 and E7 expressionin HPV-positive human cervical carcinoma cells using small interfering RNAs. Methods Mol Biol, 2005, 292: 401-420
    40 Hasuwa H, Kaseda K, Einarsdottir T. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett, 2002, 532(1-2): 227-230
    41 Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol, 2003, 327(4): 761-766

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700