基于非晶硅薄膜的红外吸收层膜系设计、仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶硅(a-Si)薄膜由于具有良好的红外吸收性能、与标准硅集成电路兼容性好、能实现大规模生产等优点,而成为微测辐射热计研究的热点之一。在微测辐射热计的制备中采用非晶硅薄膜作热敏层,可以采用自支撑结构而省去氮化硅(Si_3N_4)等支撑层,简化制备工艺。此外,非晶硅薄膜还具有较小的热导率和优良的热绝缘性能,因而可采用短桥腿和后桥腿设计,提高微桥结构的占空比及机械强度,可承受高强度的振动及冲击。
     本文简要介绍了基于非晶硅薄膜的微测辐射热计的微桥结构、工作原理及主要性能,重点采用Matlab软件对微桥热敏面的光学吸收性能进行了设计、仿真和优化。具体方法是从单层膜系仿真向多层膜系仿真发展,从薄膜的吸收层仿真过渡到整体器件的仿真,最终从理论上得到最佳和优化的设计方案。
     进行仿真实验时,主要选取了氧化硅(SiO_2)、氮化硅(Si_3N_4)、氧化钛(TiO_2)及氮化钛(TiN)四种红外吸收材料。仿真研究表明,TiN是一种非常适合用于增强微桥热敏面红外吸收的薄膜材料;当微桥结构的各部分取恰当的参数值时,在8~14μm波长范围内,多层薄膜的红外吸收率可以达到90%以上。这一结果对实际微桥制备和应用具有积极的指导意义。
     在仿真的基础上,我们分别制备了Si_3N_4、TiO_2及TiN薄膜,用傅里叶变换红外吸收光谱方法研究了不同薄膜的红外吸收率情况,并与仿真结果进行对比研究,发现红外吸收实测结果与仿真结果基本一致,从而在一定程度上验证了仿真结果的正确性。同时,也发现实验研究与仿真研究之间存在着一定的偏差,这可能与沉积的薄膜厚度偏高有关。但是,TiN薄膜在仿真中表现出来的优良红外吸收特性,在实验验证中并没有完全展示出来。
Amorphous silicon (a-Si) thin film has many excellent characteristics such as good infrared absorption, compatible with semiconductor technology and is able to be used in large scale production. It had become one of the hottest subjects in the research of microbolometers. During the preparation of microbolometers, a-Si thin film can be used as the thermal-sensitive layer, and is able to support itself and other layers using its so called self-supporting structure. We can omit other layers like Si_3N_4 and simplify the whole preparation processess. Besides, a-Si thin film had lower thermal conductivity and greater thermal insulation, so we can increase the fill factor and mechanical strength of the microbridge structure. It can make the microbolometers endure high-intensity vibrations and strong mechanical shocks.
     Firstly, the microbridge structure, operation principles and primary performance of the microbolometers were introduced based on a-Si thin film. Secondly, focusing on optical absorption characteristic of the thermal-sensitive surface on the microbridge structure, we had carried out lots of analysis, simulation and optimization by using MatLab software. We started the simulations from single film to multi-layer film, from the absorption layer films to the whole device. And finally, we had theoretically obtained an optimal design.
     Before simulation, we chose SiO_2、Si_3N_4、TiO_2 and TiN as the infrared absorption films. The results of simulation showed that TiN is a kind of suitable film to enhance the infrared absorption of thermal-sensitive surface of the microbridge. When we set up some appropriate parameters of each part of the microbridge structure, the infrared absorptivity of the multi-layer films can reach over 90% from 8μm to 14μm. The results had a positive guiding significance to the practical preparation and application of the microbridge structure based on a-Si thin films.
     Based on the simulation, we had prepared some Si_3N_4, TiO_2 and TiN thin films. And we had measured the infrared absorption of these films by means of Fourier Transform Infrared Spectroscopy (FTIR). Compared with the simulation, it can be seen that the results of the infrared absorption were basically the same as those of simulations. It means that the simulation results can be verified by experiments in a certain extent. Meanwhile, there were also some differences between simulations and experiments. These might be related to the thicker thickness of the films used in FTIR test. However, the excellent infrared absorption characteristic of TiN thin film demonstrated in simulations has not been realised yet in the following FTIR experiments.
引文
[1]陈衡.红外物理学.北京:国防工业出版社,1985. 1-5
    [2]王义玉.红外探测器.北京:兵器工业出版社,1993. 8-12
    [3]张建奇.红外物理.西安:西安电子科技大学出版社,2004. 33-35
    [4]王永仲.现代军用光学.北京:科学出版社,2003. 79-87
    [5]刘景生.红外物理.北京:兵器工业出版社,1992. 50-56
    [6]纪红.红外技术基础与应用.北京:科学出版社,1979. 181-202
    [7]赵天池.传感器和探测器的物理原理和应用.北京:科学出版社,2008. 55-69
    [8]丁继斌.传感器.北京:化学工业出版社,2010. 17-23
    [9]吴诚,苏君红,潘顺臣等.非制冷红外焦平面技术评述(上).红外技术,1999,21(1):6-9
    [10]吴诚,苏君红,潘顺臣等.非制冷红外焦平面技术评述(下).红外技术,1999,21(2):1-3
    [11]付小宇.光电探测技术与系统.北京:科学出版社,2010. 105-111
    [12] N. Teranishi. Thermoelelctric uncooled infrared focal plane arrays, in: P.W.Kruse, D.D.Skatrud (Eds.), Semiconductors and Semimetals, Academic Press, 1997, 47: 203-218
    [13]郝晓剑,李仰军.光电探测技术与应用.北京:国防工业出版社,2009. 94-105
    [14]刘君华.智能传感系统.西安电子科技大学出版社,2010. 73-76
    [15]俞阿龙.传感器原理及其应用.南京:南京大学出版社,2010. 46-51
    [16]李颖文,陈福胜,罗艳.非制冷热成像最新发展和应用前景.红外与激光工程,2005,34(3): 257-260
    [17]朱惜辰.红外探测器的进展.红外技术,1999,21(6):12-15
    [18]马维云,张鹏翔,张辉,董瑞光,李勇.薄膜激光感生热电电压效应及其应用.激光杂志, 2010, 31(4)
    [19]徐峥谊,熊斌,王跃林等.微机械红外热电堆探测器.机械强度,2001,23(4) :539-542
    [20]杨波,陈忧先.热释电红外传感器的原理和应用.仪表技术,2008,1006-2394(2008) 06-0066-03
    [21] G. Morel1, F.L S. Katiyar, S. Z. Weisz, et al. Raman study of the network disorder in sputtered and glow discharge a-Si:H films. J Appl Phys, 1995, 78(8): 5120-5125
    [22]彭文胜,王建中.光电导效应及其应用探究.高等函授学报,2007,21(6)
    [23]李恋,李平,文玉梅,尹飞,毋玉芬,张鑫.仪器仪表学院,2009,30(3)
    [24] E.S.Barr. Historical survey of the early development of the infrared spectral region. American Journal of Physics, 1960, 28(2): 42-54
    [25] E.S.Barr. The infrared Pioneers-Ⅱ. Macedonio Melloni. Infrared Physics, 1962, 2(3): 67-73
    [26] E.S.Barr. The Infrared Pioneers-Ⅲ. Samuel Pierpont Langley. Infrared Physics, 1963, 3(3): 195-206
    [27] T.W.Case. Notes on the change of resistance of certain substrates in light. Physics Reviews, 1917, 9(4): 305-310
    [28]张华斌,张庆中.红外焦平面阵列技术现状和发展趋势.传感器世界,2005,1006-883X (2005)05-0006-005
    [29]唐绩.微测辐射热计非均匀性测试及校正研究:[硕士学位论文].南京:南京工业大学,2004. 14-16
    [30]程开富.非致冷微测辐射热计红外焦平面阵列发展现状.激光与红外,1996,26(4):268-270
    [31]龚宇光,李伟,蒋亚东,陈超,蔡海洪,李志,非晶硅微测辐射热探测器的现状与发展.半导体光电,2009,30(2)
    [32] Slater P N. Remote Sensting. Addison-Wesley, Reading, MA, 1980
    [33]王宏臣.氧化钒薄膜及非致冷红外探测器阵列研究:[博士学位论文].武汉:华中科技大学,2005. 23-24
    [34]马铁英.非晶硅微测辐射热计的材料、设计、制备和测试研究:[博士学位论文].上海:中国科学院上海微系统与信息技术研究所,2007. 30-31
    [35]于仁红,蒋明学. TiN的性质、用途及其粉末制备技术.耐火材料,2005,39(5)386-389
    [36]陶涛,苏辉,谢自力,张荣等. PECVD法氮化硅薄膜生长工艺的研究.纳米材料与结构, 2010,1671-4776(2010)05-0267-06
    [37]蔡京荣.纳米级TiO2粉体制备技术研究进展与展望.中国粉体工业,2010,5(1-2)
    [38]肖剑荣,蒋爱华.氟化非晶碳膜结构的Raman和FTIR研究.真空科学与技术学报,2010, 10.3969/j.issn.1672-7126.2010.06.22
    [39] P. W. Kruse and D. Skatrud. Uncooled Infrared Imaging Arrays and Systems. Academic Press, 1997, 45-119
    [40]林永昌,卢维强.光学薄膜原理.北京:国防工业出版社,1990,23-55
    [41] P. Chindaum, K.Vedam. Determination of the optical constants of an inhomogenous transparent LaF3 thin film on a transparent substrate by spcetroscopy sllipsometry [J]. Optics Lett, 1992, 17(538-540)
    [42]廖乃镘,李伟,蒋亚东,匡跃军等.氢化非晶硅(a-Si:H)薄膜稳定性研究进展.材料导报, 2007, 21(5): 21-27
    [43]潘永强,朱昌,弥谦,宋俊杰.电子束蒸发TiO2薄膜的光学特性.应用光学,2004,25(5): 1002-2082(2004)05-0053-03
    [44]曹晔,孟超,陈将乐等. TiO2/TiN/PI低红外发射率迷彩薄膜制备及其特性研究.真空科学与技术学报,2009,2(3-4):1672 7126(2009)02 213205
    [45]翁诗甫.傅立叶变换红外光谱仪.化工工业出版社,2005,7:46-401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700