微小型水下潜器近自由液面操纵性预报
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微小型水下潜器具有航行体积小、阻力低、隐身性能好、机动灵活等特点,在海洋开发中占有重要的地位。当其从水面搭载平台布放和回收、航行一段时间后上浮进行导航定位时,将处于近自由液面航行状态。此时扰流环境远比无界绕流要复杂,而微小型水下潜器本身艇体较小,推进能力有限,极易受到自由液面的扰动。操纵性是水下潜器的重要性能,研究微小型水下潜器近自由液面的操纵性有着重要的意义。本文基于CFD技术分别研究了微小型水下潜器在无界绕流和近自由液面的水动力性能,计算不同潜深下的水动力系数,并进行了近自由液面的操纵性水动力实验。通过运动预报观察其运动特性,论文主要完成了以下工作:
     1.采用分区域网格划分方法,利用混合网格计算了椭球体和微小型水下潜器在无界绕流中的水动力性能,模拟其直航、斜航和六个自由度的运动,求得其部分水动力系数,并和面元法及实验结果进行对比。
     2.分别计算了在1.5倍、2.5倍、3.5倍潜体最大直径三种潜深下特征长度相同的椭球体、微小型水下潜器和流线型潜体直航的水动力。讨论了随潜深减小阻力、垂向力和纵倾力距的改变,观察流场发生的变化,分析阻力增加的原因,并模拟了自由液面的兴波,计算兴波范围和波高随潜深及航速的变化。讨论了附体对微小型水下潜器近自由液面航行的水动力和兴波产生的影响。计算微小型水下潜器在不同潜深垂直面斜航和水平面斜航的水动力特性,观察潜深对垂直面斜航带来的影响。
     3.模拟了微小型水下潜器在近自由液面时升沉、俯仰、横荡、横摇运动,计算其运动产生的力和力矩随潜深的改变,观察不同潜深的水动力系数变化,并同无界绕流的结果相对比,寻找其变化规律。分析了流场中动压力、速度和兴波随运动频率、航速、潜深的变化。
     4.利用平面运动机构进行了微小型水下潜器的近水面操纵性相关实验。利用六分力天平测量了其不同深度不同航速下直航的阻力、升力和纵倾力距。测量了不同潜深下水平面斜航的侧向力和偏航力矩。同时使微小型水下潜器在不同潜深下做升沉、俯仰运动,测得其垂直面运动的水动力系数,发现变化规律,并和计算结果进行对比分析。
     5.进行近自由液面运动预报,观察近自由液面水动力系数的改变对垂直面运动产生的影响,讨论了其直航速度的改变、操舵后产生的纵倾角和垂向速度的变化;微小型水下潜器在近自由液面出现埋艏下潜的现象,并且操舵响应变慢,恢复力矩变小。
The Mini Underwater Vehicle is very important in ocean exploitation on account of itscharacteristics such as small volume, low resistance, high stealth performance and goodmaneuverability. It needs to rise for navigation and localization after sailing some time. TheMini Underwater Vehicle is deployed and reclaimed from carrying platform. In theseconditions the Mini Underwater Vehicle sails near free surface. The flow environment is morecomplicated than limitless drainage area. The Mini Underwater Vehicle is easy to be disturbedby free surface because its small size and finite propulsion capability. Maneuverability is veryimportant to the Mini Underwater Vehicle, and the research of maneuverability is especiallymeaningful. In this paper, study about hydrodynamic performance of the Mini UnderwaterVehicle near free surface has been done, while the hydrodynamic coefficients in differentdepth are solved with computational fluid dynamics(CFD) method. Also the experiment ofmaneuverability near free surface is accomplished, and the motion characteristics can beobserved. The following work has been completed in this paper:
     1. The structural and unstructured mesh is gendered in different area to compute thehydrodynamic capability of the ellipsoid model and the Mini Underwater Vehicle whilesailing straight and with drift angle in limitless area. The hydrodynamic coefficients can bework out via simulation of movement in six degrees of freedom. The hydrodynamiccoefficients are also solved by experiment and Hess-Smith method. The results by CFD turnto be with good precision.
     2. The hydrodynamic performance is calculated in different depth of1.5times,2.5times,3.5times the maximum diameter of modules. The calculated modules contain the ellipsoidmodel, the streamlined model and the Mini Underwater Vehicle. The change of resistance,vertical force and trim moment versus depth and velocity is discussed. The reason of increaseof resistance is discussed. Free surface is simulated with CFD software. The range of wavemaking and wave height changes with depth and velocity. The appendages also cause wave.Wave and resistance caused by different appendages are computed. The hydrodynamicperformance of the Mini Underwater Vehicle sailing with attack angle and drift angle isdiscussed.
     3. Simulation of the Mini Underwater Vehicle conducted heaving, pitching, swaying and yawing is to calculate forces and moments caused by the motion in different depth.Hydrodynamics are computed by calculated results. Different hydrodynamic coefficient hasrespective changing rules versus depth. Dynamic pressure, velocity and wave making of theflow field are shown in this paper. Velocity, depth and motion frequency all make the flowfield different.
     4. Maneuverability experiment of the Mini Underwater Vehicle in different depth has beendone with planar motion mechanism. The resistance, vertical force and trim moment versusvelocity are measured by six-component balance in different depth. The lateral force and yawmoment of the Mini Underwater Vehicle sailing in drift angle is scaled in different depth.Also the Mini Underwater Vehicle is conducted heaving and pitching to calculatehydrodynamic coefficients of vertical plane in different depth.
     5. Motion features of the Mini Underwater Vehicle change near free surface because ofdifferent hydrodynamic coefficients. The maximum velocity diminishes near free surface.Trim angle and vertical velocity are different by dropping rudder and elevating rudder. TheMini Underwater Vehicle will submerge when sailing near free surface. Response to ruddertakes more time and the restoration moment shrinks.
引文
[1]金翔龙.二十一世纪海洋开发利用与海洋经济发展的展望.科学中国人,2006,11:13-17.
    [2]苏玉民,万磊,李晔,庞永杰,秦再白.舵桨联合操纵微小型水下机器人的开发.机器人.2007,29(2):151-154页
    [3]徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望.智能系统学报.2006,1(1):9-16页
    [4]王言英.基于阻力性能船体型线精细优化的CFD方法.大连理工大学学报.2002,42(2):127-133页
    [5]张志荣,赵峰,李百齐. k-湍流模式在船舶粘性流场计算中的应用.船舶力学.2003,7(1):33-37页
    [6]张志荣,李百齐,赵峰.船舶粘性流动计算中湍流模式应用的比较.水动力学研究与进展A辑.2004,19(5):637-642页
    [7]常煜,张志荣,赵峰.多块结构化网格在含附体水面船模粘性流场数值计算中的应用.船舶力学.2004,8(10):19-25页
    [8]顾民,吴乘胜,蒋耀军,缪泉明.箱形船水动力特性的数值计算.船舶力学.2003,7(4):15-20页
    [9]张志荣,李百齐,赵峰.螺旋桨/船体粘性流场的整体数值求解.船舶力学.2004,8(5):19-26页
    [10]许辉,邹早建.基于FLUENT软件的小水线面双体船粘性流数值模拟.武汉理工大学学报.2004,28(1):8-10页
    [11]Min Gu,Chengsheng Wu. CFD calculation for resistance of a ship moving near thecritical speed in shallow water. Journal of Ship Mechanics,2005,9(6):40-47P
    [12]王中,卢晓平,付攀.三体船升沉和纵倾计算及其对兴波阻力的影响.上海交通大学学报.2010,44(10):1388-1392页
    [13]陈康,黄德波.CFD技术在三体船阻力性能研究中的应用.哈尔滨工程大学学报.2006,27(3):362-366页
    [14]陈康.影响船舶CFD模拟的因素分析与三体船阻力计算改进探讨.哈尔滨工程大学博士论文.2008
    [15]Bensow, R. E., Fureby, C., Liefvendahl, M. and Persson, T.,“A Comparative Studyof RANS, DES and LES,” Proc.26th Symp. Naval Hydrodynamics, Rome, Italy,2006
    [16]Campana E.F., Peri D., Tahara Y. and Stern F.,“Shape Optimization in ShipHydrodynamics using Computational Fluid Dynamics”, Computer Methods inApplied Mechs. and Engineering,2006,Vol.196,634–651P
    [17]Katsui, T., Asai, H., Himeno, Y., Tahara, Y.,“The Proposal of a New Friction Line,”Proc.5thOsaka Colloquium on Advanced Research on Ship Viscous Flow and HullForm Design by EFD and CFD Approaches, Osaka, Japan, pp.2005,76-83P
    [18]Shuo Pang.Reactive Planning and On-line Mapping for Chemical PlumeTracing.Doctor thesis.University of California,Riverside
    [19]Baoshan Wu, Fu Xing, Xiaofeng Kuang, Quanming Miao. Investigation ofhydrodynamic characteristics of submarine moving close to the sea bottom with CFDmethods. Journal of Ship Mechanics,2005,9(3):19-28P
    [20]Baoshah Wu, Ziying Pan, Xian Xia, Fangwen Hong. Investigation of theHydrodynamic Characteristics of Body of Revolution with Stern Ring-wing. Journalof Ship Mechanics,2003,7(6):54-59P
    [21]张楠,杨仁友,沈泓萃,姚惠之,应良镁.数值拖曳水池与潜艇快速性CFD模拟研究.船舶力学.2011,15(1-2):17-24页
    [22]张楠,沈泓萃,姚惠之.潜艇阻力与流场的数值模拟与验证及艇型的数值优化研究.船舶力学.2005,9(1):1-13页
    [23]张楠,沈泓萃,姚惠之.用雷诺应力模型预报不同雷诺数下的潜艇绕流.船舶力学.2009,13(5):688-696页
    [24]张楠,沈泓萃,姚惠之.潜艇流水孔阻力数值计算与回归分析研究.船舶力学.2004,8(4):5-15页
    [25]张楠,沈泓萃,姚惠之.潜艇喷流流场数值模拟研究.船舶力学.2007,11(1):10-21页
    [26]张楠,沈泓萃,姚惠之.阻力和流场的CFD不确定度分析探讨.船舶力学.2008,12(2):211-224页
    [27]黄振宇,周连第.带全附体潜艇尾流场的数值预报研究.中国造船.2001,42(4):6-11页
    [28]黄振宇,缪国平.大涡模拟在水下航行体周围黏性流场计算中的初步应用.水动力学研究与进展A辑.2006,21(2):190-197页
    [29]吴方良,吴晓光,许建,马运义,何汉保.潜艇主艇体三维粘性流场数值计算方法研究.中国造船.2009,50(2):12-22页
    [30]张怀新,潘雨村.圆碟形潜水器阻力性能研究.上海交通大学学报.2006,40(6):978-987页
    [31]张怀新,潘雨村.CFD在潜艇外形方案比较中的应用.船舶力学2006.8
    [32]胡仞与,薛雷平.水下滑翔机垂直面定常运动数值研究.水动力学研究与进展A辑.2010,25(6):743-749页
    [33]傅慧萍,鲁传敬,吴磊.回转体空泡流特性研究.水动力学研究与进展A辑.2005,20(1):84-89页
    [34]邱辽原,石仲堃,周凌,马运义.回转体三维绕流场数值计算.中国造船.2006,47(4):1-7页
    [35]邱辽原,石仲堃,侯国祥.轴对称回转体绕流场数值模拟.华中科技大学学报.2004,32(10):46-48页
    [36]庞永杰,贺敬席,戴捷,倪绍毓.水下运动物体相互接近过程中的水动力计算.船舶工程.1997,(5):8-10页
    [37]李佳,黄德波,邓锐.载人潜器阻力的数值计算方法分析.船舶力学.2010,14(4):333-339页
    [38]Xianzhao Yu,Yumin Su. Hydrodynamic performance calculation on Mini-automaticUnderwater Vehicle.2010IEEE International Conference on Information andAutomation,Harbin,2010:1319-1324P
    [39]于宪钊,苏玉民,王兆立,杨亮.微小型水下机器人阻力性能的数值模拟.2008年船舶水动力学学术会议.2008年11月,杭州,126-130页
    [40]Xianzhao Yu,Yumin Su. Hydrodynamic performance calculation of Mini-AUV inuneven flow field.2010IEEE International Conference on Robotics andBiomimetics,Tianjin,2010:868-872P
    [41]Su Yu-min, Ju Lei, Yu Xian-zhao, Cui Tong, Yan Dai-jun. Research on Interactionbetween a Large Underwater Carrier and a Mini-Underwater Vehicle. Journal of ShipMechanics.2013.3
    [42]程丽.双体流体动力干扰的研究.哈尔滨工程大学博士学位论文.2006
    [43]程丽,张亮,吴德铭,陈强.无升力双体水动力干扰计算.哈尔滨工程大学学报.2005,26(1):1-6页
    [44]Liang Zhang,Li Cheng,Fenglai Li,Qihu Sheng,Yu Wang. Experiment onhydrodynamic interaction between2D oval and wall. Journal of shipMechanics,2006,10(6):1-10P
    [45]程丽,张亮,吴德铭,汪玉.二维Rankine体升力受邻近壁面干扰的简化算法.哈尔滨工程大学学报.2006,27(1):42-47页
    [46]程丽,罗庆杰,张亮,吴德铭.三维钝体的近壁面受力.水动力学研究与进展A辑.2008,23(2):149-157页
    [47]吴利红,俞建成,封锡盛.水下滑翔机器人水动力研究与运动分析.船舶工程.2006,28(1):12-16页
    [48]刘志华,熊鹰,韩宝玉.潜艇流场数值计算网格与湍流模型选取.华中科技大学学报2009.7
    [49]肖昌润,刘巨斌朱建华郑学龄DARPA2潜艇模型定常绕流水动力数值计算.华中科技大学学报2007.8
    [50]刘祖源,林小平,周朝晖.潜艇指挥台位置对水动力的影响研究.海军工程大学学报.2006,18(6):30-33页
    [51]刘玉秋,于开平,张嘉钟.水下非流线型航行体减阻的数值模拟与比较.工程力学.2007,24(2):178-182页
    [52]郭正,李晓斌,瞿章华,刘君.用非结构网格方法模拟有相对运动的多体绕流.空气动力学报.2001,19(3):310-316页
    [53]郭正,刘君,瞿章华.非结构动网格在三维可动边界问题中的应用.力学学报.2003,35(2):140-146页
    [54]Gorski, J. J., Ebert, M. P. and Mulvihill, L.,2007,“Uncertainties in the ResistancePrediction of Underwater Vehicles,” NATO AVT Symp. Computational Uncertaintyin Military Design, Athens, Greece.
    [55]Mae L.,Seto,Watt G.D. The interaction dynamics of a semi-submersible towing alarge towfish. Proceeding of the eighth international offshore and polar engineeringconference,Montreal,1998:263-270P
    [56]Campana E, Dimascio A, Esposito P G, Lalli E. Viscous-inviscid coupling in freesurface ship flows. Inter. J. for Mum. Methods in fluids.1995,21
    [57]Yeung R. W., D. Roddiedr, B. Allessandrini, L. Gentaz&S. W. Liao. On rollhydrodynamics of cylinders fitted with bilge keels. Proc.23rdSymp. Naval Hydro.Val de Reuil, France.2000
    [58]孙鹏.粘性对船舶横剖面垂向运动水动力的影响研究.哈尔滨工程大学硕士学位论文.2006
    [59]翁年明.单体复合船型流体动力数值仿真研究.哈尔滨工程大学硕士学位论文.2006
    [60]李积德,张恒.考虑粘性影响的单体复合船型的运动预报.船舶力学.2008.4
    [61]Hosseini S.H.S.,Park I.R.,Stern F.,Olivieri A.,Campana E.F.,Francescutto A.Complementary URANS CFD and EFD for Validation Extreme MotionsPredictions.9thInternational Conference in Numerical Ship Hydrodynamics.Michigan USA.2007
    [62]G.B.Deng,P.Queutey,M.Visonneau. Seakeeping Prediction for a Container Ship withRANS Computation.第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会文集.2009
    [63]Watt G.D. ANSYS CFX-10RANS normal force predictions for the series58model4621unappended axisymmetric submarine hull in translation. DRDC TechnicalMemorandum,2006-037,Canada
    [64]Watt G.D.,Baker C.R.,Gerber A.G.,Fouts C. Scripted hybrid mesh adaption for highincidence RANS flows about axisymmetric shapes.44th AIAA Aerospace SciencesMeeting and Exhibit,2006,Reno Nevada,AIAA2006-886
    [65]Jeans T.L.,Watt G.D.,Gerber A.G.,Holloway A.G.L.,Baker C.R. High-resolutionReynolyds–Averaged Navier-Stokes flow predictions over axisymmetric bodies withtapered tails. AIAA Journal,2009,47(1):19-32P
    [66]Cavallo P.A.,Neerai Sinha,Feldman G.M. Parallel unstructured mesh adaptationmethod for moving body applications. AIAA Journal,2005,43(9):1937-1945P
    [67]Baker T.J. Adaptive modification of time evolving meshes. Computer methods inapplied mechanics and engineering,2005(194):4977-5001P
    [68]Baker T.J. Mesh Movement and Metamorphosis. Engineering with Computers,2002,18(3):188–198P
    [69]Baker T.J. Mesh deformation and modification for time dependent problems.International Journal for Numerical Methods in Fluids,2003,43:747-768P
    [70]Baker T.J.,Cavallo P.A. Dynamic adaptation for deforming tetrahedral meshes.AIAA Paper99-3253,1999
    [71]Cavallo P.A.,Dash S. M. Aerodynamics of multi-body separation using adaptiveunstructured grids. AIAA Paper2000-4407,2000
    [72]Murayama M.,Nakahashi K.,Matsushima K. Unstructured dynamic mesh for largemovement and deformation. AIAA Paper2002-0122,2002
    [73]Nathan C.P., Davy M.B., Shyy W. Parallel computing of overset grids foraerodynamic problems with moving objects. Progress in Aerospace Sciences,2000,36:117-172P
    [74]Roy Koomullil, Gary Chenga, Bharat Soni, Ralph Noack, Nathan Prewitt.Moving-body simulations using overset framework with rigid body dynamics.Mathematics and Computers in Simulation,2008(78):618–626P
    [75]Weihs D.,Ringel M.,Victor M. Aerodynamic Interactions Between AdjacentSlender Bodies.AIAA Journal,2006,44(3):484-484P
    [76]Alexander V.F.,Vitaly G.S.,Norman D.M. Theoretical Modeling of Two-BodyInteraction in Supersonic Flow. AIAA Journal,2010,48(2):258-266P
    [77]Qiuxin Gao. Numerical simulation of free surface flow around ship hull. Journal ofShip Mechanics,2002,6(3):11-13P
    [78]Zhirong Zhang,Feng Zhao,Baiqi Li. Numerical calculation of viscous free-surfaceflow about ship hull. Journal of Ship Mechanics,2002,6(6):10-17P
    [79]张怀新,刘应中,缪国平.带自由面三维船体周围粘性流场的数值模拟.上海交通大学学报.2001,35(10):429-1432页
    [80]Huaixin Zhang, Yingzhong Liu, Guoping Miao. Numerical simulation ofthree-dimensional viscous flow with free surface about a Ship. Journal of ShipMechanics,2003,7(3):33-39P
    [81]Li Tingqiu,Jerzy M.,Reijo L. Numerical simulation of viscous flows with freesurface around realistic hull forms with transom.International Journal for NumericalMethods in Fluids,2001(37):601–624P
    [82]Tingqiu Li. Computation of turbulent free-surface flows around modern ships.International Journal for Numerical Methods in Fluids,2003(43):407-430P
    [83]Nan Zhang,Liangmei Ying,Huizhi Yao,Hongcui Shen,Qiuxin Gao. Numericalsimulation of free surface viscous flow around submarine. Journal of ShipMechanics,2005,9(3):29-39P
    [84]张楠,沈泓萃,姚惠之.潜艇近海底与近水面绕流数值模拟研究.船舶力学.2007,11(4):498-507页
    [85]张楠,张胜利,沈泓萃,谢华.带自由液面的艇/桨干扰特性数值模拟与验证研究.水动力学研究与进展.2012
    [86]朱爱军,应良镁,郑宏,沈泓萃.海底、海面对水下航行体阻力影响的模型试验研究船舶力学2012.4
    [87]曹嘉怡,鲁传敬,李杰,吴磊.潜射导弹水下垂直自抛发射过程研究.水动力学研究与进展A辑.2006,21(6):752-759页
    [88]刘娟叶恒奎杨向晖冯大奎.水下航行体自由面兴波时域分析.船海工程2006.5
    [89]杨向晖,叶恒奎,刘娟,冯大奎.潜体近水面航行兴波阻力计算.华中科技大学学报2008.4
    [90]戴遗山,贺五洲,何义,李积德.偶极分布法计算近水面水翼的升力和兴波.中国造船.1989.2
    [91]韩端锋,黄德波.近水面潜体兴波阻力的数值预报和收敛性分析.船舶力学2005.2
    [92]韩端锋,王庆,黄德波.直/斜支柱SWATH的兴波阻力预报.船舶工程2004.4
    [93]李佳.近水面航行潜体若干水动力的数值模拟.哈尔滨工程大学硕士论文.2007
    [94]Campana E, Dimascio A, Esposito P G, Lalli E. Viscous-inviscid coupling in freesurface ship flows. Inter. J. for Mum. Methods in fluids.1995,21
    [95]岳永威李梦阳孙龙泉王领.具有自由液面效应的圆柱绕流三维数值模拟.船舶2012.8
    [96]谢宜,郑义.粘性流中的近水面三维水翼水动力特性数值分析.海军工程大学学报2011.4
    [97]侯玲.基于Fluent的自由表面初扰动现象的数值模拟.中国水运.2012.8
    [98]WU Jing-ping,ZOU Zao-jian,WANG Ren-kan。Number Simulation of theNonlinear Waves Generated by a Submerged Ellipsoid. Journal of ShipMechanics.2004.12
    [99]蔡泽伟,刘应中,严乃长.近水面三维物体运动的时域计算.水动力学研究与进展。1989.3
    [100]蔡泽伟,徐亦凡.近水面细长体的水动力导数数值计算.国防科技大学学报.2000.6
    [101]蔡泽伟,刘应中,严乃长.近水面三维物体水动力导数的数值模拟.应用数学与计算数学学报.1993.12
    [102]潘子英吴宝山沈泓萃.CFD在潜艇操纵性水动力工程预报中的应用研究.船舶力学.2004.10
    [103]张新曙,缪国平,黄国梁,尤云祥.碟形潜水器水动力性能研究.上海交通大学学报.2003,37(8):1186-1188页
    [104]黄国梁,刘天威,卢军,楼连根.潜体近水面垂直面稳定性.上海交通大学学报.2000.12
    [105]李刚.穿梭潜器水动力特性的数值模拟和试验研究.哈尔滨工程大学博士论文.2011
    [106]李刚,段文洋.复杂构型潜器水动力特性的试验研究.船舶力学.2011,15(1-2):58-65页
    [107]刘建成.极大似然法在水下机器人系统辨识中的应用.哈尔滨工程大学学报.2001.5
    [108]王波,苏玉民,于宪钊.水下机器人操纵运动水动力计算与仿真.2008年船舶水动力学学术会议.2008年11月,杭州,119-125页
    [109]朱军,陈强,高俊吉,黄昆仑.扁平潜器微速与倒航水动力试验研究.水动力学研究与进展A辑.2004,19(3):401-406页
    [110]林超友,朱军.潜艇近海底航行附加质量数值计算.船舶工程.2003,25(1):26-29页
    [111]黄昆仑,庞永杰,苏玉民,朱军.潜器线性水动力系数计算方法研究.船舶力学.2008,12(5):697-703页
    [112]刘祖源,程细得,何汉保,许建.水下航行体近海底运动操纵性研究.中国舰船研究2006.4
    [113]胡志强,林扬,谷海涛.水下机器人粘性类水动力数值计算方法研究.机器人.2007
    [114]柏铁朝,梁中刚,周轶美,敬军.潜艇操纵性水动力数值计算中湍流模式的比较与运用.中国舰船研究.2010.4
    [115]杨路春,庞永杰,黄利华,张安平.潜艇PMM实验的CFD仿真技术研究.舰船科学技术.2009.12
    [116] Wang M, Sutton R. System identification of a remotely-operated flight Vehicle.Proceedings of IMarEST-Part A-Journal of Marine Engineering and Technology.Volume2005.Number6,April2005. pp.17-22.
    [117] Rentschler M.E.,Hover F.S., Chryssostomidis C. System Identification ofOpen-Loop Maneuvers.Oceanic Engineering IEEE.31(1):200-208.2006.
    [118] Watt G.D. Modelling and simulating unsteady six degrees-of-freedom submarinerising maneuvers. DRDC Technical Report,2007-008,Canada
    [119] Watt G.D. Estimating the hydrodynamic characteristics of the dorado remoteminehunting Vehicle. DRDC Technical Memorandum,2002-177,Canada
    [120] Bettle M.C.,Gerber A.G.,Watt G.D. Unsteady analysis of the six DOF motion ofa buoyantly rising submarine. Computer&Fluids,2009(38):1833-1849P
    [121] Jagadeesh P., Murali K., Idichandy V.G. Experiment investigation ofhydrodynamic force coefficients over AUV hull form. Ocean Engineering,2009(36):113-118P
    [122] Jones D.A.,Clarke D.B.,Brayshaw I.B.,Barillon J.L.,Anderson B. TheCalculation of Hydrodynamic Coefficients for Underwater Vehicles.DSTO-TR-1329,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700