六硝基菧(HNS)的光分解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六硝基菧(C14H6N6O12,2,2'4,4’,6,6’-六硝基均二苯基乙烯)具有耐热性能好,爆轰感度高,电爆阀值低,临界直径小等众多优点,已广泛应用于柔爆索,传爆药,耐热炸药等。同时,HNS也是一种典型的光敏炸药,在光作用下存在着明显的分解现象。目前国内外对于HNS的研究主要集中在其制备方法、粒径控制、热分解行为、点火和燃烧性能以及传爆能力等方面,有关HNS的初始光解机理,光解动力学,以及光解产物的确定等相关研究-直少见详细报道,然而这些信息对于有效了解炸药的贮存和使用性能起着关键作用。同时,深入了解炸药光解机理和动力学相关信息对于较好的控制、提高炸药的燃烧和爆轰性能也具有十分重要的意义。因此,本论文从炸药HNS分子在光作用下的稳态结构变化与瞬态结构产生机理入手研究炸药的光解反应,为炸药在光学场中的反应机理提供科学、合理的解释,为如何科学、合理、安全地实现光学技术在炸药中的应用提供依据。为此,论文主要开展了以下研究工作:
     采用紫外-可见吸收光谱(UV-Vis spectra)研究了HNS在不同极性溶剂中的吸收光谱,获得了炸药HNS在不同溶剂的波长吸收范围,发现溶剂化效应对吸收波长有显著影响,随着溶剂极性的增加HNS分子的吸收光谱向长波方向移动。
     利用紫外-可见光谱(UV-Vis spectra),X-射线光电子能谱(XPS),电子自旋共振谱(ESR),液质联用(LC-MS)技术考察了炸药HNS在紫外光作用下分子结构的变化信息,分析HNS可能发生的光解机理,结果表明C—NO2键断裂和-NO2基团异构化为业硝基基团之后脱去NO的过程均发生在HNS的紫外-可见光解反应过程中,但紫外-可见光的作用对HNS的热稳定性并没有明显影响。
     利用X-射线光电子能谱(XPS),傅里叶-红外光谱(FT-IR)以及异步二维相关红外谱图,比较了不同激光波长(包括紫光263nm,绿光527nm和红光1053nm)和功率密度对炸药结构的影响,分析了HNS在不同激光波长作用下可能发生的机理,结果表明:HNS的激光分解反应机理受激光波长影响较大,并且随着功率密度增加,激光产生的热效应作用逐渐明显。在263nm和527nm波长作用下,反式C=C双键断裂和硝基-亚硝基异构化反应为光解主要反应机理;在1053nm波长作用下,仅仅反式C=C双键发生了断裂。
     充分利用XPS分析室的超高真空(10-9mbar)和高洁净度,精心设计了一种原位XPS-激光-四级杆质谱联用技术,使激光束在样品表面的照射区域应与XPS仪器的X-射线光照射区域重合,研究了532nm波长10ns脉宽激光照射固态HNS引起的原位分解反应,对HNS在激光分解过程中产生的固体产物和气体产物同时进行探测,探讨了HNS可能发生的光热分解机理,结果表明-NO2基团异构化为亚硝基基团之后脱去NO的过程为反应主要过程。
     用纳秒激光光解技术、时间分辨荧光磷光光谱等方法,研究了HNS乙腈溶液在不同气体饱和条件下受到355nm激光激发后产生的瞬态产物种类和寿命,计算了各吸收峰的生成衰减速率和半衰期,分析了HNS被激发后瞬态发射中间体的种类及寿命,结果表明:有三种不同寿命的瞬态中间体存在,340nm的瞬态吸收峰归属于反式HNS的激发瞬态体,520nm的吸收峰应归属于HNS分子的激发态异构化后产生的顺式瞬态产物,另外一种三线态由于寿命太短且浓度很低,被旁边的吸收所掩盖。
     采用量子化学理论,借助于Gaussian程序对HNS的分子进行几何结构优化,计算了分子和电子结构,并从微观结构角度对其重要的光分解和热分解机理等进行预估,认为C-N02键断裂、NO2→ONO异构化反应和反式C=C双键断裂均具有相对较低的反应能垒,较容易发生,从理论上对光解实验结果进行了验证。
HNS (2,2',4,4',6,6'-hexanitrostillbene, C14H6N6O12) is a heat-resistant explosive, which is widely used in booster charge, mild detonating fuse, and heat-stable explosive due to its excellent thermal stability, high detonation sensitivity and low critical diameter and so on. HNS has also been considered as a typical photosensitive explosive for the photodecomposition appears to be easily occurred. However, past studies of HNS are mostly focused on the preparation, particle size controlling, thermal decomposition behaviour, ignition and combustion performance and propagation capability and so on. No related investigation about the photodecomposition of HNS has been reported in detail. Determination of the photodecomposition mechanism, photolytic degradations kinetics, and the degradation products and identification of intermediates are very important for a better understanding of explosive lifetime prediction. Additionally, understanding the photodecomposition mechanisms and dynamics will allow for better control and improvement of the performance of energetic materials for combustion and explosion. Therefore, in this paper the photodecomposition of HNS is investigated both experimentally and theoretically. The main contents are listed as follows:
     The absorption wavelength of HNS is obtained in the range of full wavelength in different solvents. The solvate effect on the absorption wavelength is investigated. The selectivity of HNS molecule on the light source is determined.
     An experimental analysis has been subjected to study the UV-induced photodecomposition of HNS. The UV-Vis spectra, X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance spectra (EPR) measurements are used to study the structure changes of HNS before and after UV-irradiation. The possible decomposition channel upon UV irradiation is discussed. Results show that C-NO2broken and nitro-nitrite isomerization with subsequent release of NO would be both existed in the photodecomposition of HNS. The differential scanning calorimetry (DSC) experiments have shown that there is no influence on the thermal stability of HNS powders as the effect of UV irradiation.
     The effects of laser irradiation on HNS, especially at the irradiation of different laser wavelengths (including263nm wavelength,527nm wavelength and1053nm wavelength) and different laser power density are studied by X-ray photoelectron spectroscopy (XPS), FT-IR spectroscopy and asynchronous two-dimensional correlation FT-IR spectra and so on. The possible decomposition channels are discussed. Results showe photodecomposition mechanism of HNS is wavelength-dependent. In the case of263nm and527nm irradiated, the nitro-nitriteisomerization and the fragmentation of trans-C=C bond are the main decomposition steps, while in the case of1053nm, only the fragmentation of trans-C=C bond is observed.
     A novel approach to study the photo-thermal decomposition of HNS (2,2',4,4',6,6'-hexanitrostillbene) at532nm induced by a10-nanosecond (ns) laser was described. In this method, an in-situ X-ray photoelectron spectroscopy (XPS)-laser-quadrupole mass spectrum on-line equipment was designed elaborately. The ultra high vacuum (10-9mbar) and high cleanliness of XPS analyzer chamber was fully exploited. The HNS film was directly irradiated by532-nm laser during XPS and MS spectra collection, thus enabling the accurate analysis of the photo-thermal decomposition. XPS and MS results showed that the nitro-nitrite isomerization with subsequent release of NO is the primary reaction in the laser-induced decomposition of HNS.
     Laser photolysis of HNS in acetonitrile solution is investigated with the excitation wavelength of355nm under different saturated conditions. The transient absorption spectra of HNS are investigated using nanosecond laser photolysis technique. The half-life of formation and decay rate of the transient absorption are calculated. In order to know how many kinds of transient species arised when HNS is excited by355nm laser, fluorescene and phosphorescen spectra are measured by time-resolved fluorescene and phosphorescen spectrometer. Results show that there are three kinds of transient species.
     In quantum chemistry calculation, all molecular structures are optimized by using Density Functional Theory (DFT) at B3LYP/6-311G (d, p) level. The charge distribution, the interaction of orbits, the electronic structure, the photodecomposition mechanism and the thermal performance are estimated. The calculation results could explain the experimental resultd preferably.
引文
[1]HUANG Yigang, WANG Xiaochuan, LI Guanglai et al. The Effect of Color Changing on Thermal Stability and Compatibility of TATB [R].32 International Annual Conference of ICT,2001.
    [2]A. Chien, G. Overturf and J.LeMay. The Greening of 1,3,5-triamino-2,4,6-trinitro benzene (TATB):A Literature Review. UCRL-UR-136724.
    [3]徐涛,王丽鑫.光电子能谱的X射线对TATB、TNT表面结构的影响[J].含能材料,2005,13,27-29.
    [4]程克梅,钱素平,陈捷,姚思德TATB和BTF的激发瞬态体研究[J].含能材料,2002,10,13-15.
    [5]舒远杰.高能硝胺炸药的热分解[M].北京:国防工业出版社,2010.
    [6]Ted M. Mckinney, Leslie F. Warren, Ira B. Goldberg. EPR Observation of Nitroxide Free Radicals during Thermal Decomposition of 2,4,6-trinitrotoluene and Related Compounds[J]. J. Phys. Chem.,1986,90,1008-1011.
    [7]Manelis G B, Nazin G M, Rubtsov Yu I. Thermal decomposition and combustion of explosives and propellants [M]. London and New York:Taylor & Francis Group,2003.
    [8]舒远杰.二甲基硝胺气相热分解研究进展[J].含能材料,2003,11(2),103-106.
    [9]王新锋.气相RDX热分解及溶剂影响的理论研究[D].四川:中国工程物理研究院,2005.
    [10]Shaw R, Walker F E. Estimated kinetics and thermochemistry of some initial unimolecular reactions in the thermal decomposition of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane in the gas phase[J]. J. Phys. Chem.,1977,81 (25), 2572-2576.
    [11]Farber M, Srivastava R D. Mass Spectrometric Investigation of the Thermal Decomposition of RDX [J]. Chemical Physics letters,1979,64:307-310.
    [12]Shackelford S A, Coolidge M B, Goshgarian B B. Deuterium isotope effects in condensed-phase thermochemical decomposition reactions of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine[J]. J. Phys. Chem.,1985,89 (14),3118-3126.
    [13]Patil D G, Brill T B. Kinetics and Mechanism of Thermolysis of Hexanitrohexazzisowu-rtzitane[J]. Combustion and Flame,1991,87,145-151.
    [14]Oxley J, Hiskey M, Naud D,et al. Thermal decomposition of nitramines: dimethylnitramine, diisopropylni-tramine and N-nitropiperidine[J]. J. Phys. Chem.,1992, 96,2505-2509.
    [15]宗和厚,黄奕刚,舒远杰等.FOX-7热分解起始机理及NO2对其催化效应的理论研究[J].含能材料,2006,14:425-428.
    [16]樊美公,姚建年,佟振和等.分子光化学与光功能材料科学[M].北京:科学出版社.
    [17]Elizabeth A. Glascoe, Joseph M.Zaug, Michael R.Armstrong, Jonathan C.Crowhurst et al. Nanosecond Time-Resolved and Steady-State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressure[J]. J. Phys. Chem. A,2009, 113,5881-5887.
    [18]Jatinder Kaur, Vandana P.Arya, Gurvinder Kaur et al. Determination of Solvent Contamination and Characterization of Ultrafine HNS Particles after Solvent Recrystallization[J]. Propellants Explosives, Pyrotechnics,2010,35,487-493.
    [19]J. P. Agrawal. Some New High Energy Materials and Their Formulations for Specialized Applications [J]. Propellants Explosives, Pyrotechnics,2005,30,316.
    [20]B. T. Neyer, T.Stoutenborough, R.Tomasoski. HNS IV Explosives Properties and Characterization Tests,39th Joint Propulsion Conference and Exhibit, Huntsville, AL, July 08-11,2003, AIAA-paper AIAA-2003-5138.
    [21]Xiaoyan Shu, Yong Tian, Gongbao Song et al. Thermal expansion and theoretical density of 2,2',4,4',6,6'-hexanitrostilbene[J]. Journal of Materials Science,2011,46,2536-2540.
    [22]董海山,周芬芬.高能炸药及相关物性能[M].北京:科学出版社,1989.
    [23]军用规范,MIL-E-82903(OS),1994-12-30.
    [24]Darren L.Williams, James C.Timmons, James D. Woodyard, Ken A. Rainwater et al. UV-Induced Degradation Rates of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB)[J]. J. Phys. Chem. A,2003,107,9491-9494.
    [25]Jalal Hawari, Stephane Deschamps, Chantale Beaulieu, Louise Paquent, Annamaria Halasz. Photodegradation of CL-20:insights into the mechanisms of initial reactions and environmental fate [J]. Water Research,2004,38,4055-4064.
    [26]David W. Firsicha, Michael P. Gusea. On the photochemical phenomenon in TATB [J]. Journal of Energetic Materials,1984,2,205-214.
    [27]B.Suryanarayana, J.R.Autera, R.J.Graybush. Effect of ultraviolet irradiation on phase transformations in HMX polymorphs [J]. Molecular crystals and liquid crystals,1967, 2,373-377.
    [28]J.W.Mconald, T.Schenkel, M.W.Newman et al. The effects of Radiation on (1,3, 5-triamino-2,4,6-trinitrobenzene) TATB studied by Time-of-Flight Secondary Ion Mass Spectrometry [J]. Journal of Energetic Materials,2001,19,101-118.
    [29]M.D.Pace. Electron paramagnetic resonance of ultraviolet irradiated HMX single crystals [J]. Molecular Crystals and Liquid Crystals,1988,156,167-173.
    [30]F.J.Owens and J.Sharma. X-ray photoelectron spectroscopy and paramagnetic resonance evidence for shock-induced intramolecular bond breaking in some energetic solids [J]. J.Appl. Phys.,1980,51(3),1494-1497.
    [31]M.D.Pace, A.J.Carmichael. Quantitative EPR spin trapping.1. Nitrogen dioxide radicals and nitrite ions from energetic materials in alkaline aqueous solution [J]. J. Phys. Chem., 1997,101,1848-1853.
    [32]A.D. Britt, W. B. Moniz, G.C.Chingas, D.W.Moore, C.A. Heller, C.L.Ko. Free radicals of TATB [J]. Propellants, Explosive, Pyrotechnics,1981,6,94-95.
    [33]J.Sharma, W.L.Garrett, F.J.Owens, V.L.Vogel. X-ray Photoelectron Study of Electronic Structure and Ultraviolet and Isothermal Decomposition of TATB [J]. J. Phys. Chem., 1982,86,1657-1661.
    [34]S.C.Schmidt, D.S,Moore, D.Schiferl, J.W.Shaner. Backward stimulated Raman scattering in shock-compressed benzene [J]. Phys. Rev. Letts,1983,50(9),661-664.
    [35]C.S.Yoo, Y.M.Gupta. Pressure-induced resonance Raman Effect in shocked carbon disulfide [J]. Chem. Phys. Lettd,1989,159,178-183.
    [36]J.M.Winey, Y.M.Gupta. Shock-induced chemical changes in neat nitromethane:use of time-resolved Raman spectroscopy [J]. J. Phys. Chem. B,1997,101,10733-10743.
    [37]G.I.Pangilinan, Y.M.Gupta. Time-resolved Raman measurements in nitromethane shocked to 140kbar [J]. J. Phys. Chem.,1994,98,4522-4529.
    [38]C.P.Constantinou, J.M.Winey. UV/Visble absorption spectra of shocked nitromethane and notromethane-amine mixtures up to a pressure of 14 GPa [J]. J. Phys. Chem.,1994, 98,7767-7776.
    [39]J.M.Winey, G.E.Duvall, M.D.Knudson, Y.M.Gupta. Equation of state and temperature measurements for shocked nitromethane [J]. J. Chem. Phys.,2000,113(17),7492-7501.
    [40]N.Hemmi, Z.A.Dreger, Y.A.Gruzdkov, Y.M.Gupta. Raman spectra of shock compressed pentaerythritoltetranitrate single crystals:anisotropic response [J]. J. Phys. Chem. B, 2006,110,20948-20953.
    [41]James E.Patterson, Zbigniew A.Dreger, Maosheng Miao, Yogendra M. Gupta. Shock Wave Induced Decomposition of RDX:Time-Resolved Spectroscopy [J]. J. Phys. Chem. A,2008,112,7374-7382.
    [42]James E.Patterson, Zbigniew A.Dreger, Y.M.Gupta. Shockwave induced phase transition in RDX single crystals [J]. J. Phys. Chem. B,2007,111,10897-10904.
    [43]Guray Tas, J. Franken, S.A.Hambir, D.E.Hare, D.D.Dlott. Ultrafast Raman spectroscopy of shock fronts in molecular solids [J]. Phys. Rev. Letts,1997,78(24),4585-4588.
    [44]Y.Yang, S.A.Hambir, D.D.Dlott. Ultrafast vibrational spectroscopy imaging of nanoshock planar propagation [J]. Shock Waves,2002,12,129-136.
    [45]Yanqiang Yang, Zhaoyong Sun, Shufeng Wang, D.D.Dlott. Fast spectroscopy of laser-induced nanoenergetic materials [J]. J. Phys. Chem. B,2003,107,4485-4493.
    [46]Jared Gump, Laura Parker. HMX:Laser-ignited reaction kenetics and isothermal equation of state [C]. Shock Compression of Condensed Matter,2003, CP706-967.
    [47]Viviane Bouyer. Emission spectroscopy applied to shock to detonation transition in nitromethane[C]. Shock Compression of Condensed Matter,2001, CP620-1223.
    [48]A. Matsuda, K.G.Nakamura, Ken-ichi Kondo. Time-Resolved Raman spectroscopy of benzene and cyclohexane under laser-driven shock compression [J]. Phys. Rev. B,2002, 65,174116.
    [49]肖海波,李萍,袁长迎,胡栋.环氧丙烷爆燃转爆轰过程中产物C2的发射光谱[J].光学学报,2005,25(2),261-264.
    [50]胡栋,刘锦超,袁长迎,李萍等.环氧丙烷复合燃料冲击点火的微观研究[J].科学技术与工程,2004,4(8),691-693.
    [51]Y.M.Li et al. Internal-state distribution and polarization from the photodissociation of C6H5NO [J]. Chemical Physics Letters,2001,338,297-302.
    [52]Pimental G.C., Rollefson,G., Formation and trapping of free radicals. Acdamic Press,1960, chapter 4.
    [53]Haugen G.R., Steinmetz, L.L. Molecular Photochemistry,1979.
    [54]Schoen P.E., Marrone, M.J., Schnur, J.M. et al., Picosecond UV photolysis and laser-induced fluorescence probing of gas-phase nitromethane, Chem. Phys. Letter.,1982, 90(4),272-276.
    [55]Hrischlaff E., Norrish, R.G.W., A preliminary study of the decomposition of nitromethane and nitroethane, J. Chem. Soc.1936,1,1580.
    [56]Brown H. W.; Pimentel, G. C., Photolysis of nitromethane and methyl nitrite in an argon matrix; infrared detection of nitroxyl, HNO, J. Chem. Phys.1958,29(4),883.
    [57]Cundall R. B., Locke, A. W., Street, G. C., The Chemistry of Ionization and Excitation, Taylor and Francis Ltd., London,1967.
    [58]Guo Y.Q., Bhattacharya A., Bernstein E.R.. Photodissociation Dynamics of Nitromethane at 226 and 271nm at Both Nanosecond and Femtosecond Time Scales, J. Phys. Chem. A, 2009,113(1),85-96.
    [59]Mialocq J. C., Stephenson, J. L., Picosecond laser-induced fluorescence study of the collisionless photodissociation of nitrocompounds at 266nm, Chem. Phys. Lett.,1986, 1106(2),281-291.
    [60]McQuaid M. J., Miziolek A.W., Sausa R. C, Photodissociation of Dimethylnitramine at 248nm, J. Phys. Chem.,1991,95,2713-2718.
    [61]Simeonsson, J. B.; Sausa, R. C., A critical review of laser photofragmentational fragment detection techniques for gas-phase chemical analysis, Appl. Spec. Rev.1996(1-2),31, 1-72.
    [62]Bhattacharya A., Guo Y.Q., Bernstein E.R., Experimental and Theoretical Exploration of the Initial Steps in the Decomposition of a Model Nitramine Energetic Material: Dimethylnitramine, J. Phys. Chem. A,2009,113(5),811-823.
    [63]S.Kakar, A.J.Nelson, R.Treusch, C.Heske. Electronic Structure of the Energetic Material 1,3,5-Triamino-2,4,6-Trinitrobenzene[J]. Phys. Rev. B,2000,62,15666-15672.
    [64]Elizabeth A. Glascoe, Joseph M.Zaug, Michael R. Armstrong, Jonathan C.Crowhurst et al. Nanosecond Time-Resolved and Steady-State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressure[J]. J. Phys. Chem A,2009, 113,5881-5887.
    [65]H.S.lm, E.R.Bernstein.On the initial steps in the decomposition of energetic materials from excited electronic states [J]. J. Chem. Phys.,2000,113,7911.
    [66]Christos Capellos, Panos Papagiannakopoulos, Yulon Liang. The 248nm Photodecomposition of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine[J]. Chem. Phys. Lett., 1989,164,533-538.
    [67]Xianxu Zheng, Yunfei Song, Jun Zhao, Duowang Tan, Yanqiang Yang, Cangli Liu. Nanosecond time-resolved Raman spectroscopy of molecular solids under laser-driven shock compression [J]. Chem. Phys. Lett.,2010,499,231-235.
    [68]M.D.Pace, B.Kalyanaraman. Spin Trapping of Nitrogen Dioxide Radical From Photolytic Decomposition of Nitramines [J]. Free Radical Biology & Medicine,1993 15,337-342.
    [69]Y.Q.Guo, M.Greenfield, E.R.Bernnstein. Decomposition of nitramine energetic materials in excited electronic states:RDX and HMX [J]. J. Chem. Phys.,2005,122,244310.
    [70]M.Greenfield, E.R.Bernnstein, Y.Q.Guo. Ultrafast photodissociation dynamics of HMX and RDX from their excited electronic states via femtosecond laser pump-probe techniques [J]. Chem. Phys. Lett.,2006,430,277-281.
    [71]] A.Bhattacharya, Y.Q.Guo, E.R.Bernstein. Unimolecular decomposition of tetrazine-N-oxide based high nitrogen content energetic materials from excited electronic states [J]. J. Chem. Phys.,2009,131,194304.
    [72]Y.Q.Guo, A.Bhattacharya, E.R.Bernstein. Excited electronic state decomposition of furazan based energetic materials:3,3-diamino-4,4-azoxyfurazan and its model systems, diaminofurazan and furazan [J]. J. Chem. Phys.,2008,128,034303.
    [73]高东升。激光与含能材料相互作用机理研究[D].南京理工大学硕士学位论文,2006.
    [74]沈美。激光与含能材料相互作用机理研究[D].南京理工大学硕士学位论文,2007.
    [75]盛涤伦,朱雅红,陈利魁等。激光与含能化合物相互作用机理研究[J].含能材料,2008,5,16.
    [76]Li Peifang and Xu Yan. Analysis of HNS (2,2',4,4',6,6'-hexanitrostillbene) by High Performance Liquid Chromatography J]. Chinese Journal of Chromatography,1993, 3,190-182.
    [77]K.J.Smit. Ultraviolet and visible absorption spectroscopy of some energetic molecules in the solid state [J]. Journal of Energetic Materials,1991,9,81-103.
    [78]Larry P. Davis, John S. Wilkes, Henry L. Pugh, and R. Cameron Dorey. Photochemical Decomposition of 2,4,6-Trinitrotoluene and Related Compounds in Ethersp [J]. J. Phys. Chem.1981,85,3505-3509.
    [79]钟发春.聚氨酯/聚硅氧烷IPN阻尼弹性体研究[D].中国工程物理研究院,2001.
    [80]陈智群,郑晓花,刘子如,潘青,汪渊。HNS的热行为研究[J].含能材料,2005,4,249-251.
    [81]王德高.多环芳烃和多滨代联苯醚的光化学行为研究[D].大连理工大学,2007.
    [82]项仕标,项顼,冯长根。激光对含能材料作用特性分析[J].激光与红外,2002,4,234-237.
    [83]H.Gifers, M.Pravica, Radiation-Induced Decomposition of PETN and TATB [J], J. Phys.Chem. A.2008,112,3352.
    [84]Oldershaw G A, Excimer laser ablation of polyethylene terephthalate. Prediction of threshold fluences from thermolysis rates., Chem. Phys. Lett.,186(1):23-26,1991.
    [85]N.L.Garland, H.D.Ladouceur, H.H.Nelson. Laser-Induced Decomposition of NTO, J.Phys.Chem.A.1997,101,8508
    [86]Lulu Zhang, Kazumasa Takata, Toshiaki Yasui et al. Effects of ion bombardment on polymer films [J]. Materials Chemistry and Physics,1998,54,98-101.
    [87]Naofumi Ohtsu, Naoya Masahashi, Yoshiteru Mizukoshi, and Kazuaki Wagatsuma. Hydrocarbon Decomposition on a Hydrophilic TiO2 Surface by UV Irradiation:Spectral and Auantitative Analysis Using in-Situ XPS Technique [J], Langmuir,2009,25(19), 11586-11591.
    [88]Alexander I. Serykh, Michael D. Amiridis. In-situ X-ray photoelectron spectroscopy study of supported gallium oxide [J]. Surface Science,2010,604,1002-1005.
    [89]T. Fujii, F. M. F. de Groot, and G. A. Sawatzky. In-situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy [J]. Physical Review B,1999-Ⅱ, 59(4),3195-3202.
    [90]J.F. Zhu, M. Kinne, T. Fuhrmann, R. Denecke, H.-P. Steinruck. In situ high-resolution XPS studies on adsorption of NO on Pt (111) [J]. Surface Science,2003,529,384-396
    [91]V.V. Kaichev, A.V. Millerl, P. Prosvirin, V.I. Bukhtiyarov. In-situ XPS and MS study of methanol decomposition and oxidation on Pd (111) under millibar pressure range [J]. Surface Science,2012,606(3-4),420-425
    [92]Naofumi Ohtsu, Tsuchiya B., Oku, M., Applied Surface Science,2007,253,68
    [93]Tao Xu, Ying Xiong, Fachun Zhong et al. Propellants, Explosives, Pyrotechnics,2012, 36(6),499-504.
    [94]熊洁,姚思德,马红娟,赵素芳。对-硝基苯甲酸的光解行为探讨[J].原子能科学技术,2010,44(6),666-670.
    [95]K.J.Smit. Influence of Steric Effects on the Excited Triple-State Lifetime of 2,2'-Dinitrostillbene and 2,2',4,4'6,6'-Hexanitrostilbene in Acetonitrile Solution[J]. J. Phys. Chem.,1992,96,6555-6558.
    [96]D.V.Bent, D.Schulte-Frohlinde. Laser Flash Photolysis of Substituted Stilbenes in Solutions [J]. The Journal of Physical Chemistry,1974,78(4),446-450.
    [97]D.V.Bent, D.Schulte-Frohlinde. Evidence for the triple route in the photochemical trans-cis isomerization of nitrostilbenes in solution,1974,78(4),451-454.
    [98]郑智德,姚思德,林维真。纳秒激光光解装置原理[R].中科院原子能研究所辐射化学开放实验室年报,1990-1991,32.
    [99]张超杰,孙晓宇,王玫等。苯胺的脉冲辐解和激光光解研究[J].辐射研究与辐射工艺学报,2001,19(1).
    [100]程克梅,冯文,姚思德,钱素平,袁立华,黄枢。对-叔丁基杯[4]芳烃酮的激光光解研究[J].辐射研究与辐射工艺学报,2002,20(1),16-20
    [101]Becke, A. D. J. Chem. Phys.1993,98,5648.
    [102]Reed, A. E., Weinstock, R. B., Weinhold, F. J.Chem.Phys.1985,83(2),735.
    [103]Carpenter, J.E., Weinhold, F. J.Mol.Struct.(Theochem),1988,169,41.
    [104]Cramer, C. J. Essentials of Computational Chemistry:Theories and Models. Willy: West Sussex, England,2002.
    [105]Boris. B,; Petia. B. J. Phys. Chem. A.1999,103,6793.
    [106]Gadre. S.R,;Bhadane. P.K. J. Phys. Chem. A.1999,103,3512.
    [107]肖鹤鸣著.硝基化合物的分子轨道理论[M].北京:国防工业出版社,1993.
    [108]P. Hohenberg, W. Kohn. Phy. Rev. B,1964,136:864.
    [109]R. D. Coalson, T. L. Beek, in:P. V,R. Schleyer (ed.), Encyclopedia of Computational Chemistry, Vol.3, Wiley, New York, p.2086.
    [110]P.Politzer, J.S.Murray. J.Mol.Struct.,1996, (376):419.
    [111]Salzner, U. Synth. Met.1999,101,482.
    [112]舒远杰,龙新平.含能材料辉煌的21世纪[A].四川省中青年专家大会[C],四川成都,2002,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700