不确定环境下期权定价模型及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在金融市场中存在着大量的客观或主观的不确定性,如随机性、模糊性等。随着实证研究的不断深入,人们发现这种不确定性影响着决策者的行为选择进而影响着资产价的变化。人们越来越关注不确定性如何在模型中更好的体现出来,从而为决策提供有效的思路和方法。论文对不确定环境下的期权定价问题进行了研究,提出了一些更符合实际的期权定价模型,并设计了相应的求解算法。主要研究内容如下:
     讨论了已有的期权定价模型,对国内外研究状况进行了详细的分析比较,分别指出了优缺点和可改进之处。
     研究了波动率为模糊变量的情况,分别建立了离散和连续模糊波率期权定价模型,给出了模糊欧式买权和卖权的对称定价公式。根据模糊模拟技术设计了估算期权价值的算法,结合实例说明方法的应用。
     研究了证券未来价值的不确定性,采用可信性理论来表示投资者对标的证券价格的主观推断与权衡,用模糊过程表示证券未来价值的不确定性,建立了离散时间和连续时间美式期权定价模型,并对不付红利股票美式看涨、看跌期权定价分别进行了分析,通过数值算例进行了验证。
     研究了股票价格服从跳扩散过程的情况,把跳跃强度描述为模糊变量,建立了股票价格为随机模糊跳-扩散过程期权定价模型。并设计了估算期权价值的智能算法,通过数值算例进行了求解和分析,结果表明了模型和算法的有效性。
     根据可信性理论提出了一种新的模糊过程,证明了其理论上的正确性,用模糊微分方程来描述原生资产价格演化过程,建立了模糊过程期权定价模型。
     研究了股票期权定价中的不确定性因素,考虑了传统欧式期权定价模型中存在的定价偏差,在经典期权定价模型的基础上,假定股票价格是模糊随机过程。建立了模糊随机欧式期权定价模型,推导了期权的模糊定价公式。将提出的模型应用到权证定价,在权证定价时选取中国证券市场的实际数据检验可信性理论的实用性及其输入变量的经济含义。与传统的Black-Scholes公式的结果进行比较,并对期权价格偏离B-S理论定价给出解释。
In the real financial market, there are always other uncertain phenomena,such as fuzzy phenomenon, random phenomenon. Along with empirical studyincreasing investigator discovered that this kind of uncertainty a?ects policy-maker’s behavior choice and the asset price change. Researcher pay more andmore attention to the problems on the option pricing under in uncertain environ-ments, Therefore, the dissertation shows that options can be valued successfullyin uncertain environments, some option pricing models are established, the corre-sponding algorithm is designed to solve these models. The contents are describedas follows:
     We discuss the existing option pricing model, and carry out a detailed anal-ysis and comparison. Then point out theirs advantages, disadvantages and im-provements.
     The fuzzy volatility pricing option models are proposed, in which the volatil-ity is depicted as a continuous and discrete fuzzy variable. Then we discuss themethods how to derive the expected value of fuzzy option price. In addition,fuzzy simulation techniques are designed to estimate the value of option. Finally,a numerical example is given to demonstrate the idea in the models.
     By considering the investor’s subjective factors in process to infer Americanput option price, the fuzzy American option pricing model of discrete time andcontinues-time are established, respectively. in which the price of stocks is takenas fuzzy variables. Moreover, the expected value of option price is derived by themaking-decision attitude.
     A random fuzzy jump-di?usion option pricing model is proposed, where thevolatility and the jumps intensity are depicted as fuzzy variables, respectively.As a sequence, the European option price turns into the fuzzy variable. Fuzzysimulation technique is designed to estimate the membership degree and theexpected value of the option. The rough figures of the expected value of optioncan be obtained.
     Fuzzy L process is proposed by the credibility theory with accuracy theoret-ically proof. An option valuation model using fuzzy L process is constructed. Wedemonstrate how fuzzy L process can be successfully applied to the risk neutraloption pricing model with applying fuzzy calculus to finance.
     The paper presents the fuzzy random option pricing models for Europeanoption, in which the evolution of stocks price are taken as fuzzy random process.Moreover, in order to make-decision better for the investor, the expected valueof option price can be derived by the formula. We apply fuzzy random optionpricing models to warrant pricing with the empirical analysis by the Chinesesecurities historical data, and explode the input variable economical meaning.We compare the proposing model with traditional Black-Scholes model. Keywords: Uncertainty, Fuzzy theory, Option pricing model, Empirical analysis
引文
[1]史树中.金融学中的数学[M].北京:北京高等教育出版社, 2007.
    [2]邵宇.微观金融学及其数学基础(第2版)[M].北京:清华大学出版社, 2008.
    [3] Black F, Scholes M. The pricing of options and corporate liabilities[J]. Jour-nal of Political Economy, 1973, 81(3):637-654.
    [4] Merton R. Theory of rational option pricing[J]. Bell Journal of EconomicsManagement, Science, 1973, 4(1):141-183.
    [5] Zadeh L. Fuzzy sets[J]. Information and Control 1965, 8(3): 338-353.
    [6]刘书霞.模糊环境下期权定价理论研究进展[J].西安电子科技大学学报(社会科学版), 2008, 18(5):51-55.
    [7] Cherubini U. Fuzzy measures and asset prices[J]. Application MathmaticeFinance, 1997, 4(3):135-149.
    [8] Cherubini U, Della Lunga. Fuzzy value-at-risk: accounting for market liq-uidity[J]. Economics Notes, 2001, 30(2):293-312.
    [9] Toshihiro Kaino, Kaoru Hirota. di?erentiation of nonnegative measurablefunction choquet integral over real fuzzy measure space and its applicationto financial option trading model[J]. IEEE International Conference on Sys-tems, Man and Cybernetics, 1999:12-15.
    [10] Zmesˇkal Z. Application of the fuzzy-stochastic methodology to appraisingthe firm value as a European call option[J]. European Journal of OperationResearch, 2001, 135(2): 303-310.
    [11] Lee C, Tzeng G. A new application of fuzzy set theory to the Black-Scholesoption pricing model[J]. Expert Systems with Applications, 2005, 29(2):330-342.
    [12] Wu H. Pricing European options based on the fuzzy pattern of Black-Scholesformula[J]. Computers & Operations Research, 2004, 31(7):1069-1081.
    [13] Wu H. European option pricing under fuzzy environments[J]. InternationalJournal of Intelligent Systems, 2005, 20(1): 89-102.
    [14] Wu H. Using fuzzy sets theory and Black-Scholes formula to generate pricingboundaries of European options[J]. Applied Mathematics and Computation,2007, 185(1):136-146.
    [15] Yoshida Y. The valuation of European options in uncertain environment[J].European Journal of Operational Research, 2003, 145(1): 221-229.
    [16] Liu Fan Yong. Pricing currency options based on fuzzy techniques[J]. Euro-pean Journal of operational Research, 2009,193(2):530-540.
    [17] Konstantinos A, Chrysafi S, Basil K. On theoretical pricing of options withfuzzy estimators[J]. Journal of Computational and Applied Mathematics,2009, 223(2):552-566
    [18] Luciano S, Laerte S, Maria L. A parametrization of fuzzy numbers for fuzzycalculus and application to the fuzzy Black-Scholes option pricing[J]. IEEEInternational Conference on Fuzzy Systems, 2006:16-21.
    [19] Maria L, Laerte S, Luciano S. Parametrized fuzzy numbers for option pric-ing[J]. IEEE International Conference on Fuzzy Systems, 2007:1-6.
    [20] Gianna Figà-Talamanca Maria Letizia Guerra, Fuzzy Option Value withStochastic Volatility Models[J]. ISDA archive Proceedings of the 2009 NinthInternational Conference on Intelligent Systems Design and Applications,2009:306-311.
    [21] Thiagarajaha K, Appadoob S, Thavaneswaranc A., Option valuation modelwith adaptive fuzzy numbers[J]. Computers and Mathematics with Appli-cations, 2007, 53(5):831-841.
    [22] Thiagarajah K, Thavaneswaran A. Fuzzy coe?cient volatility models withfinancial applications[J]. Journal of Risk Finance, 2006, 7(5):503-524.
    [23] Thavaneswaran, Appadoo S, Paseka A. Weighted possibilistic moments offuzzy numbers with applications to GARCH modeling and option pricing[J].Mathematical and Computer Modelling, 2009, 49(1-2): 352-368.
    [24] Weidong Xu, Chongfeng Wu, Weijun Xu, Hongyi Li. A jump-di?usion modelfor option pricing under fuzzy environments[J]. Insurance: Mathematics andEconomics, 2009, 44(3): 337-344.
    [25] Piotr Nowak, Maciej Romaniuk. Computing option price for Levy processwith fuzzy parameters[J]. European Journal of Operational Research, 2010,201(16) :206-210.
    [26] Muzzioli S, Reynaerts H. American option pricing with imprecise risk-neutral probabilities[J]. International Journal of Approximate Reasoning,2008, 49(1):140-147.
    [27] Yoshida Y. A discrete-time model of American put option in an uncertain en-vironment[J]. European Journal of Operational Research, 2003, 151(1):153-166.
    [28] Yoshida Y. Optimal stopping models in a stochastic and fuzzy environ-ment[J]. Information Sciences, 2002, 142(1): 89-101.
    [29] Yoshida Y, Yasuda M. A new evaluation of mean value for fuzzy numbersand its application to American put option under uncertainty[J]. Fuzzy Setsand Systems, 2006, 157(19): 2614-2626.
    [30] Cox J, Ross S, Rubinstein M. Option pricing: a simplified approach[J].Journal of Financial Economics, 1979, 7(3):229-263.
    [31] Lee C, Tzeng G, Wang S. A fuzzy set approach for generalized crr model:An empirical analysis of S&P 500 index options[J]. Review of QuantitativeFinance and Accounting, 2005:255-275.
    [32] Muzziolio S, Torricelli C, A multiperiod binomial model for pricing optionsin a vague world[J]. Journal of Economical Dynamicas and Control, 2004,28(5):861-887.
    [33] Appadoo S, Thulasiram R, Bector C. Fuzzy algebraic option pric-ing technique-A fundamental investigation[J]. Administrative Sciences ofCanada (ASAC) Proceeding, 2004:1-11.
    [34] Appadoo S, Thulasiram R, Bector C. CAPM assisted fuzzy binomial lat-tice method for option pricing[J]. International Conference on Business andFinance, 2004:78-94.
    [35] Appadoo S, Bector C. Binomial option pricing using O(2,2)trapezoidal typefuzzy numbers[J]. Administrative Sciences of Canada (ASAC) Proceeding,2005:46-58.
    [36] Carlsson C, Fuller R. A fuzzy approach to real option valuation[J]. FuzzySets and Systems, 2003, 139(2):297-312.
    [37] Carlsson C, Fuller R. A fuzzy approach to RD project portfolio selection[J].International Journal of Approximate Reasoning, 2007, 44(2): 93-105.
    [38] Bennell J, Sutcli?e C. Black-Scholes Versus Artificial Neural Networks inPricing FTSE 100 Options[J]. International Journal of Intelligent Systemsin Accounting, Finance and Management, 2004, 12(4):243-260.
    [39] Ghaziri H, Elfakhani S, Assi J. Neural networks approach to pricing op-tions[J]. Neural Network World, 2007(10):271-277.
    [40] Panayiotis C. Andreou, Chris Charalambous, Spiros H. Martzoukos, Pricingand trading European options by combining artificial neural networks andparametric models with implied parameters[J]. European Journal of Opera-tional Research, 2008, 185(3):1415-1433.
    [41] Sunisa Amornwattana, David Enke, Cihan H. A hybrid option pricing modelusing a neural network for estimating volatility[J]. International Journal ofGeneral Systems, 2007, 36(5): 558-573.
    [42] Nikola G,Ramazan G,and Dragan K. Option Pricing with Modular neuralNetworks[J]. Working Paper, Lakehead University, 2007:1-19.
    [43] Wang h. Exchange options pricing with evolutionary neural-based fuzzy in-ference systems[J]. International Journal of Computational Intelligence Re-search, 2007, 3(1):50-54.
    [44] You S. On the no-arbitrage principle and option pricing in a fuzzy market[J].Journal of Donghua University, 2006, 23(3): 60-63.
    [45]秦学志,吴冲锋.欧式期权的主观预期估价方法及投资决策[J].管理工程学报, 2003, 17(14):61-63.
    [46]秦学志,吴冲锋.具有交易费用的或有要求权的模糊估价方法[J].模糊系统与数学, 2003,17(1):73-76.
    [47]秦学志,吴冲锋.或有要求权的定价方法及无套利价格区间[J].系统工程学报, 2003, 4(18):159-163.
    [48] Peng J. A general stock model for fuzzy markets[J]. Journal of UncertainSystems, 2008, 2(4):248-254.
    [49] Qin Z, Li X. Option pricing formula for fuzzy financial market[J]. Journalof Uncertain Systems, 2008, 2(1):17-21.
    [50] Han L, Zheng C. Fuzzy options with application to default risk analysis formunicipal bonds in China[J]. World Congress of Nonlinear Analysis, 2005:2353-2365.
    [51]韩立岩,周娟. Knight不确定环境下基于模糊测度的期权定价模型[J].系统工程理论与实践, 2007 (12):123-132.
    [52]李伟,韩立岩, Knight不确定条件下的模糊二叉树期权定价模型[J].中国管理科学, 2009, 17(6):9-16.
    [53]马蒙蒙,蔡晨,王兆祥.基于二叉树期权定价模型的企业R&D项目价值评估研究[J].中国管理科学, 2004, 12(3):22-27.
    [54]陈怡.关于欧式看涨期权的模糊二叉树模型[J].哈尔滨商业大学学报, 2007, 6(97):10-12.
    [55]赵振武,唐万生.模糊实物期权理论在风险投资项目价值评价中的应用[J].北京理工大学学报, 2006,8(1):9-52.
    [56]赵振武,唐万生.模糊实物期权理论在风险投资项目决策中的应用[J].中国地质大学学报(社会科学版), 2006, 6(1):60-63
    [57] Zhang J, Du H, Tang W. Pricing R&D option with combining random-ness and fuzziness[J]. International Conference on Intelligent Computing,2006:798-808.
    [58]杨勇,周勤.基于模糊实物期权的技术创新投资决策研究[J].现代理科学,2007 (7):76-69.
    [59]陈涛,张金隆,刘汕,不确定环境下基于实物期权的IT项目风险与价值综合评估方法[J].系统工程理论与实践, 2009, 29(2):30-37.
    [60]李姚矿,熊兴华等.风险投资中企业价值评估的模糊期权定价模型[J].合肥工业大学学报(自然科学版), 2008, 31(9): 1494-1496.
    [61]郑振龙主编.衍生产品[M].北京:武汉大学出版社, 2005.
    [62]郑振龙.金融工程,高等教育出版社[M].北京:2006.
    [63]姜礼尚,期权定价的数学模型和方法[M].北京:高等教育出版社, 2003.
    [64]陈信华编著,金融衍生工具-定价原理、运作机制及实际运用[M].上海:上海财经大学出版社, 2004.
    [65]王梓坤,概率论基础及其应用[M].北京:科学出版社,1976.
    [66] Zadeh L. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets andSystems 1978(1): 3-28.
    [67] Nahmias S. Fuzzy variables[J]. Fuzzy Sets and Systems, 1978 (1):97-110.
    [68] Kaufman A, Gupta M. Introduction to Fuzzy Arithmetic: Theory and Ap-plications[M]. Van Nostrand Reinhold, New York, 1985.
    [69] Dubois D and Prade H. Possibility Theory: An Approach to ComputerizedProcessing of Uncertainty[M]. Plenum, New York, 1988.
    [70] Liu T and Wang M. Ranking fuzzy numbers with integral value[J]. FuzzySets and Systems, 1992, 50(3): 247-255.
    [71] Liu B. Minimax chance constrained programming models for fuzzy decisionsystems[J]. Information Sciences, 1998(112): 25-38.
    [72] Liu Y and Liu B. Random fuzzy programming with chance measures definedby fuzzy integrals[J]. Mathematical and Computer Modelling, 2002(36): 509-524.
    [73] Li X and Liu B. Maximum variance theorems for various types of uncertainvariable[J]. Technical Report, 2006.
    [74] Liu B. Uncertainty Theory: An Introduction to Its Axiomatic Founda-tions[M]. Berlin:Springer-Verlag, 2004.
    [75] Liu B and Liu Y. Expected value of fuzzy variable and fuzzy expected valuemodels[J]. IEEE Transactions on Fuzzy Systems, 2002(10): 445-450.
    [76] Liu B. Theory and Practice of Uncertain Programming[M].Heidelberg:Physica-Verlag, 2002.
    [77] Liu B. A survey of credibility theory[J]. Fuzzy Optimization and DecisionMaking, 2006(5): 387-408.
    [78] Liu Y and Liu B. Expected value operator of random fuzzy variable and ran-dom fuzzy expected value models, International Journal of Uncertainty[J].Fuzziness & Knowledge-Based Systems, 2003(11): 195-215.
    [79] Liu Y and Liu B. Fuzzy random variables: a scalar expected value opera-tor[J]. Fuzzy Optimization and Decision Making, 2003(2): 143-160.
    [80] Liu Y and Liu B. A class of fuzzy random optimization: expected valuemodels[J]. Information Sciences, 2003(155): 89-102.
    [81] Li X and Liu B. New independence definition of fuzzy random variableand random fuzzy variable[J]. World Journal of Modelling and Simulation,2006(2): 338-342.
    [82] Liu B. Fuzzy process, hybrid process and uncertain process[J]. Journal ofUncertain Systems, 2008, 2(1):3-16.
    [83]刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社, 2003.
    [84] Bakshi G, Cao C, Chen Z. Empirical performance of alternative option pric-ing models[J]. Journal of Finance, 1997, 52(5):2003-2049.
    [85] Eraker B. Do Stock Prices and Volatility Jump? Reconciling Evidence fromSpot and Option Price[J]. Journal of Finance, 2004(59):1367-1403.
    [86] Cox C, Ross A. The valuation of options for alternative stochastic pro-cesses[J]. Journal of Financial Economics, 1976, 3(1-2):145-166.
    [87] Stein E, Stein. Stock price distributions with stochastic volatility[J]. Reviewof Financial Studies, 1991, 4(4):727-752.
    [88] Amin K and Victor K. Option valuation with systematic stochastic volatil-ity[J]. Journal of Finance, 1993, 48(3):881-910.
    [89] Heston S. A closed-form solution for option with stochastic volatility withapplications to bond and currency options[J]. Review of Financial Study,1993(6):337-343.
    [90] Broadie M, Detemple J, Ghysels E, Torrés O. American Options WithStochastic Dividends and Volatility: A Nonparametric Investigation[J].Journal of Econometrics, 2000, 94(1-2):53-92.
    [91] Thavaneswaran A, Singh J, Appadoo S, Option pricing for some stochasticvolatility models[J]. The Journal of Risk Finance, 2006, 7(4): 425-445.
    [92] Hull J, White A. The pricing of options with stochastic volatilities[J]. Journalof Finance, 1987(42):281-300.
    [93] Harrison J, Kreps D. Martingales and multiperiod securities mar-kets[J].Economic Theory, 1979, 20(3):381-408.
    [94] Harrison J, Pliska R, Martingale and stochastic integrals in the theory ofcontinuous trading[J]. Stochastic Processes and Their Applications, 1981,11(2):215-260.
    [95]彭斌.两资产亚式彩虹期权的定价研究[J].系统工程学报, 2007, 19(3):443-448.
    [96]詹惠蓉,程乾生.亚式期权在依赖时间的参数下的定价[J].管理科学学报,2004, 7(6): 24-31.
    [97]闫海峰,刘三阳.股票价格遵循Ornstein-Uhlenback过程的期权定价[J].系统工程学报, 2003, l8(6): 547-551.
    [98]闫海峰,刘利敏,杨建奇.随机波动率模型的效用无差别定价和套期保值策略[J].系统工程学报, 2007, 22(4): 3379-385.
    [99]戴锋,丁锐,秦子夫.无分红股票期权的构造定价模型[J].管理科学学报,2005, (8)5: 55-60.
    [100]马俊海,张维,刘凤琴.期权定价的蒙特卡罗模拟综合性方差减少技术[J].管理科学学报,2005, 8(4):68-73.
    [101]马俊海,张同声等.期权定价的混合型三叉树模型及其应用研究[J].数量经济技术经济研究, 2005(4): 75-82
    [102]时均民,王桂兰,屈庆.无分红美式看涨期权不宜提前执行的新的证明[J].系统工程, 2004 (22):108-200.
    [103]闫海峰,刘三阳.一类特殊模型的美式期权定价[J].西安电子科技大学学报, 2003, 30(1):125-127.
    [104]孙春燕,陈耀辉.基于最小二乘法的美式期权定价的最优停时分析[J].系统工程, 2003, 21(6):104-108.
    [105]孙春燕,陈耀辉,李楚霖.对美式期权定价中一类蒙特卡洛过程收敛速率的研究[J].系统工程, 2004, (126)6:303-310.
    [106]魏雪梅,张世英.期权定价中提前执行价值的实证研究[J].系统工程理论方法应用, 2004, (13)1:27-30.
    [107] Shreve E. Stochastic Calculus for Finance[M]. Springer, 2004.
    [108]刘书霞,姚绍文.基于决策者期望值的期权估价[J].北京理工大学学报(社会科学版), 2009, 11(1):85-87.
    [109] Merton R. Option pricing when underlying stock returns are discontinu-ous[J]. Journal of Financial Economics, 1976(3):125-144.
    [110] Bardhan I, Chao Y. Pricing option on securities with discontinuous re-turns[J]. Stochastic Processes and Their Applications, 1993(48):123-137.
    [111] Scott L. Pricing stock options in a jump-di?usion model with stochasticvolatility and interest rates: applications of fourier inversion methods[J].Mathematical Finance, 1997(7): 413-424.
    [112] Asea K, Mthuli Ncube, Heterogeneous information arrival and option pric-ing[J].Journal of Econometrics, 1998, (83):291-323.
    [113] Yan G, Hanson B. Option pricing for a stochastic-volatility jump-di?usionmodel with log-uniform jump-amplitudes[J]. Proceedings of American Con-trol Conference, 2006:1-7.
    [114] Kou S. A jump di?usion model for option pricing[J]. Management Science,2002, 48 (8):1086-1101.
    [115] Du?e D, Pan J. Transform analysis and option pricing for a?ne jump-di?usions[J]. Econometrica, 2000, 68(4):1343-1376.
    [116]刘宣会,胡奇英.标的资产服从跳-扩过程未定权益套期保值策略[J].西安电子科技大学学报, 2004, 31(1):129-134.
    [117]刘宣会,徐成贤.基于跳跃-扩散过程的一类亚式期权定价[J].系统工程学报, 2008, 23(2):142-147.
    [118]刘宣会,胡奇英.不完全市场上的一种未定权益的套期保值策略[J].系统工程学报, 2004,19(3):284-289.
    [119]刘国买,邹捷中.服从多种形式跳过程的期权定价模型[J].数量经济技术经济研究, 2004(4):110-114.
    [120]陈超.跳-扩散过程的期权定价模型[J].中南大学博士学位论文, 2001.
    [121]吴恒煜,吕江林闵晓平.有违约风险的欧式期权定价[J].系统工程学报,2007, 22(5): 504-510.
    [122]何建敏,吕宏生,王健.基于混合转移分布模型的Black-Scholes期权定价偏差纠正[J].系统工程理论方法应用, 2006,(15)2:189-192.
    [123] Chan T. Pricing contingent claims on stocks driven by Levy process[J]. TheAnnals of Applied Probability, 1999, 9(2):504-528.
    [124] Geman H, Madan D, Yor M. Time changes for Levy processes[J]. Mathe-matical Finance, 2001, 11(1):79-96.
    [125] Aase K. Contingent claims valuation when the security price is combinationof an ito process and a random point process[J]. Stochastic Processes andTheir Applications, 1988, 28(2):185-220.
    [126] Kazmerchuk Y, Swishchuk A, Wu J. The pricing of options for securitiesmarkets with delayed response[J].Mathematics and Computers in Simula-tion, 2007, 75(3): 69-79.
    [127] Rockenbach B. The behavioral relevance of mental accounting for the pric-ing of financial options[J]. Journal of Economic Behavior&Organization,2004, 53(4):513-527.
    [128]攀登,施东晖,宋铮.证券市场泡沫的生成机理分析-基于宝钢权证自然实验的实证研究[J].管理世界, 2008(4):15-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700