飞行器用铝合金大气腐蚀的电化学检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国民经济建设和国防安全中,飞行器具有极其重要的作用。作为制造飞行器的重要结构材料,高强铝合金的腐蚀直接影响着飞行器的服役寿命和飞行安全。飞行器用铝合金大气腐蚀检测的研究工作,对于飞行器延寿,腐蚀损伤检修和材料安全性评估等均具有重要的意义。高强铝合金大气腐蚀的本质是表面薄液膜覆盖下的电化学腐蚀。因此,本文主要针对高强铝合金大气腐蚀的电化学检测开展研究。
     大气环境中金属材料表面形成薄液膜的稳定性和连续性都很差,很多电化学方法都不能适用于高强铝合金大气腐蚀检测。电化学噪声(EN)技术作为一种原位无损的电化学测试技术,特别适用于金属材料局部腐蚀的研究。而且所需测试设备简单并对被测体系稳定性要求低,适合用于金属材料腐蚀现场检测。因此,本文提出了以EN技术为基础的铝合金大气腐蚀现场检测技术,从电极系统设计制作、测试方法确定、数据解析、现场用EN检测仪设计及现场检测系统构建等方面开展了工作。模拟实验结果表明所构建的现场检测系统能够实现铝合金大气腐蚀的检测,实验数据也充分反映了表面薄液膜变化对铝合金腐蚀的影响。
     应用所构建的铝合金大气腐蚀现场检测系统,研究了模拟近海海洋大气及工业污染大气环境中LY12CZ和LC4CS铝合金的腐蚀行为。探讨了污染潮湿大气环境中Cl—、NO3—和SO42—对两种铝合金腐蚀行为的影响。结果表明:NO3—和Cl—是影响铝合金腐蚀形态的主要因素,三种阴离子同时存在对铝合金的大气腐蚀会形成复杂的协同作用,其影响并非单一离子影响力的简单叠加。
     应力腐蚀开裂是对高强铝合金构件安全性危害最大的一种局部腐蚀破坏形态。本文利用电化学噪声技术对LY12CZ铝合金C型环试样的应力腐蚀裂纹产生及发展过程进行了研究,初步掌握了裂纹产生过程铝合金的腐蚀电位噪声特征,提出了快速评价铝合金应力腐蚀敏感性的新方法。
     电化学阻抗谱(EIS)技术应用于金属材料腐蚀研究,可以获得较多关于腐蚀过程的信息。实际服役状态表面带有处理层的铝合金耐蚀性很好,但腐蚀仍然会发生,而且腐蚀发生的更加隐蔽,危害性也更大。因此,本文采用EIS技术研究了表面带处理层的铝合金腐蚀破坏过程,得到铝合金膜下腐蚀反应和表面处理层状态等信息。研究表明水分和Cl—的渗透是引发铝合金在表面处理层下发生点蚀的主要因素。
Aircraft has played an important role in national economical construction and national defend security. The corrosion of high-strength aluminium alloys which are especially used as structural materials of aircraft will influence the aircraft’s active time and security directly. It is significant to study the corrosion behaviour, field detective technique and corrosion resistance evaluation of high-strength aluminium alloy. Electrochemical corrosion occurred under the thin liquid film is the essential of high-strength aluminium alloy atmospheric corrosion. In this paper, high-strength aluminium alloy atmospheric corrosion electrochemical technologies were studied.
     The stability and continuity of thin liquid film formed on the surface of metal in the atmospheric environment are not so friendly to be tested by some traditional electrochemical methods. Electrochemical Noise (EN) is an in-situ and nondestructive technology, which is especially suited for studying local corrosion of metal materials. EN technology also can be used in the field detective of metal atmospheric corrosion due to its simple test equipments and low stability requirement of testing system. In this paper, an aluminium alloy atmospheric corrosion field detective method based on EN technology was presented. The electrode system was designed and fractured. The testing mode, data analysis and the system used in the field were discussed. The result of simulation experiments showed that the filed detective system established was suited for detection of aluminium alloy atmospheric corrosion; the data collected were able to reflect the influence that transformation of surface thin liquid film on aluminium alloy corrosion.
     The field detective system was used to study the corrosion behaviors of aluminium alloy (LY12CZ and LC4CS) in simulated paralic marine atmosphere and contaminative industrial atmosphere. The influence of Cl-、NO3- and SO42- ions in contaminative humid atmospheric environment on the corrosion behaviour of aluminium alloy were discussed. The results showed that NO3-and Cl- ions were the main factors to affect the corrosion type of aluminium alloy, the influences of the three anions in corrosion process of the aluminium alloys (LY12CZ and LC4CS) were complicated synergism, not simply superposed.
     Stress Corrosion Crack (SCC) is the most dangerous local corrosion type to high-strength aluminium alloy structure. EN technology was used to study the SCC generation and development of LY12CZ C-ring sample. EN potential spectrum characteristics were preliminary mastered. A quick corrosion sensitivity evaluation method was introduced.
     Aluminium alloys with surface treatment layer usually have good corrosion resistance in the active time, but corrosion still will occur in a proper condition and even more dangerous. Electrochemical Impedance Spectrum (EIS) technology was used to study the corrosion process of aluminium alloy with surface treatment layer. Some information about corrosion reaction occurred under the layer and the state of surface treatment layer were obtained from EIS. The result showed that the penetration of water and Cl- was the main factor to induce the pitting corrosion occurred under the surface treatment layer.
引文
[1] 林钢, 林慧国, 赵玉涛,铝合金应用手册,北京:机械工业出版社,2006,1~4,630
    [2] 张正, 宋诗哲, 墨淑芬,0.1 mol/L NaCl 溶液中不同剥蚀程度 LY12CZ 合金的EIS 特征,金属学报,2004, 40 (7):754~758
    [3] Guillaumin V, Mankowski G, Localized corrosion of 6056 T6 aluminium alloy in chloride media, Corrosion Science, 2000, 42 (1): 105~125
    [4] Blanc C, Lavelle B, Mankowski G, Susceptibility to pitting corrosion of pure aluminium, 2024 alloy and 6056 alloy in chloride-containing sulphate solutions, Materials Science Forum, 1996, 217-222 (3): 1559~1564
    [5] Rajasamkar J, Iyer, Nagesh R, A probability-based model for growth of corrosion pits in aluminium alloys, Engineering Fracture Mechanics, 2006, 73 (5): 553~570
    [6] Sankaran, Krishnan K, Perez R, et al, Pitting corrosion and fatigue behavior of aluminum alloy 7075-T6, Advanced Materials and Processes, 2000, 158 (2): 53~54
    [7] Ren Jianjun, Zuo Yu, Study of electrochemical behavior and morphology of pitting on anodized 2024 aluminum alloy, Surface & Coatings Technology, 2004, 182 (2-3): 237~241
    [8] Shao Minhua, Fu Yan, Hu Ronggang, et al, A study on pitting corrosion of aluminum alloy 2024 - T3 by scanning microreference electrode technique Materials Science and Engineering A, 2003, 344(1-2): 323~327
    [9] Buzza D W, Alkire R C, Growth of corrosion pits on pure aluminum in 1M NaCl, Journal of the Electrochemical Society, 1995,142 (4): 1104~1111
    [10] Maitra S, English G C, Mechanism of localized corrosion of 7075 alloy plate, Metallurgical Transactions A (Physical Metallurgy and Materials Science), 1981, 12A (3): 535~541
    [11] Buchheit R C, Moran J P, Stoner G E, Electrochemical behavior of the T1(Al2CuLi) intermetallic compound and its role in localized corrosion of Al-2% Li-3% Cu alloys, Corrosion, 1994, 50 (2): 120~130
    [12] Buchheit R G, Wall F D, Stoner G E, et al, Anodic dissolution-based mechanism for the rapid cracking, preexposure phenomenon demonstrated by aluminum-lithium-copper alloys, Corrosion, 1995, 51 (6): 417~428
    [13] Buchheit R G, Moran J P, Stoner G E, Localized corrosion behavior of alloy 2090-the role of microstructural heterogeneity, Corrosion, 1990, 46 (8): 610~617
    [14] Minoda T, Yoshida H, The effect of microstructure on intergranular corrosion resistance of 6061 alloy extrusion, Materials Science Forum, 2000, 331-337 (3): 1689~1694
    [15] Cabot P L, Centellas F, Carrido J A, et al, Influence of the heat treatment in the electrochemical corrosion of Al-Zn-Mg alloys, Journal of Applied Electrochemistry, 1992, 22 (6): 541~552
    [16] Ramgopal T, Gouma P I, Frankel G S, Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150, Corrosion, 2002, 58 (8): 687~697
    [17] Svenningsen G, Larsen M H, Walmsley J C, et al, Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content, Corrosion Science, 2006, 48 (6): 1528~1543
    [18] 张琦,李荻,丁学谊等,LC4 铝合金晶间腐蚀电化学机理, 材料保护,1996,29 (1):6~8
    [19] 李荻,张 琦,王弟珍等,LY12CZ 铝合金晶间腐蚀模拟试验研究, 北京航空航天大学报,1998,24 (1):1~4
    [20] 闰求根,何国斌,飞机结构的剥蚀及其修理,航天与航空,1991,(4):53~60
    [21] 李荻,左尚志,郭宝兰,LY12 铝合金剥蚀行为的研究,中国腐蚀与防护学报,1995,15(3):203~208
    [22] Liu T Y, Robinson J S, McCarthy M A, The influence of hot deformation on the exfoliation corrosion behaviour of aluminium alloy 2025, Journal of Materials Processing Technology, 2004, 153-154 (10): 185~192
    [23] McNaughtan D, Worsfold M, Robinson M J, Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminium alloys, Corrosion Science, 2003, 45 (10): 2377~2389
    [24] Petroyiannis P V, Kermanidis A T, Akid R, et al, Analysis of the effects of exfoliation corrosion on the fatigue behaviour of the 2024-T351 aluminium alloy using the fatigue damage map, International Journal of Fatigue, 2005, 27 (7): 817~827
    [25] Zhu Ziyong, Zhang Yun, Zhang Wanming, Intergranular corrosion and exfoliation corrosion behaviours of Al-Li alloys, Materials Science Forum, 2000, 331-337 (3): 1671~1676
    [26] Bellenger F, Mazille H, Idrissi H, Use of acoustic emission technique for the early detection of aluminum alloys exfoliation corrosion, NDT&E International, 2002, 35 (6): 385~392
    [27] Min Liao, Bellinger N C, Komorowski J P, Modeling the effects of prior exfoliation corrosion on fatigue life of aircraft wing skins, International Journal of Fatigue, 2003, 25 (9-11): 1059~1067
    [28] Campestrini P, Van Westing E P M, Van Rooijen H W, et al, Relation between microstructural aspects of AA2024 and its corrosion behaviour investigated using AFM scanning potential technique, Corrosion Science, 2000, 42 (11): 1853~1861
    [29] 左尚志,李荻,国内外铝合金剥蚀研究的现状,材料保护,1994,27(12):23~26
    [30] Yue T M, Dong C F, Yan L J, et al, The effect of laser surface treatment on stress corrosion cracking behaviour of 7075 aluminium alloy, Materials Letters, 2004, 58 (5): 630~635
    [31] Yue T M, Yan L J, Dong C F, et al, Stress corrosion cracking behaviour of laser treated aluminium alloy 7075 using a slow strain rate test, Materials Science and Technology, 2005, 21 (8): 961~966
    [32] Yue T M, Chan C P, Yan L J, et al, Effect of excimer laser surface melting on intergranular corrosion cracking of the aluminum-lithium alloy 8090, Journal of Laser Applications, 2004, 16 (1): 31~39
    [33] Chan C P, Yue T M, Man H C, The effect of excimer laser surface treatment on the pitting corrosion fatigue behaviour of aluminium alloy 7075, Journal of Materials Science, 2003, 38 (12): 2689~2702
    [34] Dietzel W, Pfuff M, Juilfs G G, Studies of SCC and hydrogen embrittlement of high strength alloys using fracture mechanics methods, Materials Science Forum, 2005, 482: 11~16
    [35] Srinivasan P B, Dietzel W, Zettler R, et al, Stress corrosion cracking susceptibility of friction stir welded AA7075-AA6056 dissimilar joint, Materials Science and Engineering A, 2005, 392 (1-2): 292~300
    [36] Srinivasan P B, Heitmann V, Dietzel W, Stress corrosion cracking behaviour of chromated AA2024 T351 alloy in chloride solution, Corrosion Engineering, Science and Technology, 2004, 39 (2): 174~176
    [37] Song R G, Dietzel W, Zhang B J, et al, Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy, Acta Materialia, 2004, 52 (16): 4727~4743
    [38] Srinivasan P B, Dietzel W, Zettler R, et al, Stress cracking behaviour of dissimilar friction stir weldment in chloride solution: dissolution assisted or hydrogen induced? Corrosion Engineering, Science and Technology, 2006, 41 (1): 45~50
    [39] Dietzel W, Mueller-Roos J, Experience with rising load/rising displacement stress corrosion cracking testing, Materials Science, 2001, 37 (2): 264~271
    [40] Ashour E A, Effect of sulfide on the stress corrosion behaviour of a copper-aluminium alloy in saline water, Journal of Materials Science, 2001, 36 (1): 201~205
    [41] Bobby Kannan M, Raja V S, Raman R, et al, Influence of multistep aging on the stress corrosion cracking behavior of aluminum alloy 7010, Corrosion, 2003, 59 (10): 881~889
    [42] Bobby Kannan M, Raja V S, Mukhopadhyay A K, Determination of true stress corrosion cracking susceptibility index of a high strength Al alloy using glycerin as the non-corrosive atmosphere, Scripta Materialia, 2004, 51 (11): 1075~1079
    [43] Winkler S L, Flower H M, Stress corrosion cracking of cast 7XXX aluminium fibre reinforced composites, Corrosion Science, 2004, 46 (4): 903~915
    [44] 郑强,陈康华,张茁等,高温预析出对 7XXX 系列铝合金力学性能和应力腐蚀性能的影响,金属热处理,2004,29 (11):23~27
    [45] 刘继华,李荻,刘培英等,7075 铝合金的力学与电化学交互作用,材料工程,2005,(2):30~33
    [46] 陈康华,黄兰萍,郑强等,高温预析出对 7A52 合金应力腐蚀性能的影响,中国有色金属学报,2005,15 (3):441~445
    [47] Ferrer C P, Koul M G, Connolly B J, et al, Improvements in strength and stress corrosion cracking properties in aluminum alloy 7075 via low-temperature retrogression and re-aging heat treatments, Corrosion, 2003, 59 (6): 520~528
    [48] Deshais G, Newcomb S B, Influence of microstructure on the formation of stress corrosion cracks in 7XXX series aluminium alloys, Materials Science Forum, 2000, 331 (3): 1635~1640
    [49] 王月,吴庭翱,含钪 Al-Mg 合金的抗应力腐蚀和剥落腐蚀性能研究,中国腐蚀与防护学报,2005,25 (4):218~221
    [50] Liu X, Frankel G S, Zoofan B, et al, In situ X-ray radiographic study of stress corrosion cracking in AA2024-T3, Corrosion, 2006, 62 (3): 217~230
    [51] 陆峰,张晓云,汤智慧等,复合材料对 LY12CZ 铝合金 C 环应力腐蚀性能的影响,材料工程,2003,(7):3~6
    [52] Sun Y, Thermally oxidised titanium coating on aluminium alloy for enhanced corrosion resistance, Materials Letters, 2004, 58 (21): 2635~2639
    [53] Dabala M, Ramous E, Magrini M, Corrosion resistance of cerium-based chemical conversion coatings on AA5083 aluminium alloy, Materials and Corrosion, 2004,55 (5): 381~386
    [54] Srinivasa Rao K, Sreedhar N, Madhusudana Rao B, et al, Evaluation of corrosion resistance of organic coatings on aluminium alloy AA2024 for aerospace applications, Transactions of the Indian Institute of Metals, 2003, 56 (6): 607~614
    [55] Castro M R S, Nogueira J C, Thim G P, et al, Adhesion and corrosion studies of a lithium based conversion coating film on the 2024 aluminum alloy, Thin Solid Films, 2004, 457 (2): 307~312
    [56] George R, Venkatachalam S, Ninan K N, Electrochemical impedance measurements on Ni-P coated magnesium alloy, chromated magnesium alloy, and anodised aluminium alloys in aqueous salt solutions, British Corrosion Journal, 2002, 37 (1): 37~42
    [57] Oosterbroek M, Lammers R J, Van L G J, et al, Crack formation and stress development in an organic coating, Journal of Coatings Technology, 1991, 63 (797): 55~60
    [58] 张金涛,胡吉明,张鉴清等,LY12 铝合金/钝化膜/环氧涂层复合电极的腐蚀电化学行为,金属学报,2006, 42 (5):528~532
    [59] Sinko J, Challenges of chromate inhibitor pigments replacement in organic coatings, Progress in Organic Coatings, 2001, 42 (3-4): 267~282
    [60] Campestrini P, Van Wseting E P M, De Wit J H W, Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy - Part I: Nucleation and growth, Electrochimica Acta, 2001, 46 (16): 2553~2571
    [61] Campestrini P, Van Wseting E P M, De Wit J H W, Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy - Part II: EIS investigation, Electrochimica Acta, 2001, 46 (17): 2631~2647
    [62] Armstrong R D, Jenkins A T A, Johnson B W, Investigation into the UV breakdown of thermoset polyester coatings using impedance spectroscopy, Corrosion Science, 1995, 37 (10): 1615~1625
    [63] Morcillo M, Simancas J, Fierro J L G, et al, Accelerated degradation of a chlorinated rubber paint system applied over rusted steel, Progress in Organic Coatings, 1993, 21 (4): 315~325
    [64] Morcillo M, Rodriguez F J, Bastidas J M, Influence of chlorides, sulphates and nitrates at the coating-steel interface on underfilm corrosion, Progress in Organic Coatings, 1997, 31 (3): 245~253
    [65] Bastidas J M, Morcillo M, Rodriguez F J, Mild steel corrosion in saline solutions. Comparison between bulk solutions and steel-coating interfacial solutions, Journal of Coatings Technology, 1998, 70 (882): 61~66
    [66] Morcillo Manuel, Atmospheric corrosion in Ibero-America: the MICAT project, ASTM Special Technical Publication, 1995, 1239: 257~275
    [67] 王光雍,王海江,李兴濂,自然环境的腐蚀与防护 大气·海水·土壤,北京:化学工业出版社,1997,14~15
    [68] 徐乃欣,赵灵源,丁翠红等,研究大气腐蚀金属表面结露行为的新技术,中国腐蚀与防护学报,2001,21 (5):301~305
    [69] 安百刚,张学元,宋诗哲等,LYl2 铝合金在模拟酸雨溶液中的阻抗谱研究,中国腐蚀与防护学报,2003,23 (3):167~170
    [70] An Baigang, Zhang Xueyuan, Song Shizhe, et al, Corrosion behavior of LY12CZ aluminum alloy in simulated acid rain solution, Transactions of the Nonferrous Metals Society of China, 2003, 13 (1): 116~120
    [71] 萧以德,材料大气腐蚀数据汇编,国家自然科学基金重大项目“材料自然环境腐蚀” “九五” 研究工作总结资料 59899141-04,2002, 48
    [72] Klassen R D, Roberge P R, Aerosol transport modeling as an aid to understanding atmospheric corrosivity patterns, Materials and Design, 1999, 20: 159~168
    [73] Plama E, Puente J M, Morcillo M, The atmospheric corrosion mechanism of 55%Al-Zn coating on steel, Corrosion Science, 1998, 40: 61~68
    [74] Gonzalez J A, Morcillo M, Escudero E, et al, Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions. Part I: Visual observations and gravimetric results, Surface and Coatings Technology, 2002, 153 (2-3): 225~234
    [75] Lopez V, Gonzalez J A, Otero E, Atmospheric corrosion of bare and anodised aluminium in a wide range of environmental conditions. Part II: Electrochemical responses, Surface and Coatings Technology, 2002, 153 (2-3): 235~244
    [76] Vera R D D, Blanca M, Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part I. Aluminium and AA6201 alloy, Corrosion Science, 2006, 48 (10): 2882~2900
    [77] Morcillo M, Simancas J, Corvo F, et al, Behaviour of painted aluminium in Ibero-American atmospheres, Revista de Metalurgia (Madrid), 2003, SPEC: 151~156
    [78] 王振尧,于国才,韩薇,3 种有色金属在沈阳地区的大气腐蚀规律,中国有色金属学报,2003,13 (2):367~372
    [79] 王云,甘株,2024 铝合金型材不同气候区的大气腐蚀行为,腐蚀科学与防护技术,1993,5 (4):304~308
    [80] Mansfield F, Kenkel J V, Electrochemical monitoring of atmospheric corrosion 109phenomen, Corrosion Science, 1976, 16: 111~124
    [81] Shinohara T, Motada S O, Wataru, Evaluation of corrosivity in atmospheric environment by ACM (Atmospheric Corrosion Monitor) type corrosion sensor, Materials Science Forum, 2005, 475-479 (I, PRICM 5: The Fifth Pacific Rim International Conference on Advanced Materials and Processing): 61~64
    [82] Walter G W, Laboratory simulation of atmospheric corrosion by SO2 I Apparatus, electrochemical techniques, example results, Corrosion Science, 1991, 32 (12): 1331~1352
    [83] Walter G W, Laboratory simulation of atmospheric corrosion by SO2. II. Electrochemical mass loss comparisons, Corrosion Science, 1991, 32 (12): 1353~1376
    [84] 高耕宇,黄春晓,孙成,酸雨对大气腐蚀临界相对湿度的影响,中国腐蚀与防护学报,1990,10 (2):183~186
    [85] Wang Fengping, Zhang Xueyuan, Du Yuanlong, Effect of CO2 on atmospheric corrosion of UNS G10190 steel under thin electrolyte film, Chemical Research in Chinese Universities, 2000, 16 (1): 36~41
    [86] Paul Jaeger Conditions Inc, A novel corrometer sensor for monitoring and identifying atmospheric corrosion of electronics and critical components that can aid in optimizing military periodic maintenance, readiness and the reliability of such equipment, NACE, corrosion 2002, 02167
    [87] Yamamoto M, Katayama H, Kodama T, Atmospheric corrosion monitoring sensor in outdoor environment using AC impedance technique, ASTM Special Technical Publication, Philadelphia, PA, USA: Publ by ASTM, 2002: 171~181
    [88] Cox A, Lyon S B, Electrochemical study of the atmospheric corrosion of mild steel- Ⅰ experimental, Corrosion Science, 1994, 36 (7): 1167~1176
    [89] Cox A, Lyon S B, Electrochemical study of the atmospheric corrosion of iron-II cathodic and anodic processes on uncorroded and pre-corroded, Corrosion Science, 1994, 36 (7): 1177~1192
    [90] Cox A, Lyon S B, Electrochemical study of the atmospheric corrosion of mild steel-III the effect of sulphur dioxide, Corrosion Science, 1994, 36 (7): 1193~1199
    [91] Fiaud C, Keddam M, Kadri A, Electrochemical impedance in a thin surface electrolyte layer influence of the potential probe location, Electrochimica Acta, 1987, 32 (3): 445~448
    [92] 张学元,柯克,杜元龙,金属在薄层液膜下电化学腐蚀电池的设计,中国腐蚀与防护学报,2001,21 (2):117~122 110
    [93] Jonsson M, Thierry D, LeBozec N, The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe, Corrosion Science, 2006, 48 (5): 1193~1208
    [94] 王佳,水流彻,使用 Kelvin 探头参比电极技术进行薄液层下电化学测量,中国腐蚀与防护学报,1995,15 (3):173~179
    [95] 王佳,水流彻,使用 Kelvin 探头参比电极技术研究液层厚度对氧还原速度的影响,中国腐蚀与防护学报,1995,15 (3):180~188
    [96] 邹锋,韩薇,线性回归法进行 Kelvin 电位测试,腐蚀科学与防护技术,1995,7 (1):17~22
    [97] 邹锋,韩薇,利用 Kelvin 探针进行金属薄液层下电化学测量,腐蚀科学与防护技术,1995,7 (3):192~195
    [98] Zakipour S, Tidblad J , Leygraf C, Atmospheric corrosion effects of SO2 NO2 and O3, Journal of the Electrochemical Society, 1997, 144 (10): 3513~3517
    [99] Sharma S P, Reaction of copper and copper oxide with H2S, Journal of the Electrochemical Society, 1980, 127 (1): 21~26
    [100] 严川伟,高天柱,林海潮,NaCl对锌在含SO2环境条件中大气腐蚀影响研究,金属学报,2000,36 (3):272~274
    [101] Zakipour S, Leygraf C, Quartz crystal microbalance applied to studies of atmospheric corrosion of metals, British Corrosion Journal, 1992, 27 (4): 295~298
    [102] Forslund M, Leygraf C, In-situ weight gain rates on copper during outdoor exposures, Journal of the Electrochemical Society, 1997, 144 (1): 113~120
    [103] Schubert R, Neuburger G G, Rapid determination of corrosion chamber uniformity, Journal of the Electrochemical Society, 1990, 137 (4): 1048~1051
    [104] Johansson E, Leygraf C, Rendahl B, Characerisation of corrosivity in indoor atmospheres with different metals and evaluation techniques, British Corrosion Journal, 1998, 33 (1): 59~66
    [105] Aastrup T, Leygraf C, Simultaneous infrared reflection absorption spectroscopy and QCM measurements for in-situ studies of the metal/atmosphere interface, Journal of the Electrochemical Society, 1997, 144 (9): 2986~2990
    [106] Yan C W, He Y F, Lin H C, Laboratory study of atmospheric corrosion of copper at initial stage in air containing sulfur dioxide, The Chinese J. Nonferrous Metals, 2000, 10 (5): 645~648
    [107] 宋诗哲,腐蚀电化学研究方法,北京:化学工业出版社,1988,154
    [108] 曹楚南,张鉴清,电化学阻抗谱导论,北京:科学出版社,2002,iii
    [109] Shi Y Y, Zhang Z, Su J X, et al, EIS study on 2024-T3 aluminum alloy corrosion in simulated acid rain under cyclic wet-dry conditions, Materials and Corrosion, 2005, 56 (10): 701~706
    [110] Zheludkevich M L, Yasakau K A, Poznyak S K, et al, Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy, Corrosion Science, 2005, 47 (12): 3368~3383.
    [111] Moutarlier V, Gigandet M P, Normand B, et al, EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species, Corrosion Science, 2005, 47 (4): 937~951
    [112] Ablle A, Bethencourt M, Botana F J, et al, Using EIS to study the electrochemical response of alloy AA5083 in solutions of NaCl, Materials and Corrosion, 2001, 52 (3): 185~192
    [113] Domingues L, Oliveira C, Fernandes J C S, et al, EIS on plasma-polymerised coatings used as pre-treatment for aluminium alloys, Electrochimica Acta, 2002, 47 (13-14): 2253~2258
    [114] El-Mahdy G A, Nishikata A, Tsuru T, AC impedance study on corrosion of 55% Al-Zn alloy-coated steel under thin electrolyte layers, Corrosion Science, 2000, 42 (9): 1509~1521
    [115] 胡艳玲,李荻,用时域法 EIS 技术研究 LY12CZ 铝合金的局部腐蚀,北京航空航天大学学报,2001, 27 (1):5~8
    [116] 胡艳玲,李荻,用时域法 EIS 评估 LY12CZ 铝合金的膜下腐蚀,中国腐蚀与防护学报,2002,22 (1): 8~13
    [117] 胡建平,刘建华,张栋,飞机铝合金锌黄环氧酯底漆的电化学阻抗研究,材料工程,2002,(6):18~20
    [118] 胡吉明,张鉴清,谢德明等,环氧树脂涂覆 LY12 铝合金在 NaCl 溶液中的阻抗模型,物理化学学报,2003,19 (2):144~149
    [119] 宋诗哲,唐子龙,Al-Mg 合金在不同 pH 值的 NaCI 溶液中的腐蚀行为,腐蚀科学与防护技术,1995, 7 (3):218~229
    [120] 宋诗哲,唐子龙,工业纯铝在 3.5%NaCl 溶液中的电化学阻抗谱分析,中国腐蚀与防护学报,1996,16 (2):127~132
    [121] 郝小军,宋诗哲,铝锌合金在 3%NaCl 溶液中的电化学行为,中国腐蚀与防护学报,2005,25 (4):213~217
    [122] Bertocci U, Huet F, Noise analysis applied to electrochemical systems, Corrosion, 1995, 51 (2): 131~144
    [123] Danielson M, Modeling of certain electrode parameters on the electrochemicalnoise response, Corrosion, 1997, 53 (10): 770~777
    [124] Gabrielli C, Keddam M, Review of applications of impedance and noise analysis to uniform and localized corrosion, Corrosion, 1992, 48 (10): 794~811
    [125] Cottis R A, Loto C A, Electrochemical noise generation during SCC of a high-strength carbon steel, Corrosion, 1990, 46 (1): 12~19
    [126] 张鉴清,张昭,王建明等,电化学噪声的分析与应用Ⅰ-电化学噪声的分析原理,中国腐蚀与防护学报,2001, 21 (5):310~320
    [127] 张鉴清,张昭,王建明等,电化学噪声的分析与应用Ⅱ-电化学噪声的应用,中国腐蚀与防护学报,2002, 22 (4):241~248
    [128] Mansfeld F, Xiao H, Electrochemical Noise Measurements for Corrosion Applications, ASTM STP, 1996, 1277: 59
    [129] Bertocci U, Gabrielli C, Huet F, et al, Noise resistance applied to corrosion measurements. II. Experimental tests, Journal of the Electrochemical Society, 1997, 144 (1): 37~43
    [130] Bertocci U, Huet F, Nogueira R P, Use of multiple reference electrodes in electrochemical noise measurements, Corrosion, 2003, 59 (7): 629~634
    [131] Bertocci U, Huet F, Noise analysis applied to electrochemical systems, Corrosion, 1995, 51 (2): 131~144
    [132] Bertocci U, Huet F, Jaoul B, et al, Frequency analysis of transients in electrochemical noise: mathematical relationships and computer simulations, Corrosion, 2000, 56 (7): 675~683
    [133] Bertocci U, Huet F, Nogueira R P, Drift removal procedures in the analysis of electrochemical noise, Corrosion, 2002, 58 (4): 337~347
    [134] Gusmano G, Montesperelli G, Pacetti S, et al, Electrochemical noise resistance as a tool for corrosion rate prediction, Corrosion, 1997, 53 (11): 860~888
    [135] Aballe A, Bethencourt M, Marcos M, et al, Electrochemical noise applied to the study of the inhibition effect of CeCl3 on the corrosion behaviour of Al-Mg alloy AA5083 in seawater, Electrochimica Acta, 2002, 47 (9): 1415~1422
    [136] Aballe A, Bethencourt M, Botana F J, et al, Use of wavelets to study electrochemical noise transients, Electrochimica Acta, 2001, 46 (15): 2353~2361
    [137] Aballe A, Bethencourt M, Botana F J, et al, Using wavelets transform in the analysis of electrochemical noise data, Electrochimica Acta, 1999, 44 (26): 4805~4816
    [138] Aballe A, Huet F, Noise resistance applied to corrosion measurements: VI. Partition of the current fluctuations between the electrodes, Journal of the Electrochemical Society, 2002, 149 (3): B89~96
    [139] Aballe A , Bautista A, Bertocci U, et al, Measurement of the noise resistance for corrosion applications, Corrosion, 2001, 57 (1): 35~42
    [140] Lu Yuzuo, Song Shizhe, Yin Lihui, Corrosion electrochemical behavior of brass tubes in circulating cooling seawater, Transactions of the Nonferrous Metals Society of China, 2005, 15 (3): 619~625
    [141] Liu X F, Wang H G, Huang S J, et al, Analysis of electrochemical noise with wavelet transform, Corrosion,2001, 57 (10): 843~852
    [142] 乔利杰,高克玮,数学统计方法在应力腐蚀噪声中的应用,中国腐蚀与防护学报,1998,18 (4):263~268
    [143] 程英亮,张鉴清,张昭等,NaCl 溶液中 LC4,LY12 及纯铝腐蚀过程的电化学噪声特征,金属学报,2002,38 (1):74~78
    [144] 马艳华,周月红,铝合金试件裂纹深度渗透检测试验研究,无损检测,2002, 24 (12):532~533
    [145] 张小海,渗透检测中渗透深度与其它参数动态关系的理论研究,南昌航空工业学院学报,2000,14 (2):35~36
    [146] Smith R A, The potential for friction stir weld inspection using transient eddy currents, Insight-Non-Destructive Testing and Condition Monitoring, 2005, 47 (3): 133~143
    [147] Papakyriacou M, Mayer H, Fuchs U, et al, Influence of atmospheric moisture on slow fatigue crack growth at ultrasonic frequency in aluminium and magnesium alloys, Fatigue and Fracture of Engineering Materials and Structures, 2002, 25 (8-9): 795~804
    [148] Song Wenai, Lin Min, A Automatic Image Segmentation Method for Grey-Level Picture Using Thresholding of the Histogram in Computer Aided Reading Radiograph System, Proceedings of the International Symposium on Test and Measurement, 2003, 3: 2115~2118
    [149] 宋诗哲,陶蕾,王守琰等,LC4CS 铝合金模拟加速腐蚀试样的图像分析,金属学报,2006,42 (4):426~430
    [150] 宋诗哲,王守琰等,图像识别技术研究有色金属大气腐蚀早期行为,金属学报,2002,38 (8):893~896
    [151] Bertocci U, Huet F, Nogueira R, et al, Drift removal procedures for PSD calculation, NACE 2001, paper No. 01291
    [152] Mansfeld F, Sun Z, Hsu C H, et al, Concerning trend removal in electrochemical noise measurements, Corrosion Science, 2001, 43 (2): 341~352
    [153] Lee CC, Mansfeld F, Analysis of electrochemical noise data for a passive systemin the frequency domain, Corrosion Science,1998, 40 (6): 959~962
    [154] Uruchurtu J C, Dawson J L, Noise analysis of pure aluminum under different pitting conditions, Corrosion, 1987, 43: 19~25
    [155] Cheng Y F, Luo J L, Metastable pitting of carbon steel under potentiostatic control, Journal of the Electrochemical Society, 1999, 146 (3): 970~976
    [156] Chung S C, Lin A S, Chang J R, et al, EXAFS study of atmospheric corrosion products on zinc at the initial stage, Corrosion Science, 2000, 42: 1599~1610
    [157] Zhang S H, Lyon S B, Anodic processes on iron covered by thin, dilute electrolyte layers (I) anodic polarisation, Corrosion Science, 1994, 36( 8): 1289~1307
    [158] 徐乃新,张承典,丁翠红,加速大气腐蚀试验的一个新方案,中国腐蚀与防护学报,1990,10 (3):228~232
    [159] 甘株,王云,微观结构对 LY12 铝合金剥蚀的影响,腐蚀科学与防护技术,1995,7(3):208~209
    [160] 田荣璋,王祝堂,铝合金及其加工手册,长沙:中南大学出版社,2000,453
    [161] Van Nieuwenhove R, Bosch R W, Acoustic emission detection during stress corrosion cracking at elevated pressure and temperature, Journal of Acoustic Emission, 2000, 18: 293~298
    [162] Benzaid A, Huet F, Jerome M, et al, Electrochemical noise analysis of cathodically polarised AISI 4140 steel. III. Influence of hydrogen absorption for stressed electrodes, Electrochimica Acta, 2002, 47 (27): 4333~4338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700