电沉积法制备镍基二氧化铈复合催化析氢电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢气是一种重要的化工原料,而氢能更是作为新型的绿色能源受到了越来越多的关注。电解制氢的方式历史悠久,由于其无污染可再生的技术特点,近些年再次成为研究的热点,在电解制氢过程中阴极析氢材料扮演着重要的角色,设计和制备新型的阴极电解制氢电极能够降低电解制氢的析氢过电位,节约生产成本。本文采用了适用于大规模生产的电化学复合共沉积的方法,制备了新型的镍基CeO_2复合材料,制备过程采用了不同粒径的CeO_2复合颗粒,使用了扫描电子显微镜(SEM)、X射线衍射分析(XRD)、热重-差热分析(TG-DSC)、X射线光电子能谱分析(XPS)等手段对制备的复合电极材料进行了表征,并通过线性扫描、Tafel曲线分析、电化学阻抗谱分析等电化学分析手段对复合电极材料的电化学析氢活性和耐腐蚀性能等进行了研究,发现并考察了析氢过程中CeO_2与Ni及其合金之间的析氢协同效应。
     首先对电化学方法制备的Ni/CeO_2复合镀层进行了研究,其中CeO_2复合颗粒粒径分为微米级(5-10μm)和纳米级(10-30nm)。研究发现,Ni/CeO_2复合镀层的热稳定性良好,两种不同粒径CeO_2复合进入镍层后都提高了镍层的硬度和表面粗糙度,起到了细化Ni电结晶的作用,并且改变了Ni镀层的择优取向;微米CeO_2加入抑制了Ni沉积,而纳米CeO_2则降低了Ni沉积的极化;Ni/CeO_2复合镀层表现出良好的催化析氢活性,CeO_2的加入大幅度降低了镍表面析氢反应的电荷传递阻抗,提高了镍表面析氢反应的交换电流密度。当微米CeO_2浓度为15g/L时,得到的复合镀层的析氢交换电流密度为Ni层的70倍,将Ni表面析氢反应的整体阻抗值降低了30余倍;Ni/CeO_2复合镀层的析氢稳定性良好。研究结果认为复合镀层优异的析氢性能归因于CeO_2颗粒与Ni基体间形成了析氢协同效应,还原氢原子可以与具有空的d轨道和f轨道的二氧化铈更好地形成吸附氢原子。对Ni/CeO_2复合材料的耐蚀性研究表明,低复合量CeO_2复合镀层的耐蚀性较高。
     利用合金电沉积方法制备了Ni基合金/CeO_2复合材料,并对其析氢催化性能进行了研究。对Ni-S/CeO_2合金复合镀层的研究中发现,不同粒径CeO_2颗粒的复合可以提高Ni-S合金层中硫的含量,Ni-S/CeO_2合金复合镀层的析氢性能要优于Ni-S合金镀层,当微米CeO_2加入量为10g/L时,合金复合镀层的交换电流密度为Ni-S镀层的2.2倍,认为Ni-S/CeO_2复合镀层的析氢性能受复合镀层中硫含量和CeO_2与合金层间的协同效应共同影响。对Ni-Zn/CeO_2合金复合镀层的研究中发现,合金电沉积制备的Ni-Zn合金镀层由多种金属间化合物组成,Ni-Zn合金层本身具有较高的催化析氢活性,控制加入CeO_2的量可以进一步提高其的析氢活性,CeO_2的加入可以明显改变Ni-Zn合金层的微观结构和元素组成,通过研究加入CeO_2对合金电沉积中间产物的影响,结合Ni-Zn异常共沉积机理,解释了不同Ni-Zn/CeO_2复合镀层合金组分变化的原因。同时发现少量加入CeO_2颗粒可以提高Ni-Zn合金层的耐腐蚀性能。
     对Ni/CeO_2复合镀层的析氢动力学过程参数进行了计算,结果发现不同粒径的CeO_2的加入提高了镀层的比表面积,CeO_2的加入降低了Ni表面析氢反应的活化能,其中当微米CeO_2加入量为15g/L时,得到的Ni/CeO_2复合镀层的析氢反应活化能仅为20.69kJ mol-1,远低于Ni表面析氢反应的活化能;通过计算得到了Ni和不同Ni/CeO_2复合镀层表面析氢反应速率常数,并且得到了不同过电位下电极表面的吸附氢覆盖度,发现CeO_2的加入有利于还原氢原子的吸附,提高了稳态时Ni层表面的吸附氢原子的覆盖度,进一步验证了CeO_2与Ni层间的析氢协同效应。
Hydrogen was mainly used as an important chemical raw material, and thehydrogen energy has received more and more attention as new green energycandidate. The method to get hydrogen by electrolysis was historic. Many studieswere focused on this electrolysis method recently, because of its clean andsustainable characteristics. Cathodic hydrogen evolution reaction (HER) materialsplayed an important role in this process. It was possible to improve the energyconversion efficiency and reduce cost by designing and preparing new cathodicHER electrodes. In this thesis, the electrochemical co-deposition method suitable toindustry application was employed; the new Ni-based CeO_2composite electrodematerials were prepared; the different sized CeO_2particles were used in theco-deposition process. The scanning electron microscopy (SEM), X-ray diffraction(XRD), thermo gravimetric and differential scanning calorimetry (TG-DSC) andX-rays photoelectron spectroscopy (XPS) were used to characterize the compositeelectrodes, the HER catalysis activity and corrosion resistance of the compositeelectrodes were studied by electrochemical analysis method, such as linearpolarization, Tafel curve analysis, and electrochemical impedance spectroscopy(EIS). It was focused on the HER synergetic effects between CeO_2particles and theNi matrix.
     Firstly, Ni/CeO_2composite coatings were prepared by electrochemicaldeposition, using the micro-CeO_2(5-10μm) and nano-CeO_2(10-30nm) particles.The results showed the Ni/CeO_2composite coatings had a good thermal stability.The different sized co-deposited CeO_2particles can improve the hardness and thesurface roughness of the nickel coating, make the fining effect on the Nielectrocrystallization, and change the preferred orientation of the nickel coating. Themicro-CeO_2particles inhibited the nickel deposition, but the nano-CeO_2decreasedthe Ni polarization. A good HER catalysis activity can be observed on the Ni/CeO_2composite electrodes, i.e. the HER charge-transfer resistance on the Ni surfacedecreased and the HER exchange current density increased obviously with the CeO_2particles addition. When the micro-CeO_2concentration was15g/L, the HERexchange current density on the Ni/CeO_2composite was70times higher than thaton the Ni coating, meanwhile, the HER total resistance on the composite coatingwas30times lower than that on the nickel coating. And the composite electrodescan keep a good stability during the HER process. The good HER activity oncomposite coating can be attributed to the synergetic effects between CeO_2particles and the Ni matrix. The H atom reduced on the nickel surface can be adsorbed on theCeO_2particles which have empty d and f orbits. The result showed the low-contentCeO_2composite coating had a better corrosion resistance.
     And then, Ni-based alloy CeO_2composite coatings were prepared by alloydeposition method. HER activities on the alloy composite coatings were studied.During Ni-S/CeO_2composite coatings investigation, it was found that the additionof different sized CeO_2particles increased the sulfur content in the Ni-S alloycoatings. The HER activity on the Ni-S/CeO_2composite coatings was higher thanthat on the Ni-S alloy coating. When the micro-CeO_2concentration was10g/L, theHER exchange current density on the Ni-S/CeO_2composite was2.2times higherthan that on the Ni-S coating. It was considered the HER activity on the Ni-S/CeO_2composite coatings were affected by the sulfur content in the Ni-S alloy coating, thesynergetic effects between CeO_2particles, and the Ni-S alloy coating. DuringNi-Zn/CeO_2composite coating investigation, it was worth noting that the Ni-Znalloy was consisted by some intermetallic compound. The Ni-Zn alloy coatingshowed an instinctive high HER activity. However, the HER activity can be furtherimproved with a proper CeO_2content embedded. The addition of the CeO_2particlescan change the microstructure and element composition of the Ni-Zn alloy coating.According to the Ni-Zn anomalous co-deposition mechanism and the CeO_2influence on the intermediate in the Ni-Zn co-deposition, the alloy elementcomposition of the Ni-Zn/CeO_2composite coatings was explained. Meanwhile, thecorrosion resistance of the Ni-Zn alloy coating can be improved with a lower CeO_2particles content.
     At last, the parameters of HER kinetics on the Ni/CeO_2composite coatingswere calculated. The results showed different sized CeO_2particles addition canincrease the specific surface area of the Ni coatings, and decrease the HERactivation energy on the Ni surface. When the micro-CeO_2concentration was15g/L,the HER activation energy on the Ni/CeO_2composite coating surface was only20.69kJ mol-1, much lower than that on the Ni surface. The HER rate constants onthe Ni and Ni/CeO_2surface were calculated, and then the adsorbed hydrogen atomscoverage was obtained at different overpotential. It was found that the addition ofthe CeO_2particles can accelerate the adsorption of the reduced hydrogen atoms,increase the value of adsorbed hydrogen atoms coverage as the hydrogen evolutionwas stable. It further confirmed the synergetic effects between CeO_2particles andthe Ni matrix.
引文
[1] Winsche W E, Hoffman K C, Salzano F J. Hydrogen: Its Future Role in theNation's Energy Economy [J]. Science,1973,180(4093):1325-1332.
    [2] Lubitz W, Tumas W. Hydrogen: An Overview [J]. Chemical Reviews,2007,107(10):3900-3903.
    [3] Korotcenkov G, Han S D, Stetter J R. Review of Electrochemical HydrogenSensors [J]. Chem Rev,2009,109(3):1402-1433.
    [4]材料科学技术百科全书编辑委.材料科学技术百科全书[M].北京:中国大百科全书出版社,1995:326-327.
    [5]王震鸣.复合材料力学和复合材料结构力学[M].北京:机械工业出版社,1991:11.
    [6]杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12.
    [7]吴人洁.复合材料[M].天津:天津大学出版社,2000:2-3.
    [8] Domínguez-Crespo M A, Torres-Huerta A M, Brachetti-Sibaja B, et al.Electrochemical Performance of Ni-Re (Re=Rare Earth) as ElectrodeMaterial for Hydrogen Evolution Reaction in Alkaline Medium [J].International Journal of Hydrogen Energy,2011,36(1):135-151.
    [9] Liu B, He J B, Chen Y J, et al. Phytic Acid-Coated Titanium as Electrocatalystof Hydrogen Evolution Reaction in Alkaline Electrolyte [J]. InternationalJournal of Hydrogen Energy,2013,38(8):3130-3136.
    [10] Wang K L, Zhang Q B, Sun M L, et al. Rare Earth Elements Modification ofLaser-Clad Nickel-Based Alloy Coatings [J]. Applied Surface Science,2001,174(3-4):191-200.
    [11]王昆林,张庆波,魏兴国,朱允明. La2O3对Ni基合金激光熔覆层组织和耐磨性的影响[J].清华大学学报(自然科学版),1999,8:6-9.
    [12] Tao Z, Xun C, Shunxing W, et al. Effect of CeO2on Microstructure andCorrosive Wear Behavior of Laser-Cladded Ni/Wc Coating [J]. Thin SolidFilms,2000,379(1-2):128-132.
    [13]沈品华.现代电镀手册上册[M].北京:机械工业出版社,2010:第八章,3-7.
    [14] Irissou E, Blouin M, Roué L, et al. Plasma-Sprayed NanocrystallineTi-Ru-Fe-O Coatings for the Electrocatalysis of Hydrogen Evolution Reaction[J]. Journal of Alloys and Compounds,2002,345(1-2):228-237.
    [15] Seo Y-S, Jung Y-S, Yoon W-L, et al. The Effect of Ni Content on a HighlyActive Ni-Al2O3Catalyst Prepared by the Homogeneous Precipitation Method[J]. International Journal of Hydrogen Energy,2011,36(1):94-102.
    [16] Shumin H, Zhong Z, Yuan L, et al. The Effect of Vacuum Evaporation Platingon Phase Structure and Electrochemical Properties of AB5-5mass%LaMg3Composite Alloy [J]. Electrochimica Acta,2005,50(28):5491-5495.
    [17] Rosalbino F, Delsante S, Borzone G, et al. Correlation of Microstructure andCatalytic Activity of Crystalline Ni-Co-Y Alloy Electrode for the HydrogenEvolution Reaction in Alkaline Solution [J]. Journal of Alloys andCompounds,2007,429(1-2):270-275.
    [18] Rosalbino F, Macciò D, Angelini E, et al. Electrocatalytic Properties of Fe-R(R=Rare Earth Metal) Crystalline Alloys as Hydrogen Electrodes in AlkalineWater Electrolysis [J]. Journal of Alloys and Compounds,2005,403(1-2):275-282.
    [19]郭鹤桐,张三元.复合电镀技术[M].北京:化学工业出版社,2007,4.
    [20] Carac G, Benea L, Iticescu C, et al. Codeposition of Cerium Oxide with Nickeland Cobalt: Correlation between Microstructure and Microhardness [J].Surface Engineering,2004,20(5):353-359.
    [21] Shawki S H, Z.Abdel H. Deposition of High Wear Resistance of Ni-CompositeCoatings [J]. Anti-Corrosion Methods and Materials,1997,44(3):178-185.
    [22] Grazen A E, Buffalo N Y. Method for Electroforming and Coating [P]. US:3061525,1962.
    [23] Plieth W.材料电化学(导读版)[M].北京:科学出版社,2008:371.
    [24] Gyawali G, Cho S, Lee S. Electrodeposition and Characterization of Ni-Tib2Composite Coatings [J]. Metals and Materials International,2013,19(1):113-118.
    [25] Neme P, Zaharescu M, Muresan L. Initial Corrosion Behavior of CompositeCoatings Obtained by Co-electrodeposition of Zinc with Nanoparticles of Tiand Ce Oxides [J]. Journal of Solid State Electrochemistry,2013,17(2):511-518.
    [26] Ramalingam S, Muralidharan V S, Subramania A. Electrodeposition andCharacterization of Cu-TiO2Nanocomposite Coatings [J]. Journal of SolidState Electrochemistry,2009,13(11):1777-1783.
    [27] Li J, Xiong D, Huang Z, et al. Effect of Ag and CeO2on Friction and WearProperties of Ni-Base Composite at High Temperature [J]. Wear,2009,267(1-4):576-584.
    [28] Hou K H, Hwu W H, Ke S T, et al. Ni-P-SiC Composite Produced by Pulseand Direct Current Plating [J]. Materials Chemistry and Physics,2006,100(1):54-59.
    [29] Chang L M, An M Z, Shi S Y. Microstructure and Characterization ofNi-Co/Al2O3Composite Coatings by Pulse Reversal Electrodeposit [J].Materials Chemistry and Physics,2006,100(2-3):395-399.
    [30] Hu F, Chan K C. Deposition Behaviour and Morphology of Ni-SiCElectro-composites under Triangular Waveform [J]. Applied Surface Science,2005,243(1-4):251-258.
    [31] Gül H, K l F, Aslan S, et al. Characteristics of Electro-co-deposited Ni-Al2O3Nano-Particle Reinforced Metal Matrix Composite (MMC) Coatings [J].Wear,2009,267(5-8):976-990.
    [32] Hou K H, Ger M D, Wang L M, et al. The Wear Behaviour ofElectro-codeposited Ni-SiC Composites [J]. Wear,2002,253(9-10):994-1003.
    [33] Sen R, Das S, Das K. Effect of Current Density on the Microstructure andHardness of Ni-CeO2Nanocomposite Coating Synthesized by PulseElectrodeposition Technique [J]. Journal of Nanoscience and Nanotechnology,2010,10(12):8217-8226.
    [34] Aruna S T, Bindu C N, Ezhil Selvi V, et al. Synthesis and Properties ofElectrodeposited Ni/Ceria Nanocomposite Coatings [J]. Surface and CoatingsTechnology,2006,200(24):6871-6880.
    [35] Orlovskaja L, Periene N, Kurtinaitiene M, et al. Ni-SiC Composite Platedunder a Modulated Current [J]. Surface and Coatings Technology,1999,111(2-3):234-239.
    [36] Bund A, Thiemig D. Influence of Bath Composition and pH on theElectrocodeposition of Alumina Nanoparticles and Nickel [J]. Surface andCoatings Technology,2007,201(16-17):7092-7099.
    [37] Szczygie B, Ko odziej M. Composite Ni/Al2O3Coatings and Their CorrosionResistance [J]. Electrochimica Acta,2005,50(20):4188-4195.
    [38] Kasturibai S, Kalaignan G P. Physical and Electrochemical Characterizationsof Ni-SiO2Nanocomposite Coatings [J]. Ionics,2012,1-8.
    [39] Benea L, Bonora P L, Borello A, et al. Preparation and Investigation ofNanostructured SiC-Nickel Layers by Electrodeposition [J]. Solid StateIonics,2002,151(1-4):89-95.
    [40] Watson S W. Electrochemical Study of SiC Particle Occlusion during NickelElectrodeposition [J]. Journal of the Electrochemical Society,1993,140(8):2235-2238.
    [41] Xu B S, Wang H D, Dong S Y, et al. Electrodepositing Nickel SilicaNano-Composites Coatings [J]. Electrochemistry Communications,2005,7(6):572-575.
    [42] Garcia I, Fransaer J, Celis J P. Electrodeposition and Sliding Wear Resistanceof Nickel Composite Coatings Containing Micron and Submicron SiCParticles [J]. Surface and Coatings Technology,2001,148(2-3):171-178.
    [43] Lee H K, Lee H Y, Jeon J M. Codeposition of Micro-and Nano-Sized SicParticles in the Nickel Matrix Composite Coatings Obtained by Electroplating[J]. Surface and Coatings Technology,2007,201(8):4711-4717.
    [44] Balaraju J N, Kalavati, Rajam K S. Influence of Particle Size on theMicrostructure, Hardness and Corrosion Resistance of Electroless Ni-P-Al2O3Composite Coatings [J]. Surface and Coatings Technology,2006,200(12-13):3933-3941.
    [45] Morks M F, Fahim N F, Francis A A, et al. Fabrication and Characterization ofElectro-Codeposited Ni/Zr-Silicate Composite Coating [J]. Surface andCoatings Technology,2006,201(1-2):282-286.
    [46] Lee D, Gan Y X, Chen X, et al. Influence of Ultrasonic Irradiation on theMicrostructure of Cu/Al2O3, CeO2Nanocomposite Thin Films DuringElectrocodeposition [J]. Materials Science and Engineering: A,2007,447(1-2):209-216.
    [47] Yao Y, Yao S, Zhang L, et al. Electrodeposition and Mechanical and CorrosionResistance Properties of Ni-W/SiC Nanocomposite Coatings [J]. MaterialsLetters,2007,61(1):67-70.
    [48] Ma H, Tian F, Li D, et al. Study on the Nano-Composite Electroless Coating ofNi-P/Ag [J]. Journal of Alloys and Compounds,2009,474(1-2):264-267.
    [49] Ma H, Liu Z, Tian F, et al. Study on the Nano-Composite Electroless Coatingof Ni-P/Au [J]. Journal of Alloys and Compounds,2008,450(1-2):348-351.
    [50] Cardinal M F, Castro P A, Baxi J, et al. Characterization and FrictionalBehavior of Nanostructured Ni-W-MoS2Composite Coatings [J]. Surface andCoatings Technology,2009,204(1-2):85-90.
    [51] Kim S K, Yoo H J. Formation of Bilayer Ni-SiC Composite Coatings byElectrodeposition [J]. Surface and Coatings Technology,1998,108-109:564-569.
    [52] McCormack A G, Pomeroy M J, Cunnane V J. Microstructural Developmentand Surface Characterization of Electrodeposited Nickel/Yttria CompositeCoatings [J]. Journal of the Electrochemical Society,2003,150(5):356.
    [53] Wang S C, Wei W J. Kinetics of Electroplating Process of Nano-Sized CeramicParticle/Ni Composite [J]. Materials Chemistry and Physics,2003,78(3):574-580.
    [54] Yang X Y, Li K J, Peng X, et al. Beneficial Effects of Co2+onCo-electrodeposited Ni-SiC Nanocomposite Coating [J]. Transactions ofNonferrous Metals Society of China,2009,19(1):119-124.
    [55] Kondo K, Ohgishi A, Tanaka Z. Electrodeposition of Zinc‐SiO2Composite [J].Journal of the Electrochemical Society,2000,147(7):2611-2613.
    [56] Peng X, Tang Z, Li T, et al. Oxidation of γ-TiAl Intermetallic Coated withElectrodeposited Nickel-La2O3Composite Films [J]. Oxidation of Metals,1999,51(3-4):317-331.
    [57] Peng X. Effect of La2O3Particles on the Oxidation of Electrodeposited NickelFilms [J]. Oxidation of Metals,1999,51(3-4):291-315.
    [58] Zhou Y, Peng X, Wang F. Cyclic Oxidation of Alumina-Forming Ni-AlNanocomposites with and without CeO2Addition [J]. Scripta Materialia,2006,55(11):1039-1042.
    [59] Schneider O, Martens S, Argirusis C. Sonoelectrochemical Deposition ofFunctional Composite Layers [J]. ECS Transactions,2009,16(25):107-118.
    [60] Xu B S, Wang H D, Dong S Y, et al. Fretting Wear-Resistance of Ni-baseElectro-Brush Plating Coating Reinforced by Nano-Alumina Grains [J].Materials Letters,2006,60(5):710-713.
    [61] Sun X J, Li J G. Friction and Wear Properties of ElectrodepositedNickel-Titania Nanocomposite Coatings [J]. Tribology Letters,2007,28(3):223-228.
    [62] Samide A, Tutunaru B. Study of the Corrosion Resistance of Ni/CeO2Composite Coatings Electrodeposited on Carbon Steel in Hydrochloric Acid[J]. Chem. Biochem. Eng. Q.,2011,25(2):203-208.
    [63] Peng X, Zhang Y, Zhao J, et al. Electrochemical Corrosion Performance in3.5%NaCl of the Electrodeposited Nanocrystalline Ni Films with and withoutDispersions of Cr Nanoparticles [J]. Electrochimica Acta,2006,51(23):4922-4927.
    [64] Jiang B, Xu B, Dong S, et al. Contact Fatigue Behavior of Nano-ZrO2/NiCoating Prepared by Electro-Brush Plating [J]. Surface and CoatingsTechnology,2007,202(3):447-452.
    [65] He H, Liu H, Liu F, et al. Distribution of Sulphur and ElectrochemicalProperties of Nickel Sulphur Coatings Electrodeposited on the Nickel Foam asHydrogen Evolution Reaction Cathodes [J]. Materials Letters,2005,59(29-30):3968-3972.
    [66] Shawki S H, Z.Abdel H. Deposition of High Wear Resistance of Ni-CompositeCoatings [J]. Aircraft Engineering and Aerospace Technology,1997,69(5):432-439.
    [67] Boonyongmaneerat Y, Saengkiettiyut K, Saenapitak S, et al. Effects of WCAddition on Structure and Hardness of Electrodeposited Ni-W [J]. Surface andCoatings Technology,2009,203(23):3590-3594.
    [68] Han B, Lu X. Effect of Nano-Sized CeF3on Microstructure, Mechanical, HighTemperature Friction and Corrosion Behavior of Ni-W Composite Coatings [J].Surface and Coatings Technology,2009,203(23):3656-3660.
    [69] Song Y, Wei G, Xiong R. Properties and Structure of Re-Ni-W-P-SiCComposite Coating Prepared by Impulse Electrodeposition [J]. Transactions ofNonferrous Metals Society of China,2007,17(2):363-367.
    [70] Niedbala J. Surface Morphology and Corrosion Resistance of ElectrodepositedComposite Coatings Containing Polyethylene or Polythiophene in Ni-Mo Base[J]. Bull. Mat. Sci.,2011,34(4):993-996.
    [71] Popczyk M, Budniok A, Lasia A. Electrochemical Properties of Ni-P ElectrodeMaterials Modified with Nickel Oxide and Metallic Cobalt Powders [J].International Journal of Hydrogen Energy,2005,30(3):265-271.
    [72] Chou M C, Ger M D, Ke S T, et al. The Ni-P-SiC Composite Produced byElectro-Codeposition [J]. Materials Chemistry and Physics,2005,92(1):146-151.
    [73] Yeh SH, Wan CC. A Study of SiC/Ni Composite Plating in the Watts Bath [J].Plating and Surface Finishing,1997,84(3):54-58.
    [74] Guglielmi N. Kinetics of the Deposition of Inert Particles from ElectrolyticBaths [J]. Journal of the Electrochemical Society,1972,119(8):1009-1012.
    [75] Celis J P, Roos J R, Buelens C. A Mathematical Model for the ElectrolyticCodeposition of Particles with a Metallic Matrix [J]. Journal of theElectrochemical Society,1987,134(6):1402-1408.
    [76] Hwang B J, Hwang C S. Mechanism of Codeposition of Silicon Carbide withElectrolytic Cobalt [J]. Journal of the Electrochemical Society,1993,140(4):979-984.
    [77] Wang D L, Li J, Dai C S, et al. An Adsorption Strength Model for theElectrochemical Codeposition of α-Al2O3Particles and a Fe-P Alloy [J].Journal of Applied Electrochemistry,1999,29(4):437-444.
    [78] Zeng K, Zhang D. Recent Progress in Alkaline Water Electrolysis forHydrogen Production and Applications [J]. Progress in Energy andCombustion Science,2010,36(3):307-326.
    [79] Carmo M, Fritz D L, Mergel J, et al. A Comprehensive Review on PEM WaterElectrolysis [J]. International Journal of Hydrogen Energy,2013,38(12):4901-4934.
    [80] Iwakura C, Miyamoto M, Inoue H, et al. Kinetics of Hydrogen EvolutionReaction at Nonstoichiometric Hydrogen Storage Alloys for Nickel-HydrogenBatteries [J]. Journal of Alloys and Compounds,1995,231(1-2):558-561.
    [81]马荣骏.金属材料价键理论的发展与应用[J].有色金属,2009,61(4):5-13.
    [82]陈景.贵金属物理性质与原子结构的关系[J].中国工程科学,2000,7:66-73.
    [83] Brewer L. Bonding and Structure of Transition Metals [J]. Science,1968,12(161):115-122.
    [84] Jak i M M, Krstaji N V, Grgur B N, et al. Hydridic and ElectrocatalyticProperties of Hypo-Hyper-d-Electronic Combinations of Transition MetalIntermetallic Phases [J]. International Journal of Hydrogen Energy,1998,23(8):667-681.
    [85] Jak i M M. Hypo-Hyper-d-Electronic Interactive Nature of InterionicSynergism in Catalysis and Electrocatalysis for Hydrogen Reactions [J].International Journal of Hydrogen Energy,2001,26(6):559-578.
    [86] Ezaki H, Morinaga M, Watanabe S. Hydrogen Overpotential for TransitionMetals and Alloys, and Its Interpretation Using an Electronic Model [J].Electrochimica Acta,1993,38(4):557-564.
    [87] Jak i M M. Advances in Electrocatalysis for Hydrogen Evolution in the Lightof the Brewer-Engel Valence-Bond Theory [J]. International Journal ofHydrogen Energy,1987,12(11):727-752.
    [88] Galal A, Atta N F, Darwish S A, et al. Electrocatalytic Evolution of Hydrogenon a Novel SrPdO3Perovskite Electrode [J]. Journal of Power Sources,2010,195(12):3806-3809.
    [89]査全性.电极过程动力学导论(第三版)[M].北京:科学出版社,2002:237.
    [90] Trasatti S. Work Function, Electronegativity, and Electrochemical Behaviourof Metals: iii. Electrolytic Hydrogen Evolution in Acid Solutions [J]. Journalof Electroanalytical Chemistry and Interfacial Electrochemistry,1972,39(1):163-184.
    [91] Lu G, Evans P, Zangari G. Electrocatalytic Properties of Ni-Based Alloystoward Hydrogen Evolution Reaction in Acid Media [J]. Journal of theElectrochemical Society,2003,150(5):551.
    [92] Domínguez-Crespo M A, Ramírez-Meneses E, Torres-Huerta A M, et al.Kinetics of Hydrogen Evolution Reaction on Stabilized Ni, Pt and Ni-PtNanoparticles Obtained by an Organometallic Approach [J]. InternationalJournal of Hydrogen Energy,2012,37(6):4798-4811.
    [93] Kunimatsu K, Senzaki T, Samjeské G, et al. Hydrogen Adsorption andHydrogen Evolution Reaction on a Polycrystalline Pt Electrode Studied bySurface-Enhanced Infrared Absorption Spectroscopy [J]. Electrochimica Acta,2007,52(18):5715-5724.
    [94] Skulason E, Karlberg G S, Rossmeisl J, et al. Density Functional TheoryCalculations for the Hydrogen Evolution Reaction in an ElectrochemicalDouble Layer on the Pt(111) Electrode [J]. Physical Chemistry ChemicalPhysics,2007,9(25):3241-3250.
    [95] Vasi D D, Pa ti I A, Mentus S V. DFT Study of Platinum and PalladiumOverlayers on Tungsten Carbide: Structure and Electrocatalytic Activitytoward Hydrogen Oxidation/Evolution Reaction [J]. International Journal ofHydrogen Energy,2013,38(12):5009-5018.
    [96] Wang M, Wang Z, Guo Z. Understanding of the Intensified Effect of SuperGravity on Hydrogen Evolution Reaction [J]. International Journal ofHydrogen Energy,2009,34(13):5311-5317.
    [97] Kundu A, Sahu J N, Redzwan G, et al. An Overview of Cathode Material andCatalysts Suitable for Generating Hydrogen in Microbial Electrolysis Cell [J].International Journal of Hydrogen Energy,2013,38(4):1745-1757.
    [98] Solmaz R. Electrochemical Preparation and Characterization of C/Ni-NiIrComposite Electrodes as Novel Cathode Materials for Alkaline WaterElectrolysis [J]. International Journal of Hydrogen Energy,2013,38(5):2251-2256.
    [99] Krstaji N, Popovi M, Grgur B, et al. On the Kinetics of the HydrogenEvolution Reaction on Nickel in Alkaline Solution: Part I. The Mechanism [J].Journal of Electroanalytical Chemistry,2001,512(1-2):16-26.
    [100] Krstaji N, Popovi M, Grgur B, et al. On the Kinetics of the HydrogenEvolution Reaction on Nickel in Alkaline Solution: Part Ii. Effect ofTemperature [J]. Journal of Electroanalytical Chemistry,2001,512(1-2):27-35.
    [101] Lee H K, Jung E E, Lee J S. Enhancement of Catalytic Activity of RaneyNickel by Cobalt Addition [J]. Materials Chemistry and Physics,1998,55(2):89-93.
    [102] Tasi G S, La njevac U, Tasi M M, et al. Influence of ElectrodepositionParameters of Ni-W on Ni Cathode for Alkaline Water Electrolyser [J].International Journal of Hydrogen Energy,2013,38(11):4291-4297.
    [103] Yüce A O, D ner A, Karda G. NiMn Composite Electrodes as CathodeMaterial for Hydrogen Evolution Reaction in Alkaline Solution [J].International Journal of Hydrogen Energy,2013,38(11):4466-4473.
    [104] Hitz C, Lasia A. Experimental Study and Modeling of Impedance of the HERon Porous Ni Electrodes [J]. Journal of Electroanalytical Chemistry,2001,500(1-2):213-222.
    [105] Tanaka S, Hirose N, Tanaki T. Evaluation of Raney-Nickel Cathodes Preparedwith Aluminum Powder and Tin Powder [J]. International Journal of HydrogenEnergy,2000,25(5):481-485.
    [106] Salvi P, Nelli P, Villa M, et al. Hydrogen Evolution Reaction in PtFe BondedRaney-Ni Electrodes [J]. International Journal of Hydrogen Energy,2011,36(13):7816-7821.
    [107] D ner A, Solmaz R, Karda G. Enhancement of Hydrogen Evolution atCobalt-Zinc Deposited Graphite Electrode in Alkaline Solution [J].International Journal of Hydrogen Energy,2011,36(13):7391-7397.
    [108] Gruba Z, Metiko-Hukovi M, Babi R. Nanocrystalline and Coarse GrainedPolycrystalline Nickel Catalysts for the Hydrogen Evolution Reaction [J].International Journal of Hydrogen Energy,2013,38(11):4437-4444.
    [109]屠振密,李宁,安茂忠,王素琴.电镀合金实用技术[M].北京:国防工业出版社,2007:54‐55.
    [110] He H, Liu H, Liu F, et al. Structures and Electrochemical Properties ofAmorphous Nickel Sulphur Coatings Electrodeposited on the Nickel FoamSubstrate as Hydrogen Evolution Reaction Cathodes [J]. Surface and CoatingsTechnology,2006,201(3-4):958-964.
    [111] Wen T C, Lin S M, Tsai J M. Sulphur Content and the Hydrogen EvolvingActivity of NiSx Deposits Using Statistical Experimental Strategies [J].Journal of Applied Electrochemistry,1994,24(3):233-238.
    [112] Ni S, Yang X, Li T. Fabrication of Porous Ni3S2/Ni Nanostructured Electrodeand Its Application in Lithium Ion Battery [J]. Materials Chemistry andPhysics,2012,132(2-3):1103-1107.
    [113] Yuan TC, Li RD, Zhou KC. Electrocatalytic Properties of Ni-S-Co CoatingElectrode for Hydrogen Evolution in Alkaline Medium [J]. Transactions ofNonferrous Metals Society of China,2007,17(4):762-765.
    [114] Shan Z, Liu Y, Chen Z, et al. Amorphous Ni-S-Mn Alloy as HydrogenEvolution Reaction Cathode in Alkaline Medium [J]. International Journal ofHydrogen Energy,2008,33(1):28-33.
    [115] Sabela R, Paseka I. Properties of Ni-Sx Electrodes for Hydrogen Evolutionfrom Alkaline Medium [J]. Journal of Applied Electrochemistry,1990,20(3):500-505.
    [116] Han Q. Study of Amorphous Ni-S-Co Alloy Used as Hydrogen EvolutionReaction Cathode in Alkaline Medium [J]. International Journal of HydrogenEnergy,2004,29(3):243-248.
    [117] Han Q, Chen J, Liu K, et al. Preparation and Electrochemical Properties ofComposite LaNiX/Ni-S-Co Alloy Film [J]. International Journal of HydrogenEnergy,2008,33(17):4495-4500.
    [118] Han Q, Cui S, Pu N, et al. A Study on Pulse Plating Amorphous Ni-Mo AlloyCoating Used as HER Cathode in Alkaline Medium [J]. International Journalof Hydrogen Energy,2010,35(11):5194-5201.
    [119] Han Q, Jin Y, Pu N, et al. Electrochemical Evolution of Hydrogen onComposite La-Ni-Al/Ni-S Alloy Film in Water Electrolysis [J]. RenewableEnergy,2010,35(12):2627-2631.
    [120] Han Q, Liu K, Chen J, et al. A Study on the Electrodeposited Ni-S Alloys asHydrogen Evolution Reaction Cathodes [J]. International Journal of HydrogenEnergy,2003,28(11):1207-1212.
    [121] Han Q, Liu K, Chen J, et al. Preparation of the CompositeLaNi3.7Al1.3/Ni-S-Co Alloy Film and Its HER Activity in Alkaline Medium [J].International Journal of Hydrogen Energy,2009,34(1):71-76.
    [122] Paloukis F, Zafeiratos S, Drakopoulos V, et al. Electronic StructureModifications and HER of Annealed Electrodeposited Ni Overlayers on MoPolycrystalline Surface [J]. Electrochimica Acta,2008,53(27):8015-8025.
    [123] Ezaki H, Nambu T, Morinaga M, et al. Development of Low HydrogenOverpotential Electrodes Utilizing Metal Ultra-Fine Particles [J]. InternationalJournal of Hydrogen Energy,1996,21(10):877-881.
    [124] Tasic G S, Maslovara S P, Zugic D L, et al. Characterization of the Ni-MoCatalyst Formed in Situ During Hydrogen Generation from Alkaline WaterElectrolysis [J]. International Journal of Hydrogen Energy,2011,36(18):11588-11595.
    [125] Marceta Kaninski M P, Saponjic D P, Nikolic V M, et al. Energy Consumptionand Stability of the Ni-Mo Electrodes for the Alkaline Hydrogen Production atIndustrial Conditions [J]. International Journal of Hydrogen Energy,2011,36(15):8864-8868.
    [126] Jak i J M, Vojnovi M V, Krstaji N V. Kinetic Analysis of HydrogenEvolution at Ni-Mo Alloy Electrodes [J]. Electrochimica Acta,2000,45(25-26):4151-4158.
    [127] Krstajic N, Jovic V, Gajickrstajic L, et al. Electrodeposition of Ni-Mo AlloyCoatings and Their Characterization as Cathodes for Hydrogen Evolution inSodium Hydroxide Solution [J]. International Journal of Hydrogen Energy,2008,33(14):3676-3687.
    [128] Chen L, Lasia A. Hydrogen Evolution Reaction on Nickel‐MolybdenumPowder Electrodes [J]. Journal of the Electrochemical Society,1992,139(12):3458-3464.
    [129] Aaboubi O. Hydrogen Evolution Activity of Ni-Mo Coating Electrodepositedunder Magnetic Field Control [J]. International Journal of Hydrogen Energy,2011,36(8):4702-4709.
    [130] Shervedani R K, Lasia A. Study of the Hydrogen Evolution Reaction onNi-Mo-P Electrodes in Alkaline Solutions [J]. Journal of the ElectrochemicalSociety,1998,145(7):2219-2225.
    [131] impraga R, Bai L, Conway B E. Real Area and Electrocatalysis Factors inHydrogen Evolution Kinetics at Electrodeposited Ni-Mo and Ni-Mo-CdComposites: Effect of Cd Content and Nature of Substrate [J]. Journal ofApplied Electrochemistry,1995,25(7):628-641.
    [132] Crnkovic F. Electrochemical and Morphological Studies of ElectrodepositedNi-Fe-Mo-Zn Alloys Tailored for Water Electrolysis [J]. International Journalof Hydrogen Energy,2004,29(3):249-254.
    [133] Lupi C, Dell'Era A, Pasquali M. Nickel-Cobalt Electrodeposited Alloys forHydrogen Evolution in Alkaline Media [J]. International Journal of HydrogenEnergy,2009,34(5):2101-2106.
    [134] Miulovic S M, Maslovara S L, Seovic M M, et al. Energy Saving inElectrolytic Hydrogen Production Using Co-Cr Activation-Part I [J].International Journal of Hydrogen Energy,2012,37(22):16770-16775.
    [135] Mar eta Kaninski M P, Seovi M M, Miulovi S M, et al. Cobalt-ChromeActivation of the Nickel Electrodes for the HER in Alkaline Water Electrolysis-Part II [J]. International Journal of Hydrogen Energy,2013,38(4):1758-1764.
    [136] Herraiz-Cardona I, Ortega E, Antón J G, et al. Assessment of the RoughnessFactor Effect and the Intrinsic Catalytic Activity for Hydrogen EvolutionReaction on Ni-Based Electrodeposits [J]. International Journal of HydrogenEnergy,2011,36(16):9428-9438.
    [137] Herraiz-Cardona I, Ortega E, Vázquez-Gómez L, et al. ElectrochemicalCharacterization of a NiCo/Zn Cathode for Hydrogen Generation [J].International Journal of Hydrogen Energy,2011,36(18):11578-11587.
    [138] Solmaz R, D ner A, ahin, et al. The Stability of Nicozn Electrocatalyst forHydrogen Evolution Activity in Alkaline Solution during Long-TermElectrolysis [J]. International Journal of Hydrogen Energy,2009,34(19):7910-7918.
    [139] Rashkov R. Synthesis and Characterization of Novel ElectrodepositedCatalytic Materials for Hydrogen Evolution Reaction [J]. Bulg. Chem.Commun.,2008,40(3):211-218.
    [140] Paseka I. Hydrogen Evolution Reaction on Ni-P Alloys: The Internal Stressand the Activities of Electrodes [J]. Electrochimica Acta,2008,53(13):4537-4543.
    [141] Fundo A M, Abrantes L M. The Electrocatalytic Behaviour of Electroless Ni-PAlloys [J]. Journal of Electroanalytical Chemistry,2007,600(1):63-79.
    [142] Solmaz R, D ner A, Karda G. Electrochemical Deposition andCharacterization of Nicu Coatings as Cathode Materials for HydrogenEvolution Reaction [J]. Electrochemistry Communications,2008,10(12):1909-1911.
    [143] Solmaz R, D ner A, Karda G. Preparation, Characterization and Applicationof Alkaline Leached CuNiZn Ternary Coatings for Long-Term Electrolysis inAlkaline Solution [J]. International Journal of Hydrogen Energy,2010,35(19):10045-10049.
    [144] Solmaz R, D ner A, Karda G. The Stability of Hydrogen Evolution Activityand Corrosion Behavior of NiCu Coatings with Long-Term Electrolysis inAlkaline Solution [J]. International Journal of Hydrogen Energy,2009,34(5):2089-2094.
    [145] Raj I A. Nickel-Based, Binary-Composite Electrocatalysts for the Cathodes inthe Energy-Efficient Industrial Production of Hydrogen from Alkaline-WaterElectrolytic Cells [J]. J Mater Sci,1993,28(16):4375-4382.
    [146] Rosalbino F, Delsante S, Borzone G, et al. Electrocatalytic Behaviour ofCo-Ni-R (R=Rare Earth Metal) Crystalline Alloys as Electrode Materials forHydrogen Evolution Reaction in Alkaline Medium [J]. International Journal ofHydrogen Energy,2008,33(22):6696-6703.
    [147] Rosalbino F, Borzone G, Angelini E, et al. Hydrogen Evolution Reaction onNi-Re (Re=Rare Earth) Crystalline Alloys [J]. Electrochimica Acta,2003,48(25-26):=3939-3944.
    [148] Rosalbino F, Macciò D, Saccone A, et al. Investigation of the ElectrocatalyticBehaviour of Fe-MM (MM=Mischmetal) Crystalline Alloys for HydrogenEvolution Reaction in Alkaline Medium [J]. Journal of Alloys andCompounds,2007,431(1-2):256-261.
    [149] Hu W. Electrocatalytic Properties of New Electrocatalysts for HydrogenEvolution in Alkaline Water Electrolysis [J]. International Journal of HydrogenEnergy,2000,25(2):111-118.
    [150] Greeley J, Jaramillo T F, Bonde J, et al. Computational High-throughputScreening of Electrocatalytic Materials for Hydrogen Evolution [J]. Naturematerials,2006,5(11):909-913.
    [151] Krstaji N V, La njevac U, Jovi B M, et al. Non-Noble Metal CompositeCathodes for Hydrogen Evolution. Part II: The Ni-MoO2CoatingsElectrodeposited from Nickel Chloride-Ammonium Chloride Bath ContainingMoO2Powder Particles [J]. International Journal of Hydrogen Energy,2011,36(11):6450-6461.
    [152] Krstaji N V, Gaji-Krstaji L, La njevac U, et al. Non-Noble MetalComposite Cathodes for Hydrogen Evolution. Part I: The Ni-MoOx CoatingsElectrodeposited from Watt’s Type Bath Containing MoO3Powder Particles[J]. International Journal of Hydrogen Energy,2011,36(11):6441-6449.
    [153] Shibli S. Development of TiO2-Supported Nano-RuO2-Incorporated CatalyticNickel Coating for Hydrogen Evolution Reaction [J]. International Journal ofHydrogen Energy,2008,33(4):1104-1111.
    [154] Shibli S, Dilimon V S. Effect of Phosphorous Content and TiO2-Reinforcementon Ni-P Electroless Plates for Hydrogen Evolution Reaction [J]. InternationalJournal of Hydrogen Energy,2007,32(12):1694-1700.
    [155] Shibli S, Dilimon V S. Development of Nano IrO2Composite-ReinforcedNickel-Phosphorous Electrodes for Hydrogen Evolution Reaction [J]. J SolidState Electrochem,2007,11(8):1119-1126.
    [156] Zheng H, Mathe M. Hydrogen Evolution Reaction on Single Crystal WO3/CNanoparticles Supported on Carbon in Acid and Alkaline Solution [J].International Journal of Hydrogen Energy,2011,36(3):1960-1964.
    [157] Abbaspour A, Norouz-Sarvestani F. High Electrocatalytic Effect of Au-PdAlloy Nanoparticles Electrodeposited on Microwave Assisted Sol-Gel-DerivedCarbon Ceramic Electrode for Hydrogen Evolution Reaction [J]. InternationalJournal of Hydrogen Energy,2013,38(4):1883-1891.
    [158] Losiewicz B. The Structure, Morphology and Electrochemical ImpedanceStudy of the Hydrogen Evolution Reaction on the Modified Nickel Electrodes[J]. International Journal of Hydrogen Energy,2004,29(2):145-157.
    [159] Shibli S, Sebeelamol J N. Development of Fe2O3-TiO2Mixed OxideIncorporated Ni-P Coating for Electrocatalytic Hydrogen Evolution Reaction[J]. International Journal of Hydrogen Energy,2013,38(5):2271-2282.
    [160] Rashkov R, Arnaudova M, Avdeev G, et al. NiW/TiOx Composite Layers asCathode Material for Hydrogen Evolution Reaction [J]. International Journalof Hydrogen Energy,2009,34(5):2095-2100.
    [161] Marcetakaninski M, Nikolic V, Tasic G, et al. Electrocatalytic Activation of NiElectrode for Hydrogen Production by Electrodeposition of Co and V Species[J]. International Journal of Hydrogen Energy,2009,34(2):703-709.
    [162][162] Yuan T, Zhou K, Li R. Effect of Pr2O3on the Microstructure andHydrogen Evolution Property of Nickel Sulphur Coatings Electrodeposited onthe Nickel Foam Substrate [J]. Materials Letters,2008,62(19):3462-3464.
    [163] Kubisztal J, Budniok A, Lasia A. Study of the Hydrogen Evolution Reactionon Nickel-Based Composite Coatings Containing Molybdenum Powder [J].International Journal of Hydrogen Energy,2007,32(9):1211-1218.
    [164] Dalla Corte D A, Torres C, Correa P, et al. The Hydrogen Evolution Reactionon Nickel-Polyaniline Composite Electrodes [J]. International Journal ofHydrogen Energy,2012,37(4):3025-3032.
    [165] Navarro-Flores E, Omanovic S. Hydrogen Evolution on Nickel Incorporated inThree-Dimensional Conducting Polymer Layers [J]. Journal of MolecularCatalysis A: Chemical,2005,242(1-2):182-194.
    [166] Douglas TG, Cruden AJ, Infield D, et al. Investigation of Molybdenum-(Resorcinol-Formaldehyde)(Mo-RF) Electrode for Alkaline ElectrolyserOperation [J]. International Journal of Hydrogen Energy,2011,36(13):7791-7798.
    [167] Bocutti R, Saeki M J, Florentino A O, et al. The Hydrogen Evolution Reactionon Codeposited Ni-Hydrogen Storage Intermetallic Particles in AlkalineMedium [J]. International Journal of Hydrogen Energy,2000,25(11):1051-1058.
    [168] Wu G, Li N, Dai C S, et al. Electrochemical Preparation and Characteristics ofNi-Co-LaNi5Composite Coatings as Electrode Materials for HydrogenEvolution [J]. Materials Chemistry and Physics,2004,83(2-3):307-314.
    [169] Srivastava S, Upadhyaya R K. Investigations of AB5-Type Hydrogen StorageMaterials with Enhanced Hydrogen Storage Capacity [J]. International Journalof Hydrogen Energy,2011,36(12):7114-7121.
    [170] Tliha M, Boussami S, Mathlouthi H, et al. Kinetic Behaviour of Low-CoAB5-Type Metal Hydride Electrodes [J]. Materials Science and Engineering:B,2010,175(1):60-64.
    [171] Li Y, Han S, Liu Z. Effect of Mo-Ni Treatment on Electrochemical Kinetics ofLa-Mg-Ni-Based Hydrogen Storage Alloys [J]. International Journal ofHydrogen Energy,2010,35(23):12858-12863.
    [172] Zhao X, Ma L, Gao Y, et al. Effect of Surface Treatments on Microstructureand Electrochemical Properties of La-Ni-Al Hydrogen Storage Alloy [J].International Journal of Hydrogen Energy,2009,34(4):1904-1909.
    [173] Pang S, Jiang X, Li X, et al. Highly Enhanced Electrochemical Performance ofPrBa0.92Co2O5+δCathode by Introducing Ba Cationic-Deficiency [J].International Journal of Hydrogen Energy,2012,37(5):3998-4001.
    [174]韩庆,陈建设,刘奎仁,等.复合型LaNi5/Ni-S合金镀层在碱液中的析氢反应[J].金属学报,2008,7:887-891.
    [175] Boquan J, Xianxiang L, Lixiao B. Effects of Binary Mixture of Yb2O3-La2O3on Pd/Ag Co-Deposition by Electroless Plating [J]. Journal of Rare Earths,2006,24(1):71-74.
    [176] Santos D, Sequeira C, Macciò D, et al. Platinum-Rare Earth Electrodes forHydrogen Evolution in Alkaline Water Electrolysis [J]. International Journal ofHydrogen Energy,2013,38(8):3137-3145.
    [177] Gschneidner K A. Handbook on the Physics and Chemistry of Rare Earths [M].New York:Elsevier North-Holland Publishing Company,1978:353-356.
    [178] Gonzalez-Delacruz V, Ternero F, Pere íguez R, et al. Study of NanostructuredNi/CeO2Catalysts Prepared by Combustion Synthesis in Dry Reforming ofMethane [J]. Applied Catalysis A: General,2010,384(1-2):1-9.
    [179] Freni S. Rh Based Catalysts for Indirect Internal Reforming EthanolApplications in Molten Carbonate Fuel Cells [J]. Journal of Power Sources,2001,94(1):14-19.
    [180] Sato K, Adachi K, Nagaoka K, et al. Oxidative Reforming of n-C4H10Triggered at Ambient Temperature over Reduced Ni/CeO2[J]. CatalysisCommunications,2009,10(11):1478-1481.
    [181] Srisiriwat N, Therdthianwong S, Therdthianwong A. Oxidative SteamReforming of Ethanol over Ni/Al2O3Catalysts Promoted by CeO2, ZrO2andCeO2-ZrO2[J]. International Journal of Hydrogen Energy,2009,34(5):2224-2234.
    [182] Li Y, Zhang B, Tang X, et al. Hydrogen Production from MethaneDecomposition over Ni/CeO2Catalysts [J]. Catalysis Communications,2006,7(6):380-386.
    [183] Wu C, Williams P T. Ni/CeO2/ZSM-5Catalysts for the Production ofHydrogen from the Pyrolysis-Gasification of Polypropylene [J]. InternationalJournal of Hydrogen Energy,2009,34(15):6242-6252.
    [184] Adhikari S, Fernando S, Haryanto A. Kinetics and Reactor Modeling ofHydrogen Production from Glycerol via Steam Reforming Process overNi/CeO2catalysts [J]. Chemical Engineering&Technology,2009,32(4):541-547.
    [185] Xue Y J, Jia X Z, Zhou Y W, et al. Tribological Performance of Ni-CeO2Composite Coatings by Electrodeposition [J]. Surface and CoatingsTechnology,2006,200(20-21):5677-5681.
    [186]周月波,张海军. Ni-CeO2纳米复合镀层的摩擦磨损性能[J].稀有金属材料与工程,2008,37(3):448-451.
    [187] Xu R, Wang J, He L, et al. Study on the Characteristics of Ni-W-P CompositeCoatings Containing Nano-SiO2and Nano-CeO2Particles [J]. Surface andCoatings Technology,2008,202(8):1574-1579.
    [188] Xu R, Wang J, Guo Z, et al. Effects of Rare Earth on Microstructures andProperties of Ni-W-P-CeO2-SiO2Nano-Composite Coatings [J]. Journal ofRare Earths,2008,26(4):579-583.
    [189]徐瑞东,王军丽,郭忠诚,等. Ni-W-P-CeO2-SiO2纳米复合薄膜材料制备[J].稀有金属材料与工程,2008,37(10):1809-1814.
    [190] Xu R, Wang J, Guo Z, et al. High-Temperature Oxidation Behavior ofCeO2-SiO2/Ni-W-P Composites [J]. Transactions of Nonferrous Metals Societyof China,2009,19(5):1190-1195.
    [191] Xu R, Guo Z, Pan J. Corrosion Resistance of ElectrodepositedRe-Ni-W-P-SiC-PTFE Composite Coating in Phosphoric and Ferric Chloride[J]. Transactions of Nonferrous Metals Society of China,2006,16(3):666-670.
    [192] Qu N, Zhu D, Chan K. Fabrication of Ni-CeO2Nanocomposite byElectrodeposition [J]. Scripta Materialia,2006,54(7):1421-1425.
    [193] Sharma S P, Dwivedi D K, Jain P K. Effect of La2O3Addition on theMicrostructure, Hardness and Abrasive Wear Behavior of Flame Sprayed NiBased Coatings [J]. Wear,2009,267(5-8):853-859.
    [194] Zhang Z, Wang Z, Liang B, et al. Effects of CeO2on Friction and WearCharacteristics of Fe-Ni-Cr Alloy Coatings [J]. Tribology International,2006,39(9):971-978.
    [195] Zhang Z Y, Wang Z P, Bunu L. Effect of CeO2on Microstructure and BondStrength of Fe-Ni-Cr Alloy [J]. Journal of Rare Earths,2005,23(1):73-76.
    [196]马壮,姜晓红,时海芳,等. CeO2对AZ91D合金化学复合镀Ni-P-CeO2的影响[J].电镀与环保,2009,29(3):30-32.
    [197] Han B, Lu X. Tribological and Anti-Corrosion Properties of Ni-W-CeO2Coatings against Molten Glass [J]. Surface and Coatings Technology,2008,202(14):3251-3256.
    [198] Jin H, Jiang S, Zhang L. Structural Characterization and Corrosive Property ofNi-P/CeO2Composite Coating [J]. Journal of Rare Earths,2009,27(1):109-113.
    [199] Jin H M, Jiang S H, Zhang L N. Microstructure and Corrosion Behavior ofElectroless Deposited Ni-P/CeO2Coating [J]. Chinese Chemical Letters,2008,19(11):1367-1370.
    [200]骆心怡,何朱,李卢.纳米氧化铈颗粒对电沉积锌层耐蚀性的影响[J].材料保护,2003,36:1-4.
    [201] Luo X, He J, Shunlin L. CeO2-Zn Nanocomposite Coating byElectrodeposition [J]. Transactions of Nanjing University of Aeronautics&Astronau,2002,19(2):161-165.
    [202] Wang K L, Zhang Q B, Sun M L, et al. Microstructure and CorrosionResistance of Laser Clad Coatings with Rare Earth Elements [J]. CorrosionScience,2001,43(2):255-267.
    [203] Zhang S H, Li M X, Cho T Y, et al. Laser Clad Ni-Base Alloy Added Nano-and Micron-Size CeO2Composites [J]. Optics&Laser Technology,2008,40(5):716-722.
    [204] Hong Zhang S, Xi Li M, Hong Yoon J, et al. Microstructure and CorrosionResistance of Ni-Based Alloy Laser Coatings with Nanosize CeO2Addition [J].Science and Technology of Advanced Materials,2008,9(3):1-8.
    [205] Conway B E, Bai L. Determination of the Adsorption Behaviour of'Overpotential-Deposited' Hydrogen-Atom Species in the CathodicHydrogen-Evolution Reaction by Analysis of Potential-Relaxation Transients[J]. Journal of the Chemical Society, Faraday Transactions,1985,81(8):1841-1863.
    [206] Conway B E. Theory and Principles of Electrode Processes [M]. New York:Ronald Press Co.,1965:92-135.
    [207] Armstrong R D, Henderson M. Impedance Plane Display of a Reaction with anAdsorbed Intermediate [J]. Journal of Electroanalytical Chemistry andInterfacial Electrochemistry,1972,39(1):81-90.
    [208] Damian A, Omanovic S. Ni and Ni-Mo Hydrogen Evolution ElectrocatalystsElectrodeposited in a Polyaniline Matrix [J]. Journal of Power Sources,2006,158(1):464-476.
    [209]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004:185-187.
    [210] Amblard J, Epelboin I, Froment M, et al. Inhibition and NickelElectrocrystallization [J]. Journal of Applied Electrochemistry,1979,9(2):233-242.
    [211]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002:26.
    [212] Kim S H, Sohn H J, Joo Y C, et al. Effect of Saccharin Addition on theMicrostructure of Electrodeposited Fe-36Wt.%Ni Alloy [J]. Surface andCoatings Technology,2005,199(1):43-48.
    [213] Chan K C, Qu N S, Zhu D. Quantitative Texture Analysis in Pulse ReverseCurrent Electroforming of Nickel [J]. Surface and Coatings Technology,1998,99(1-2):69-73.
    [214] Moulder JF, Stickle WF, Sobol PE, et al. Handbook of X-Ray PhotoelectronSpectroscopy [M]. New York: PerkinElmer Corporation,1992:4-85,142-143.
    [215] Thube M, Kulkarni S, Huerta D, et al. X-ray-Photoelectron-SpectroscopyStudy of the Electronic Structure of Ni-P Metallic Glasses [J]. PhysicalReview B,1986,34(10):6874-6879.
    [216] Landolt D, Podlaha E J, Zech N. Mathematical Modeling of ElectrochemicalAlloy Deposition [J]. Zeitschrift für Physikalische Chemie,1999,208(Part1,2):167-182.
    [217] Vandenborre H, Vermeiren P, Leysen R. Hydrogen Evolution at NickelSulphide Cathodes in Alkaline Medium [J]. Electrochimica Acta,1984,29(3):297-301.
    [218] Ashassi-Sorkhabi H, Rafizadeh S H. Effect of Coating Time and HeatTreatment on Structures and Corrosion Characteristics of Electroless Ni-PAlloy Deposits [J]. Surface and Coatings Technology,2004,176(3):318-326.
    [219] Martyak N M, Drake K. Peak-Profile Analysis of Electroless Nickel Coatings[J]. Journal of Alloys and Compounds,2000,312(1-2):30-40.
    [220] Sun J, Yang T, Du G, et al. Influence of Annealing Atmosphere on ZnO ThinFilms Grown by MOCVD [J]. Applied Surface Science,2006,253(4):2066-2070.
    [221] Herraiz-Cardona I, Ortega E, Pérez-Herranz V. Impedance Study of HydrogenEvolution on Ni/Zn and Ni-Co/Zn Stainless Steel Based Electrodeposits [J].Electrochimica Acta,2011,56(3):1308-1315.
    [222] D ner A, Tezcan F, Karda G. Electrocatalytic Behavior of the Pd-ModifiedElectrocatalyst for Hydrogen Evolution [J]. International Journal of HydrogenEnergy,2013,38(10):3881-3888.
    [223] Cai J, Xu J, Wang J, et al. Fabrication of Three-Dimensional NanoporousNickel Films with Tunable Nanoporosity and Their Excellent ElectrocatalyticActivities for Hydrogen Evolution Reaction [J]. International Journal ofHydrogen Energy,2012,934-941.
    [224]陈天玉.镀镍合金[M].北京:化学工业出版社,2007:349-350.
    [225] Eyraud M, Hanane Z, Crousier J. Galvanostatic Study of theElectrocrystallization of Binary Nickel-Base Alloys. I: Zn-Ni Alloy on GlassyCarbon [J]. Surface and Coatings Technology,1994,67(1-2):35-42.
    [226]傅献彩,沈文霞,姚天扬.物理化学(第四版):下册[M].北京:高等教育出版社,2003:745-746.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700