颌骨畸形矫正术早期稳定状态的虚拟动力仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各类复杂疑难颌骨畸形,特别是小颌畸形、半面短小和半侧颜面萎缩等发育不全的面部畸形,在先天畸形的发病率中仅次于先天性唇腭裂排名第二,临床医生在矫治方法上采用了下颌骨升支矢状截骨术或者下颌骨牵引成骨术等技术,取得不错的治疗效果。但是术后却存在骨性复发、髁突吸收和颞颌关节紊乱等发生率比较高的并发症,分别为14%,21%和71%。由于下颌骨及颞下颌关节不仅有复杂的结构,而且具有张闭口、咀嚼等运动功能,并且相对于面部甚至全身其他部位的骨性整复手术具有代表性,研究颌骨畸形术后早期稳定性具有比较重要的意义。为了探讨下颌畸形整复术后骨性复发、髁突吸收和颞颌关节紊乱等发生率持续较高的动力学原因。
     利用Siemes 16排螺旋CT扫描Dicom数据,导入Simpleware 3.2/Mimics 13.1软件,重建正常下颌骨与颌骨畸形手术前,颌骨畸形虚拟手术后,术后6个月四种情况下的三维模型;将模型导入有限元分析软件Abasqus6.8中,在升颌肌群和降颌肌群载荷下,分析双侧髁突位置应力分布情况。实验结果以均数士标准差(Mean±SD)表示,相关数据采用SPSS13.0软件进行统计学分析,两组之间比较采用t检验;多组之间比较采用one-way ANOVA方差分析,而后不同组间比较采用LSD检验,P <0.05判定为差异有统计学意义。
     结果表明正常的下颌骨双侧髁突应力分布有显著性差异(P<0.05),正常的下颌骨和颌骨畸形手术前髁突应力分布双侧有显著性差异(P<0.05),虚拟手术后和正常下颌骨髁突应力分布无显著性差异(P>0.05)。正常下颌骨与颌骨畸形手术后无显著性差异(P > 0.05)。虚拟手术后和颌骨畸形术后6个月无显著性差异(P > 0.05)。有限元技术能够对下颌畸形整复术进行术前动力学设计和效果预测,通过虚拟手术技术,使术后能够达到新的平衡状态,为提高手术的精度和减少术后并发症一种新方法。
All kinds of complicated jaw malformation,especially micromansibular deformity,emifacial microsomia, hemifacialgrowth defective of facial dysmorphism,comgenital malformation of incidence of a disease is second only geneogenous cheilopalatognathus.clinician have adopted Sagittal Split Ramus Osteotomy (SSRO) and Mandible Distraction Osteogenesis(MDO),which have obtained good effective.However,the post-operation modality changed to cause the high complication rate of bone relapse, absorption of condyle and disorder of temporomandibular joint,discern 14 percent,21 percent and 71 percent.because mandible and temporomandibular joint(TMJ) possess openning and closing mouth、chew move modality ,which possess representativeness with other regions plastic operation.It is very important of purpose to reaserch of cause reason of the high complication rate. To study the dynamics reason of the high complication rate of bone relapse, absorption of condyle and disorder of temporomandibular joint after the orthomorphia of abnormity mandible. CT scan data were processed by using Simpleware 3.2 or Mimics 13.1 software for three-dimensional (3D) reconstruction.
     The CT images is supplied to established the 3D solid models of normal mandible, pre-operation ,virtual operation and post-operation of abnormity mandible; And after imported into FEA software Abaqus 6.8, the models will be executed the preprocessing and finite element calculation to analysis contrast research and bilater conlylar stress distribution. Data are presented as mean±S.E.M. Experiments between two groups were analyzed by t test. Multiple groups were analyzed by one-way ANOVA followed by LSD multiple comparison test. There was significant difference between the groups (P<0.05).
     Normal mandible bilater conlylar stress distribution have significant difference(P<0.05). Compared with the control group, preoperation mandible were both significant difference (P>0.05).virtual operation were no significant difference (P>0.05).After 6 mouths post-operation and virtual operation no significant difference(P>0.05). Electromyogram is a steady state metod which examined muscles.finite element technique is a new method that can complish preoperative dynamics design and predict effect,follow up mechanics changing post-operativemuscle and joint .so as to improve operative precison and decrease post-operative high rate of complication.
引文
[1]驭球.有限元法概论.北京:高等教育出版社,1978
    [2]女原,王忠义,张寿华,等.有限元方法及其在口腔医学中的应用.医学与哲学, 2004
    [3] R W OUGH. The Finite Element :Method in Plane Stress Analysis.Proceedings of the 2nd ASCE Conference on Electronic Computation. Pittsburgh ,1960
    [4] TA S GUP. Development and experimental validation of a three-dimensional finite element model. Proc InstM ech Eng, 2004,218: 127-134
    [5] LOBOA EG, FANG TD, WARREN SM, et al. Lindsey DP. Mechanobiology of mandibular distraction osteogenesis: experimental analyses with a rat model. Bone 2004,34:336-43.
    [6] LOBOA EG, FANG TD, PARKER DW, et al. Mechanobiology of mandibular distraction osteogenesis: finite element analyses with a rat model. J Orthop Res, 2005,23:663-70.
    [7] BASCIFTCI FA, KORKMAZ HH, ISERI H,et al. Biomechanical evaluation of mandibular midline distraction osteogenesis by using finite element method. Am J Orthod Dentofacial Orthop, 2004,125:706-15.
    [8] BOCCACCIO A, LAMBERTI L, PAPPALETTERE C,et al. Mechanical behavior of an osteotomized mandible with distraction orthodontic devices. J Biomech , 2006,39:2907-18
    [9] PESCE DELFINO V, DE MARZO C, PRETE A, et al. Biomechanical simulation model of the developmental morphology of the human skull. Further observations on the model construction.BolS ocIt alB iolS per, 1981, 57 (20): 2011-7
    [10]焦大宾,吴文周,杨桂通.人头颅受撞击作用的力学分析.中国生物医学工程学报, 1992, 11(1): 141-149
    [11] RUAN J S, KHALIL T, KING A L. Dynamic response of the human head to impact by three-dimensionalfin iteel ementan alysis. J Biomech Eng, 1994,116(l): 44-50
    [12]宋铭良,姜燕平,王正国,等.颅脑受撞击时的动态光弹性应力分析.实验力学, 1998, 13: 277-282
    [13] BANDAK FA, VORST MJ, STUHMILER LM, et al. An imaging-based computational and experimental study of skul fracture: finite element model development. J Neurotrauma, 1995, 12(4): 679-88
    [14] KRABBEL G, APPEL H.. Development of a finite element model of the human skul. J Neurotrauma. 1995, 12(4): 735-42
    [15] JINUSHI H,SUZUKIT, NARUSE T, et al. A dynamc study of the effect on the maxilofacialcomplex of the face bow: analysis by a three-dimensional finite element method.Bull Tokyo Dent Coll.1997, 38(l): 33-41
    [16] REMMLER D, OLSON L, EKSTROM R, et al. Pre-surgical CT/FEA for craniofacial distraction: L Methodology, development, and validation of the cranial finite element model. Med Eng Phys. 1998, 20(8): 607-19
    [17]薄斌,周树夏,白西刚,等.用模态分析法建立人颅颌面骨骼系统动力学模型.中华创伤杂志, 2000, 16(12): 716-719
    [18]张彤,刘洪臣,王延荣,等.上颌骨复合体三维有限元模型的建立.中华口腔医学杂志, 2000, 35(5): 374-376
    [19] GROSS MD, ARBELG, HERSHKOVITZ I. Three-dimensional finite element analysis of the facial skeleton on simulated occlusal loading. J Oral Rehabil, 2001, 28(7): 684-34
    [20] Y. ZHANG, C. BAJAJ, B.S. SOHN. 3D finite element meshing from imaging data, Comput. Methods. Appl. Mech. Eng, 2005, 194: 5083-5106
    [21]蒲放,樊瑜波,多田幸生.基于体素的牙种植体及颌骨的有限元建模.航天医学与医学工程. 2004, 17(3): 210-13
    [22]何黎民,卢亦成,吴建国.国人头颅三维有限元模型有效性检验.生物医学工程与临床, 2005, 9(6): 320-324
    [23]石白柱.无牙上颌骨缺损种植修复优化设计的三维有限元分析. [第四军医大学博士学位论文], 2004
    [24]朱伟民,付双林.三维颅骨模型的建立和有限元及实验应力分析的研究.生物医学工程研究, 2006, 3: 244-247
    [25]周学军,赵志河,赵美英,等.包括下颌骨的濒下颌关节三维有限元模型的建立.实用口腔医学杂志, 2000, 16(1): 17-19
    [26]白石柱,李涤尘.多层螺旋CT在建立上颌骨三维有限元模型中的应用.中国临床康复, 2006, 10(14): 90-92
    [27]许崇涛,孙庚林.下颌骨双侧升支矢状劈开坚强内固定三维有限元模型的建立和初步分析.中华整形外科杂志, 2007, 23(3): 215-217
    [28]白石柱,赵铱民.快速建立无牙颌上颌骨及颅骨三维有限元模型的方法探讨.中华口腔医学杂志, 2005, 40(6): 515-517
    [29]胡林华,赵志河等.颞下颌关节-下颌骨-Herbst矫治器系统三维有限元模型的建立.广东牙病防治, 2004, 12(3): 224-225
    [30]顾永佳,龚爱秀.含矫治器的下牙列及下颌骨三维有限元模型的建立.口腔医学, 2006, 26(2): 121-123
    [31] NAGASAO T, NAKAJIMA T, KIMURA A, et al.The dynamic role of buttress reconstruction after maxillectomy. Plast Reconstr Surg. 2005, 115(5): 1328-1340
    [32] HSU ML, CHEN FC, KAO HC, et al. Influence of off-axis loading of an anterior maxillary implant:a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2007, 22(2): 301-309
    [33] ZHAO L, HERMAN JE, PATEL PK. The structural implications of a unilateral facial skeletal cleft: a three-dimensional finite element model approach. Cleft Palate. Craniofac J,2008 , 45(2): 121-130
    [34] HUANG HL, HSU JT, FUH LJ.et al.Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study. J Dent. 2008, 36(6): 409-417
    [35]白石柱,李涤尘.多层螺旋CT在建立上领骨三维有限元模型中的应用.中国临床康复, 2006, 10(14): 90-92
    [36] SEVIMAY M, TURHAN F, KILI?ARSLAN MA.et al.Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent, 2005, 93(3):227-234
    [37] CRUZ M, LOUREN?O AF, TOLEDO EM, et al.Finite element stress analysis of cuneiform and cylindrical threaded implant geometries. Technol Health Care, 2006,14(45):421-438
    [38] KONG L, SUN Y, HU K, et al.Bivariate evaluation of cylinder implant diameter and length: a three-dimensional finite element analysis. J Prosthodont, 2008, 17(4): 286-293
    [39] LAS CASAS EB, FERREIRA PC.Comparative 3D finite element stress analysis of straight and angled wedge-shaped implant designs. Int J Oral Maxillofac Implants, 2008, 23(2): 215-225
    [40] KONG L, SUN Y, HU K, et al.Bivariate evaluation of cylinder implant diameter and length:a three-dimensional finite element analysis. J Prosthodont, 2008 , 17(4): 286-293
    [41]许崇涛,孙庚林,周健,等.下颌骨双侧升支矢状劈开坚强内固定三维有限元模型的建立和初步分析[J].中华整形外科杂志,2007, 23(3): 215-217
    [42] BURANASTID PORN B, HISANO M,SOMA K. ArtieulardisedisPlaeementinmandibular asymmetrypatients. J Med Dent Sei, 2004, 51(1): 75-81
    [43] TANAKA E, RODRIGO DP, TANAKA M, et al.Stress analysis in the TMJ during jaw opening by use of a three-dimensional finite element model based on magnetic resonance images. Int J Oral Maxillofac Surg, 2001, 30(5): 421-430
    [44] KOFOD T, CATTANEO PM, MELSEN B.Three-dimensional finite element analysis of the mandible and temporomandibular joint on simulated occlusal forces before and after vertical ramus elongation by distraction osteogenesis. J Craniofac Surg. 2005, 16(3): 421-429
    [45] AL SUKHUN J, ASHAMMAKHI N, PENTTILA H. Effects of tissue-engineered articular disc implants on the biomechanical loading of the human temporomandibular joint in athree-dimensional finite element model. J Craniofac Surg., 2007, 18(4): 781-788
    [46] PILEICIKIENE G, VARPIOTAS E, SURNA R, et al.A three-dimensional model of the human masticatory system, including the mandible, the dentition and the temporomandibular joints, 2007, 9(1): 27-32
    [47] PILEICIKIENE G, SURNA A, BARAUSKAS R, et al. Finite element analysis of stresses in the maxillary and mandibular dental arches and TMJ articular discs during clenching into maximum intercuspation, anterior and unilateral posterior occlusion. Stomatologija, 2007, 9(4): 121-128
    [48] DEVOCHT JW, GOEL VK, ZEITLER DL, et al. ExPerimental validation of a finite element model of the temporomandibular joint. J Oral Maxillofae Surg, 2001: 59(7): 775-778
    [49] FREITAG L A, PLASSMANN P. Local optimization-based simplicial mesh untangling and improvement.I nt J Numer Meth Engng, 2000, 49(12): 109-125
    [50] PARTHASARATHY V N, GRAICHEN C M, HATHAWAY A F. A comparison of tetrahedron quality easures. Finite Elements inAnalysis and Design.1993, 15: 255-261
    [51] LOS H. Optimization of tetrahedral meshes based on element shape measures. Computers &Structures, 1997, 63(5): 951-961
    [52] JOE B. Delaunay versus max min solid angle triangulations for 3-dimensional mesh Generation. I nt J Numer Meth Engng,1991, 31(5): 987-997
    [53] KOOLSTRA JH, VAN EIJDEN TMGJ. Combined finite-element and rigid-body analysis of human jaw joint dynamics. J Biomech, 2005, 38: 2431-2439
    [54] KOOLSTRA JH, VAN EIJDEN. Combined finite-element and rigid-body analysis of human jaw joint dynamics. J Biomech, 38:2431–2439
    [55] ZEE MD, CATTANEO PM, DALSTRA M. On the development of a rigid-body model of the mandible. In: International Symposium on Computer Simulation in Biomechanics, Cleveland. Ohio, 2005, 16: 28-30
    [56] ZEE MD, CATTANEO PM, DALSTRA M. On the development of a rigid-body model of the mandible. In: International Symposium on Computer Simulation in Biomechanics Cleveland, 2005, 12: 28–30
    [57]王美青,张果,王一兵,等.七种不同领型对颞下颌关节应力影响的三维有限元分析.中华口腔医学杂志, 2004, 39(3): 242-244
    [58] CHEN J, AKYUZ U, XUL F, et al. Stress analysis of the human temporomandibular joint. MedEng&Phy, 1998, (20): 565-572
    [59] CHEN J, AKYUZ U, XULF, et al. Stress analysis of the human temporomandibular joint. MedEng&Phy, 1998, (20): 565-572
    [60]胡凯,哗缨,柳春明,等.模拟功能咬合时人颖下领关节内的应力分布和位移特征.解放军医学杂志, 2003, 28(1): 63-65
    [61] WIERZBICKI M, DRANGOVA M, GUIRAUDON G, et al.Validation of dynamic heart models obtained using non-.linear registration for virtual reality training,planning,and guidance of minimally invasive cardiac surgeries. Med Image Anal, 2004, 8(3): 387-401
    [62] ARNOLD P, FARRELL MJ. Can virtual reality be used to measure and train surgical skills. gonomics, 2002, 45(5): 362-379
    [63] ROSE FD, ATTREE EA, BROOKS BM, et al. Training in virtual environments:transfer to real world tasks and equivalence to real task training. Ergonomics, 2000, 43(4): 494-511
    [64] SORENSEN TS, PEDERSEN EM, HANSEN OK, et al. Visualization of morphological details in congenitally malformed hearts:virtual three-.dimensional reconstruction from magnetic resonance imaging.Cardiol Young, 2003, 13 (5): 451-460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700