多向刺激条件下的驾驶行为建模及其仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微观交通流模型在重现交通流基本特征和交通管控过程中发挥着重要的作用。因此,建立符合实际的微观交通流模型将有利于更好地管理和控制交通系统的运营状态。而以往大部分的微观驾驶行为建模主要考虑了前向交通信息刺激,忽略了后向或侧向的车辆信息对驾驶行为的刺激作用,导致了基于此类模型的仿真交通与复杂的实际交通存在一定的偏差,影响了制定合理的交通管控措施。因此,针对复杂交通场景中驾驶员的行为习惯,采用元胞自动机模型和优化速度模型分别分析了后向和侧向车辆信息对驾驶行为的作用,提出了双向刺激的元胞自动机模型和双车道优化速度模型。本文主要的研究工作如下:
     1.日益成熟的车间通信技术让驾驶员主动获取后向车辆信息成为可能。因此,在NaSch模型中引入双向车辆信息对驾驶行为的作用机制,提出了主动获取后向车辆信息的双向刺激的元胞自动机模型。同时,根据对危险感知的敏感程度可将驾驶员分为激进型、一般型和保守型,并通过随机慢化概率的大小来描述。最后,通过一系列的数值实验可知:驾驶行为越激进或车流状态越拥堵,车队的行驶安全性越低;考虑双向车辆信息的作用将有利于提高车队的行驶安全性;驾驶员敏感类型和信息刺激类型对异质车队的行驶安全性产生重要影响。
     2.采用不同的鸣笛或开大灯条件也可以描述三种类型的驾驶员:激进型、一般型和保守型,并在启发式元胞自动机模型的基础上考虑了驾驶员对鸣笛或大灯的响应机制,提出了被动接收后向车辆信息的双向刺激的元胞自动机模型。最后,通过数值实验的方法可得:驾驶员对被动接收的鸣笛或大灯刺激的响应将改进车辆的动力行为,但是却降低了匀质/异质车队的行驶安全性。
     3.在横向摩擦存在的前提下,分析双车道上车辆的动力行为过程,提出了带横向摩擦的双车道优化速度模型并采用H∞范数的方法获得了基于此模型的交通流的稳定条件。然后,加载了两种不同的信息刺激:无时间延迟的相对速度信息和有时间延迟的车头间距信息,同样运用H∞范数的方法求得基于此改进模型的交通流的稳定性条件。最后,通过数值实验的方法验证了所得的理论结果,并演示了换道行为对交通流稳定性的负面影响。
     4.考虑到驾驶员的有限理性,采用视角信息替代相应的3-D交通信息,并考虑不同车道车辆之间的横向摩擦程度,提出了考虑横向摩擦程度的双车道优化速度模型并运用线性稳定理论获得了基于此模型的交通流的稳定条件。最后,数值实验验证了:减少横向摩擦程度、增强驾驶员的敏感系数或较大的车辆尺寸都将有利于交通流的稳定性,并演示了即使发生分离、合并或换道行为,减少横向摩擦都将有利于车流的稳定性。
Microscopic traffic flow models play an important role in reproducing thefundamental characteristics of traffic flow、managing and controlling the traffic flow.Therefore, establishment of realistic microscopic traffic flow models will beconductive to better manage and control the traffic systems. However, most previousmicroscopic modeling about driving behaviors mainly considers the stimuli from theforward traffic and neglects the stimulating effect from backward or lateral vehicles,which causes the deviation between the simulated traffic based on this class of modelsand complex real traffic and finally affects designing the rational measures for trafficmanagement and control. Therefore, due to the driving behaviors in complex trafficscenarios, this paper employs the cellular automaton model (CA) and optimal velocity(OV) model to respectively study the impact of backward and lateral vehicleinformation on the driving behaviors, and then proposes the bi-directional stimulatedcellular automaton model and two-lane optimal velocity model. The main researchwork can be summarized as follows:
     1. Development of vehicle to vehicle communication technology makes itpossible for drivers to actively obtain the backward vehicle information; therefore, theinfluence of bi-directional vehicle information on driving behaviors is involved inNaSch model. Meanwhile, the drivers can be classified to three types (i.e. aggressive、normal and conservative) based on their sensitivity to the danger, which can bedescribed by the possibility of random braking. Finally, through numericalexperiments it is known that more aggressive driving behaviors or more congestedtraffic causes lower safety performance; while the bi-directional vehicle informationcontributes to increase the safety performance; the sensitive and stimulated types ofdrivers produce a great effect in the safety performance of the heterogeneous fleets.
     2. Applying the various conditions of activating the honk or headlamp can alsodescribe three types of drivers, and the mechanism of drivers response to the stimuliof honk or headlamp is taken into account based on the heuristic CA model, based onwhich the bi-directional stimulated CA model involving the backward vehicleinformation received passively by drivers is proposed. Finally, it is obtained throughnumerical experiments that drivers response to the honk or headlamp stimulusimproves the dynamic behaviors of vehicles, but reduces the safety performance ofhomogeneous/heterogeneous fleets.
     3. Under the prerequisite of lateral friction, the dynamic behaviors of vehicles intwo-lane road are analyzed, and then a two-lane OV model with lateral friction is putforward, based on which the stability condition is solved by the method of H∞norm.After that, two kinds of various information stimuli are added to the proposed model,which are relative velocity information without time delay and headway distanceinformation with time delay, and their stability conditions can also be gained by themethod of H∞norm. Finally, numerical results verify the obtained theoreticalconclusions and demonstrate the negative impact of lane changing behavior on thetraffic flow stability.
     4. Because of the drivers bounded rationality, the visual angle information isemployed to substitute the corresponding3-D traffic information, based on which thetwo-lane OV model with lateral friction between vehicles is presented. After that, thestability conditions of traffic flow based on the proposed model are obtained by thelinearized stability theory. Finally, numerical results confirm that decreasing thelateral friction, increasing the sensitivity of drivers and larger vehicle size all benefitthe stability of traffic flow, and also illustrate that reducing the lateral friction iscontributive to the traffic flow stability even though the diverging、emerging or lanechanging behaviors happen.
引文
[1] Chowdhury D., Santen L., Schadschneider A., Statistical physics of vehiculartraffic and some related systems, Physics Report,2000,329:199-329.
    [2] Nagel K., Ricket M., Parallel implementation of the TRANSIMS micro-simulation, Parallel Computing,2001,27:1611-1639.
    [3] Helbing D., Hennecke A., Shvetsov V. et al., MASTER: macroscopic trafficsimualtion based on a gas-kinetic, non-local traffic model. Transportation ResearchPart B,2001,35:183-211.
    [4]冯蔚东,贺国光,刘豹.交通流自组织及其基于自组织理论的管控模式研究[J],系统工程理论与实践,1999(9):1-9.
    [5]中国尴尬的世界第一:交通死亡事故占全球15%,http://www.pcauto.com.cn/playcar/saft/info/0511/348730.html,2005-11-4.
    [6] Bin Ran, Internet of vehicles and infrastructure and new generations of trafficmodels,15th COTA/WCTA Annual Symposium,2012, Washington D. C.
    [7] http://www.its.dot.gov/connected_vehicle/connected_vehicle.htm, IntelligentTransportation Systems-Connected Vehicle,2012,03,04.
    [8] Daganzo C. F., Requiem for second-order fluid approximations of traffic flow,Transportation Research Part B,1995,29:277-286.
    [9] Zhang H. M., Anisotropic property revisited-does it hold in multi-lane traffic?Transportation Research Part B,2003,37:561-577.
    [10] Herman R., Montroll E.W., Potts R.B., Traffic dynamics: Analysis of stability incar following, Operations Research,1959,7(1):86-106.
    [11] Nakayama A., Sugiyama Y., Hasebe K., Effect of looking at the car that followsin an optimal velocity model of traffic flow, Physical Review E,2001,65:016112.
    [12] Hasebe K., Nakayama A., Sugiyama Y., Dynamical model of a cooperativedriving system for freeway traffic, Physical Review E,2003,68:026102.
    [13] Ge H.X., Zhu H.B., Dai S. Q., Effect of looking backward on traffic flow in acooperative driving car following model, The European Physical Journal B,2006,54:503-507.
    [14] Sun D.H., Liao X.Y., Peng G.H., Effect of looking backward on traffic flow in anextended multiple car-following model, Physica A,2011,390:631-635.
    [15] Yang d., Peter J., Pu Y., Ran B., Safe distance car-following model includingbackward-looking and its stability analysis, The European Physical Journal B,2013,86-92.
    [16] http://news.sohu.com/20070328/n249040601.shtml.
    [17]裴玉龙,张需鹏,不良汽车驾驶行为特征分析,交通信息与安全,2009(3),81-84.
    [18] Dula CS., Geller ES., Risky, aggressive, or emotional driving: Addressing theneed for consistent communication in research, Journal of Safety Research,2003,34(5):559-566.
    [19] Chliaoutakis J., Darviri C., Demakakos P., The Impact of Young DriversLifestyle on Their Road Traffic Accident Risk in Greater Athens Area, AccidentAnalysis&Prevention,1999,31(6)771-780.
    [20]马艳丽,裴玉龙,连续驾驶时间对驾驶特性测评指标的影响,中国公路学报,中国公路学报,2009,22(1):85-88.
    [21] May A.D., A friction concept of traffic flow, Highway Research Board,Washington DC.1959,493-509.
    [22] Michales R.M., Cozan L.W., Perceptual and field factors causing lateraldisplacement, Public Roads,1963,32(11):233-240.
    [23] Gunay B., Car following theory with lateral discomfort, Transportation ResearchPart B,2007,41:722-735.
    [24] Gipps P.G., A behavioural car-following model for computer simulation,Transportation Research Part B,1981,15(2):105-111.
    [25] Tang T.Q., Huang H.J., Gao Z.Y., Stability of car-following model on two lanes,Physical Review E,2005,72:066124.
    [26] Tand T.Q., Huang H.J., Wong S.C., Jiang R., A car following model with theanticipation effect of potential lane changing, Acta Mechanica Sinca,2008,24:399-407.
    [27] Jin S., Wang D.H., Tao P.F. et al., Non-lane-based full velocity difference carfollowing model, Physica A,2010,389:4654-4662.
    [28] Boer ER., Car following from the driver s perspective, Transportation ResearchPart F,1999,2(4):201-206.
    [29] Krajzewicz D., Kühne R., Wagner P., A Car Driver s CognitionModel. Proceedings of Intelligent Transportation Systems Safety and SecurityConference,ITS Safety and Security Conference.2004.
    [30] Helbing D., Traffic and related self-driven many particle systems, Reviews ofModern Physics,2001,73(4):1067-1141.
    [31] Hoogendoom S. P., State-of-the-art of Vehicular Traffic Flow Modelling,Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems andControl Engineering,2001,215(4):283-303.
    [32] Lighthill M. J., Whitham G.B., On kinematic waves, I. Flow movement in longrivers; Ⅱ. A theory of traffic flow on long crowed road. Proceedings of the RoyalSociety A,229(1955):281-345.
    [33] Richards P.J., Shock waves on the highway,Operations Research,1956(4):42–51
    [34] Payne H. J., Models of freeway traffic and control, In: Bekey G. A.(ed.),Mathematical Methods of Public Systems,1971,1(1):51-61.
    [35] Helbing D., Gas-kinetic derivation of Navier-Stokes-like traffic equations,Physical Review E,1996,53(3):2366-2381.
    [36] Phillips W.F., A new continuum traffic model obtained from kinetic theory, IEEETransportation Automatic Control,1978,23:1032-1036.
    [37] Papageogiou M., Blosseville J.M., Hadj-Salem H., Macroscopic modeling oftraffic flow on the Boulevard Peripherique in Paris. Transportation Research Part B,1989,23:29-47.
    [38] Michalopoulos P.G., Yi P., Beskos D.E., et al., Continuum modeling of trafficdynamics, In: Proceddings of the Second International Conference on Applications ofadvanced Technology in Transportation Engineering Minneapolis,1991,36-40.
    [39] Michalopoulos P.G., Yi P.,Lyrintzis A.S., Development of an improved highorder continuum traffic flow model, Transportation Research Record,1993,1365:125-132.
    [40] Zhang H.M., A theory of nonequilibrium traffic flow, Transportation ResearchPart B,1998,32:485-498.
    [41] Jiang R., Wu Q. S., Zhu Z.J., A new continuum model for traffic flow andnumerical tests, Transportation Research Part B,2002,36:405-419.
    [42] Prigogine I., Herman R., Kinetic theory of vehicular traffic, Elsevier, Amsterdam,1971.
    [43] Paveri-Fontana S. L., On Boltzmann-like treatments for traffic flow, A criticalreview of the basic model and an alternative proposal for dilute traffic analysis,Transportation Research,1975,9(4):225-235.
    [44] Helbing D., Gas-kinetic derivation of Navier-Stokes-like vehicular trafficequations, Physical Review E,1996,53(3):2366-2381.
    [45] Helbing D., Hennecke A., Shvetsov A., Treiber M., Micro-and Macro-simulationof Freeway traffic, Mathematical and Computer Modelling,2002,35:517-547.
    [46] Nagel K., Schreckenberg M., A Cellular automaton model for freeway traffic,Journal de Physique Ⅰ.(France),1992,2:2221-2229.
    [47] Chandler R. E., Hermna R., Montroll E. W., Taffic dynamics: studies in carfollowing, Operations Research,1958,6:165-184.
    [48] Herman R., Potts R. B., Single lane traffic theory and experiment, In Proceeding:Symposium on theory of traffic flow, Elsevier, New York,1961.
    [49] Gazis D. C., Herman R., Rothery R. W., Nonlinear of follow-the lead models oftraffic flow, Operations Research,1961,9:545-567.
    [50] Lee D.N. A theory of visual control of braking based on information about timeto collision, Perception,1976,5:437-459.
    [51] Evans L., Rothery R., Perceptual thresholds in car following-a recent comparison,Transportation Science,1977,11(1):60-72.
    [52] Bando M., Hasebe K., Nakayama A. et al., Dynamical model of trafficcongestion and numerical simulation, Physical Review E,1995,51:1035-1042.
    [53] Wolfram S., Theory and application of cellular automata, World Scientific,Singapore,1986.
    [54] Takayasu M., Takayasu H.,1/f noise in a traffic model, Fractals,1993,1:860-866.
    [55] Schadschneider A., Schreckenberg M., Traffic flow models with slow-to-startrules, Annals of Physics,1997,6:541-551.
    [56] Benjamin S. C., Johnson N. F., Hui P. M., Cellular automaton models of trafficflow along a highway containing a junction, Journal of Physics A: Mathematical andTheoretical,1996,29:3119-3127.
    [57] Barlovic R., Santen L., Schreckenburg A., Metastable states in cellular automatafor traffic flow, The European Physical Journal B,1998,5:793-800.
    [58] Li X. B., Wu Q. S., Jiang R., Cellular automaton model considering the velocityeffect of a car on the successive car, Physical Review E,2001,64:066128-066131
    [59] Knospe W., Santen L., Schadschneider A. et al., Towards a realistic microscopicdescription of highway traffic, Journal of Physics A: Mathematical and Theoretical,2000,33: L477-L485.
    [60] Jiang R., Wu Q. S., Cellular automata models for synchronized traffic flow,Journal of Physics A: Mathematical and Theoretical,200336:381-390.
    [61]白克钊,谭惠丽,刘慕仁等,一种改进Nagel-Schreckenberg模型在开放边界条件下交通流的研究,物理学报,2003,52(10):2421-2426.
    [62] Larraga M.E., del Rio J.A., Alvarez-lcaza L., Cellular automata for one-lanetrafc fow modeling, Transportation Research Part C,2005,13:63-74.
    [63]郑亮,马寿峰,贾宁,基于驾驶员行为的元胞自动机模型研究,物理学报,2010,59(7):88-96.
    [64]薛郁,董力耘,戴世强,一种改进的一维元胞自动机交通流模型及减速概率的影响,物理学报,2001,50(3):445-449.
    [65]葛红霞,祝会兵,戴世强,智能交通驾驶的元胞自动机交通流模型,物理学报,2005,54(10):4621-4626.
    [66]雷丽,薛郁,戴世强,交通流的一维元胞自动机敏感驾驶模型,物理学报,2003,52(9):2121-2126.
    [67] Jiang R., Hu M.B., Jia B., et al., The effects of reaction delay in the Nagel-Schreckenberg traffic flow model, European Physical Journal B,2006,54:267-273.
    [68]唐铁桥,丁建勋,黄海军,一种考虑速度随机慢化概率动态演化的交通流元胞自动机模型,物理学报,2009,58(11):7591-7595.
    [69]牟勇飚、钟诚文,基于安全驾驶的元胞自动机交通流模型,物理学报,2005(54):5597-5601.
    [70]邝华,孔令江,刘慕仁,考虑延迟概率因素对混合车辆敏感驾驶交通流模型的研究,物理学报,2004,53(12):4138-4144.
    [71] Li K.P., Car deceleration considering its own velocity in cellular automata model,Communication in Theoretical Physics,2006,45:113-116.
    [72] Rickert M., Nagel K., Schreckenberg M., et al. Two lane traffic simulations usingcellular automata. Physica A,1996,231:534-550.
    [73] Chowdhury D., Wolf D. E., Schreckenberg M., Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules, Physica A,1997,235:417-439.
    [74] Wagner P., Nagel K., Wolf D.E., Realistic multi-lane traffic rules for cellularautomata, Physica A,1997,234:687-698.
    [75] Nagel K., Wolf D.E., Wagner P., et al. Two-lane traffic rules for cellular automata:A systematic approach, Physical Review E,1998,58:1425-1437.
    [76] Knospe W., Santen L., Schadschneider A., et al. Disorder effects in cellualarautomata for two-lane traffic, Physica A,1999,265:614-633.
    [77] Knospe W., Santen L., Schadschneider A., et al. A realistic two-lane traffic modelfor highway traffic, Journal of Physics A,2002,35:3369-3388.
    [78] Kong X.J., Gao Z.Y., Li K.P., A two-lane cellular automata model with influenceof next-nearest neighbor vehicle, Communications in Theoretical Physics,2006,45:657-662.
    [79] Kerner B.S., Klenov S.L., Spatial-temporal patterns in heterogeneous traffic flowwith a variety of driver behavioural characteristics and vehicle parameters, Journal ofPhysics A,2004,37:8753-8788.
    [80] Jia B., Jiang R., Gao Z.Y., Zhao X.M., The effect of mixed vehicles on trafficflow in two lane cellular automata model, International Journal of Modern Physics C,2005,16(10):1617-1626.
    [81] Jia B., Jiang R., Wu Q.S. et al., Honk effect in the two-lane cellular automatonmodel for traffic flow, Physica A,2005,348:544-552.
    [82] Chowdhury D., Santen L., Schadschneider A., Statistical physics of vehiculartraffic and some related systems, Physics Reports,2000,329:199-329.
    [83] Krauss S., Wagner P., Metastable states in a microscopic model of traffic flow,Physical Review E,1997,55(5):5597-5602.
    [84] Lee H.X., Barlovic R., Schreckenberg M., Kim D., Mechanical restriction versushuman overreaction triggering congested traffic states, Physical Review Letter,2004,92:238702.
    [85] Larraga M.E., Alvarez-lcaza L., Cellular automaton model for traffic flow basedon safe driving policies and human reactions, Physica A,2010,389:5425-5438.
    [86] Helbing D., Tilch B., Generalized force model of traffic dynamics, PhysicalReview E,1998,58(1):133-138.
    [87] Jiang R., Wu Q. S., Zhu Z. J., Full velocity difference model for a car-followingtheory, Physical Review E,2001,64:017101.
    [88] Bando M., Hasebe K., Nakanishi K. et al., Analysis of optimal velocity modelwith explicit delay, Physical Review E,1998,58(5):5429-5435.
    [89] Davis L.C., Modifications of the optimal velocity traffic model to include delaydue to driver reaction time, Physica A,2003,329:557-567.
    [90] Davis L.C., Comment on “Analysis of optimal velocity model with explicitdelay”. Physical Review E,2002,66(3):038101.
    [91] Orosz G., Wilson R. E., Krauskopf B., Global bifurcation investigation of anoptimal velocity traffic model with driver reaction time, Physical Review E,2004,70:026207.
    [92] Orosz G., Krauskopf B., Wilson R. E., Bifurcations and multiple traffic jams in acar-following model with reaction-time delay, Physica D,2005,211:277-293.
    [93] Yu L., Li T., Shi Z. K., Density waves in a traffic flow model with reaction-timedelay, Physica A,2010,389(13):2607-2616.
    [94] Chen J.Z., Shi Z.K., Hu Y.M., Stabilization analysis of multiple look-aheadmodel with driver reaction delays, International Journal of Modern Physics C,2012,23(6):1250048.
    [95] Wilson R.E., Berg P., Hooper S., Lunt G., Many-neighbour interaction and non-locality in traffic models, European Physical Journal B,2004,39(3),397-408.
    [96] Sawada S., Generalized optimal velocity model for traffic flow, InternationalJournal of Modern Physics C2002,13(1):1-12.
    [97] Sawada S., Nonlinear analysis of a differential-difference equation with next-nearest-neighbour interaction for traffic flow, Journal of Physics A,2001,34:11253-11259.
    [98] Ge H.X., Cheng R.J., Li Z.P., Two velocity difference model for a car followingtheory, Physica A,2008,387(21):5239-5245.
    [99] Jin Y.F., Xu M., Gao Z.Y., KdV and kink-antikink solitons in an extended car-following model, Journal of Computational and Nonlinear Dynamics,2011,6,011018.
    [100] Li Z.P., Zhou Y., Impact of the next-nearest-neighbor interaction on traffic flowof highway with slopes, Conmmunications in Theoretical Physics,2012,58:590-598.
    [101] Lenz H., Wagner C. K., Sollacher R., Multi-anticipative car-following model,The European Physical Journal B,1999,7(2):331-335.
    [102] Mo Y. L., He H.D., Xue Y., Shi W., Lu W.Z., Effect of multi-velocity-differencein traffic flow, Chinese Physics B,2008,7(12):4446-4450.
    [103] Peng G.H., Sun D.H., A dynamical model of car following with theconsideration of the multiple information of preceding cars, Physics Letters A,2010,374:1694-1698.
    [104] Shi W., Chen N.G., Xue Y., An asymptotic solvable multiple “look-ahead”model with multi-weight, Conmmunications in Theoretical Physics,2007,48(6):1088-1092.
    [105] Xie D.F., Gao Z.Y., Zhao X.M., Stabilizaiton of traffic flow based on themultiple information of preceding cars, Communications in computational physics,2008,3:899-912.
    [106] Haesbe K., Nahwmaa A., Sugiyama Y., Equivalence of linear response amongextended optimal velocity models, Physical Review E,2004,69:017103.
    [107] Yu L., Shi Z.K., Zhou B.C., Kink-antiKink density wave of an extended carfollowing model in a cooperative driving system, Communicaitons in NonlinearScience and Numerical Simulation,2008,13(10):2167-2176.
    [108] Ge H.X., Dai S.Q., Dong L.Y., Xue Y., Stabilizaiton effect of traffic flow in anextended car following model based on an intelligent transportation systemapplication, Physical Review E,2004,70,066134.
    [109] Kurata S., Nagatani T., Spatio-temporal dynamics of jams in two-lane trafficflow with a blockage, Physica A,2003,318:537-550.
    [110] Nagai R., Nagatani T., Taniguchi N., Traffic states and jamming transitionsinduced by a bus in two-lane traffic flow, Physica A,2005,350:548-562.
    [111] Treiber M., Hennecke A., Helbing D., Derivation, properties, and simulation ofa gas-kineitc-based, nonlocal traffic model, Physical Review E,1999,59(1):239-253.
    [112] Del Castillo J.M., Benitez F.G., On the functional form of the speed-densityrelationship-I: General theory;II: Empirical investigation, Transportation ResearchPart B,1995,29:373-406.
    [113] Tang T. Q., Huang H. J., Wong S. C. et al., Lane changing analysis for two-lanetraffic flow, Acta Mechanica Sinica,2007,23:49-54.
    [114] Wilson R.E., Ward J.A., Car-following models: fifty years of linear stabilityanalysis-a mathematical perspective, Transportation Planning and Technology,2011,34(1):3-18.
    [115] Arnab B., Petros I., Analysis of Traffic flow with mixed manual and intelligentcruise control vehicles: theory and Experiments, Research Reports, CaliforniaPartners for Advancedd Transit and Highways(PATH), Institute of TransportationStudies, UC Berkeley,2001,4,1.
    [116] Liang C.Y., Peng H., String stability analysis of adaptive cruise controlledvehicles, JSME Int. J. Mechan. Syst., Machine Elements and Mfg.,2000,43:671-677.
    [117] Konishi K., Kokame H., Hirata K., Decentralized delayed-feedback control ofan optimal velocity traffic model, The European Physical Journal B,2000,15:715-722.
    [118] Zheng L., Ma S. F., Zhong S. Q., Analysis of honk effect on the traffic flow in acellular automaton model, Physica A,2011,390(6):1072-1084.
    [119] Davis L., Effect of adaptive cruise control systems on traffic flow, PhysicalReview E,2004,69(6):066110.
    [120] Kesting A., Treiber M., Schonhof M. et al., Adaptive cruise control design foractive congestion avoidance, Transportation Research Part C,2008,16:668-683.
    [121] Zhou J., Peng H., Range policy of adaptive cruise control vehicles for improvedflow stability and string stability, IEEE Transactions on Intelligent TransportationSystems,2005,6(2):229-237.
    [122] van Arem B., van Driel C.J.G., Visser R., The impact of cooperative adaptivecruise control on traffic-flow characteristics, IEEE Transactions on IntelligentTransportation Systems,2006,7(4):429-436
    [123] Konishi K., Hirai M., Kokame H., Decentralized delayed-feedback control of acoupled map model for open flow, Physical Review E,1998,58(3):3055-3063.
    [124] Konishi K., Kokame H., Hirata K., Coupled map car-following model and itsdelayed-feedback control, Physical Review E,1999,60(4):4000-4007.
    [125] Zhao X.M., Gao Z.Y., Controlling traffic jams by a feedback signal, TheEuropean Physical Journal B,2005,43(4):565-572.
    [126] Zhao X.M., Gao Z.Y., A control method for congested traffic induced bybottlenecks in the coupled map car-following model, Physica A,2006,366:513-534.
    [127] Chen X., Gao Z.Y., Zhao X.M. et al., Study on the two-lane feedback controlledcar-following model, Acta Physica Sinica,2007,56(4):2024-2029.
    [128]Andersen G.J., Perception of three-dimensional structure from optic flowwithout locally smooth velocity, Journal of Experimental Psychology: HumanPerception and Performance,1989,15:363-371.
    [129] Norman J.F., Todd J.T., Perotti V.J. et al., The visual perception of three-dimensional length, Journal of Experimental Psychology: Human Perception andPerformance,1996,22:173-186.
    [130] Todd J.T., Oomes A.H., Koenderink J.J. et al., On the affine structure ofperception space, Psychological Science,2001, I2:191-196.
    [131] Lee J., Jones J.H., Traffic dynamics: Visual angle car following models, TrafficEngineering and Control,1967,8:348-350.
    [132] Helly W., Simulation of Bottlenecks in single lane traffic flow. In Proceedingsof the Symposium on Theory of Traffic Flow, Research Laboratories, General Motors,New York: Elsevier.1959,207-238.
    [133] Andersen G.J., Sauer C.W., Optical information for car following: the drivingby visual angle (DVA) model, Human Factors,2007,49:878-896.
    [134] Jin S., Wang D.H., Huang Z.Y. et al., Visual Angle Model for Car FollowingTheory. Physica A,2011,390:1931-1940.
    [135] Brackstone M., McDonald M., Car following: a historical review,Transportation Research Record F,1999,2:181-196
    [136] Brackstone M., Sultan B., McDonald M., Motor driver behavior: studies on carfollowing, Transportation Research Part F,2002,5(1):31-46.
    [137] Ferrari P., The effect of driver behavior on motorway reliability, TransportationResearch Part B,1989,23(2):139-150.
    [138] Lee, D. N., A theory of visual control of braking based on information abouttime to collision, Perception,1976,5:437-459.
    [139] Hoffman E.R., Mortimer R.G., Driver s estimates of time to collision, AccidentAnalysis and prevention,1994,26:511-520.
    [140] Sidaway B., Fairweather M., Sekiya H. et al., Time-to-collision estimation in asimulated driving task, Human Factors,1996,38:101-113.
    [141] Michaels R.M., Perceptual factors in car following, In Proceedings of theSecond International Symposium on the Theory of Road Traffic Flow, Paris: OECD.1963,44-59.
    [142] Zielke T., Brauckmann M., von Seelen W., Intensity and edge-based symmetrydetection with an application to car-following, Computer Vision, Graphics, and ImageProcessing,1993,58:177-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700