水下自主作业系统协调控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地球上资源枯竭问题的严重,海洋开发越来越受重视。但是海洋条件恶劣,使用水下机器人和作业机械手已成为海洋开发的重要手段,代替人类去观测海洋、调查海底地质和采掘资源。在水下智能机器人上装配作业机械手,构成水下自主作业系统是水下智能机器人发展的一个重要方向。水下自主作业系统能够同时控制水下机械手终端位置和作用力,从而可以克服主/从配置的机械手系统的轨迹跟踪精度低、难于实现精确力控制、运行费用高昂及操作易疲劳等缺点,它将在各种浅海和深海使命诸如海洋科学、油气探测、水下考察、钻井及采矿支持、管道维护、水下电缆铺设及军事应用中发挥非常重要的作用。
     水下自主作业系统具有强耦合、非线性、高维数、时变等特点。实现水下自主作业涉及到诸多问题,其中作业时,水下机器人和水下机械手之间的协调控制技术是有待解决的关键性技术之一,本文针对这一问题,展开研究。
     本文首先分别讨论了水下智能机器人和水下作业机械手的运动学和动力学模型。通过分析水下机器人和机械手在水中的运动情况,根据动量定理和动量矩定理得出其空间运动方程;分析其在水中作业时的受力情况,得出动力学方程。为之后建立系统整体模型奠定了基础。
     在考虑了各种水动力影响因素的基础上,使用Quasi-Lagrange方程建立自主水下作业系统的动力学数学模型,并将此模型分解为一系列相互关联的子系统;研究PID控制和滑模控制算法,设计PID控制器和滑模控制器用于水下自主作业系统协调控制,并使用模糊逻辑动态调节控制器的控制参数。
     为了验证模型及控制算法的有效性,在某型水下机器人平台上分别装具三功能(二自由度)和五功能(四自由度)作业机械手,考虑静水和匀速平流两种环境,进行仿真研究,通过仿真结果分析、对比,得出滑模控制表现出比PID控制更好的控制精度和稳定性;五功能机械手比三功能机械手对机器人平台的耦合影响更大。
     为了更好地研究水下自主作业系统的协调控制技术,对一个小型开架式遥控水下机器人进行改造,将其改造成为一个遥控/智能机器人。并在机器人平台上装具一个三功能机械手,建立水下自主作业试验系统用于试验研究,并对该系统进行了一系列相关试验。
     本文结合相关研究项目,对水下自主作业系统的协调控制问题开展了一系列的研究工作,其研究成果为水下自主作业提供了理论依据和技术手段。其中,许多工作有待开展进一步的研究。
Ocean covers a large of the earth, which is relatively less explored. With the energy on earth is consumed up, the development of ocean is more and more important. The underwater vehicles and the robotic manipulators are effective tools to help people to see and touch this unfamiliar word. Robotic manipulator, mounted on the autonomous underwater vehicle(AUV), is usually called Underwater Vehicle-Manipulator System(UVMS). Currently, the master-slave configuration of underwater manipulation system is widely used. This kind of configuration has many disadvantages, such as, low accuracy of trajectory tracking, difficulty to realize accreted force control, high operational cost and operator’s fatigue to name a few. To overcome these deficiencies, an autonomous manipulator control system that could simultaneously control the position of the end-effector and the force applied to the environment would be better solution. Thus, the UVMS has an important role to play in a number of shallow and deep sea missions for marine science, oil and gas searching, underwater inspection, drilling, mining, pipe-line, maintenance underwater cable burial and military application and so on.
     The character of the UVMS is nonlinear, coupled, time-varying and high-dimension. The implementation of the self-manipulation under water depends on various kinds of pivotal technology. The important one of them is the coordinated control of the AUV and manipulator. It was presented the coordinated control of UVMS in this dissertation.
     Firstly, the kimematic and dynamic equations of the AUV and the manipulator are discussed in this dissertation. Based on the motion in water of the AUV and the manipulator, the kinematic equation is got from the momentum theorem and the angular momentum theorem. We have developd the dynamic equation, based on the analysis of the hydrodynamic force.
     A dynamic model for the UVMS considering various hydrodynamic effects is derived using Quasi-Langrange method. And, the PID and sliding mode controllers are designed based on the decentralized form of the dynamics of UVMS, to implement the control of the end-effector trajectory tracking. Due to ensure the better control performance, the gains of the two controllers are tuned with the fuzzy logic.
     In order to validate the accuracy of the model and the effectiveness of the controllers, computer simulations using two UVMSs, a two degrees-of-freedom(DOF) manipulator and a four DOF manipulator separately mounted on an AUV, were performed in the environments of the slack flow and const laminar flow. The simulation results show that the sliding mode control, in contrast with the PID control, provides more accurate and robust performance, and the four DOF manipulator, in contrast with the two DOF manipulator, has the more coupled interaction with the AUV.
     An experiment system, composed of an UVMS and a computer controller, is founded to research the coordinated control. The UVMS is composed of a remotely operated underwater vehicle and a manipulator. The control of the vehicle is altered from the remotely operated control to the autonomous control. Some experiments were implemented to get the hydrodynamic coefficients of the vehicle, for the dynamic model.
     Based on the related projects, a series of research about the coordinated control of UVMS is performed in this dissertation. The results will give substantial support on theory and technique for control of UVMS. However this is just first step and more research work is required in future.
引文
[1]王红雨.无人潜器技术文集.北京:船舶系统工程部,2002
    [2]苏纪兰.海洋科学和海洋工程技术.山东:山东教育出版社,1998
    [3]蒋新松,封锡盛,王棣棠.水下机器人.沈阳:辽宁科学技术出版社,2000
    [4]吴克勤,林宝法,祁东海译. 2020年的海洋—科学发展趋势和可持续发展面临的挑战.海洋出版社,2004
    [5] Cui, Y., Podder T.K., and Sarkar, N. Impedance Control of Underwater Vehicle Manipulator Systems. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. Korea:1999. 148~153
    [6] The US Department of the Navy, The Navy Unmanned Undersea Vehicle (UUV) Master Plan, 2004
    [7] Yuh, J. and West, M. Underwater Robotics. Advanced Robotics: 2001, 15: 609~639.
    [8] Antonlli, G. and Chiaverini, S Fuzzy Redundancy Resolution and Motion Coordination for Underwater Vehicle- Manipulator Systems. In IEEE Transactions on Fuzzy Systems, 2003, 11 (1): 109~120
    [9] Antonelli, G. Underwater Robots, Motion and Force Control of Vehicle- Manipulator Systems. Springer tracts in advanced robotics, 2003
    [10] Santos, C. H.,Bittencourt, G. and Guenther, R. et al. Redundancy Resolution for Underwater Vehicle-Manipulator Systems Using A Fuzzy Expert System. In Proc. of IEEE Int. Conf. on Control Applications. Germany: 2006. 2848~2853
    [11] Santos, C.H., Cuenther, R. and Pieri, E.D. A Reactive Neural Network Architecture to Redundancy Resolution for Underwater Vehicle-Manipulator Systems. In Proc. of IEEE Int. Conf. on Robotics and Automation. USA: 2006. 3238~3243
    [12] Maciejewski, A.A. and Klein, C.A. Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments. The InternationalJournal of Robotics Research, 1985, 4(3): 109~117
    [13] Nakamura, Y., Hanafusa, H., and Yoshikawa, T. Task-priority based redundancy control of robot manipulators. The International Journal of Robotics Research, 1987, 6(2): 3~15
    [14] Chiaverini, S. Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulator. In IEEE Trans. Robotics and Automation. 1997, 13: 398~410
    [15] Antonelli, G. and Chiaverini, S. Task-priority redundancy resolution for underwater vehicle-manipulator systems. In Proc. of IEEE, Int. Conf. Robotics Automation. 1998. 768~773
    [16] Antonelli, G. and Chiaverini, S. A fuzzy approach to redundancy resolution for underwater vehicle-manipulator systems. In 5th IFAC Conf. Manoeuvring and Control of Marine Crafts. Denmark: 2000
    [17] Antonelli, G. and Chiaverini, S. Fuzzy inverse kinematics for underwater vehicle- manipulator systems. In 7th Int. Symp. Advances in Robot Kinematics. Portoroz : 2000
    [18] Padir, T. Kinematic Redundancy Resolution for Two Cooperation Underwater Vehicles with On-Board Manipulators
    [19] Zhou, Z.L. and Nguyen, C.C. Globally Optimal Trajectory Planning for Redundant Manipulators using State Space Augmentation Method. Journal of Intelligent and Robotic Systems, 1997, 19(1): 105~117
    [20] Wang, Y. and Lane, D.M. Subsea vehicle path planning using nonlinear programming and constructive solid geometry. IEE Proc. on Control Theory Application. 1997. 144(2): 143~152
    [21] Kim, J., Marani, G. and Chung W.K. et.al. Dynamic task priority approach to avoid kinematic singularity for autonomous manipulation. In Proc. of the 2002 IEEE/RSJ, Int. Conf. on Intelligent Robots and Systems, Switzerland: 2002. 1942~1947
    [22] Hirakawa, A.R. and Kawamura, A. Trajectory Planning of Redundant Manipulators for Minimum Energy Consumption without Matrix Inversion. In the Proc. of the IEEE, Int. Conf. on Robotics and Automation. USA: 1997. 2415~2420
    [23] Jun, B.H., Lee, P.M. and Lee, J. Manipulability analysis of underwater robotics arms on ROV and application to task-oriented joint configuration. MTS/IEEE Tchno-Ocean’04, Kobe, Japan, 2004, 3: 1548~1553
    [24] Saramago, S.F.P. and Sreffen, V. Optimization of the Trajectory Planning of Robot Manipulators Taking into Account the Dynamics of the system. Journal of Mechanism and Machine Theory, 1998, 33(7): 883~894
    [25] Zhu, Z.H., Mayorga, V. and Wong, A.K.C. Dynamic Robot Manipulator Trajectory Planning for Obstacle Avoidance. Journal of Mechanics Research Communications, 1999,26(2): 139~144
    [26] Brock, O. and Khatib, O. High-Speed Navigation Using the Global Dynamic Window Approach. In the Proc. of the IEEE, Int. conf. on Robotics and Automation. USA: 1999. 341~346
    [27] Makoto, I., Shinichi, S. and Kazuo, I. Dynamics Analysis and Resolved Acceleration Control of an Autonomous Underwater Vehicle Equipped with a Manipulator. IEEE, 2004: 277~281
    [28] Podder, T.K. and Sarkar, N. Dynamic Trajectory Planning for Autonomous Underwater Vehicle-Manipulator Systems. In Proc. of the 2000 IEEE, Int. Conf. on Robotics and Automation, USA: 2000. 3461~3466
    [29] Podder, T.K. and Sarkar, N. Motion Planning and Control of UVMS: A Unified Dynamics-based Approach. 2003: 2446~2453
    [30] Whitney, D.E. Resolved motion rate control of manipulators and human prostheses. IEEE Transactions of Man, Machine Systems. 1969, 10: 47~53.
    [31] Egeland, O. Task-space tracking with redundant manipulators. IEEE Journal of Robotics and Automation. 1987, 3: 471~475
    [32] Nakamura, Y., Hanafusa, H. and Yoshikawa. T. Task-priority based redundancy control of robot manipulators. International Journal of Robotics Research. 1987, 6: 3~16.
    [33] Antonelli, G. and Chiaverini, S. Adaptive Tracking Control of Underwater Vehicle-Manipulator Systems. In Proc. of the 1998 IEEE, Int. Conf. on Control Applications. Italy: 1998. 1089~1093
    [34] McLain, T.W., Rock, S.M., and Lee, M.J. Experiments in the coordination of underwater manipulator and vehicle control. In IEEE Oceans’95. 1995.1208~1215
    [35] McLain, T.W. and Rock, S.M. Experiments in the hydrodynamic modeling of an underwater manipulator. In Symposium on Autonomous Underwater Vehicle Technology, AUV’96. USA: 1996. 463~469
    [36] McLain, T.W., Rock, S.M., and Lee, M.J. Experiments in the coordinated control of an underwater arm/vehicle system. Autonomous Robots, 1996, 3: 214~232
    [37] Kortney, N., Leabourne and Stephen, Rock M. Model development of an underwater manipulator for coordinated arm-vehicle control. In Proc. of the OCEANS 98 Conf. France: 1998
    [38] Kim, J., Kim, K. and Choi, H.S. et.al. Estimation of Hydrodynamic Coefficients for an AUV Using Nonlinear Observers. IEEE Journal of Oceanic Engineering, 2002, 27(4): 830~840
    [39] Dunnigan, M.W. and Russell, G.T. Evaluation and Reduction of the Dynamic Coupling Between a Manipulator and an Underwater Vehicle. IEEE Journal of Oceanic Engineering, 1998, 23(3): 260~273
    [40] Vossoughi, G.R., Meghdari, A. and Borhan, H. Dynamic Modeling and Robust Control of an Underwater ROV Equipped with a Robotic Manipulator Arm. In Proc. of 2004 JUSFA
    [41] Richard, M.M., Li, Zexiang. and Shankar, S.S. A Mathematical Introduction to Robotic Manipulation. CRC Press, 1994: 102~103
    [42] Vukovratovic, M., Kircanski, N. Real-Time Dynamics of Manipulation Robots, Springer-Verlag, 1985
    [43]蒋新松.机器人学导论.沈阳:辽宁科学技术出版社,1994
    [44]赵锡芳.机器人动力学.上海:上海交通大学出版社,1992
    [45] Ioi, K. and Itoh, K. Modeling and simulation of an underwater manipulator. Advanced Roborics, 1990, 4(4): 303~317
    [46] McMillan, S., Orin, D.E. and McGhee, R.B. Efficient Dynamic Simulation of an Unmanned Underwater Vehicle with a Manipulator. In IEEE Int. Conf. on Robotics and Automation. San Diego, CA: 1994. 1133~1140
    [47] Featherstone, R. The Calculation of Robot Dynamics Using Articulated-Body Inertias. The International Journal of Robotics Research, 1983, 2(1): 13~30
    [48] Schjolberg, I. and Egeland, O. Motion control of underwater vehicle-manipulator systems unsing feedback linearization. In 3rd IFAC Workshop on Control Applications in Marine Systems, CAMS’95. Trondheim, Norway: 1995. 54~59
    [49] McMillan, S., Orin, D.E. and McGhee, R.B. Efficient Dynamic Simulation of an Unmanned Underwater Vehicle with a robotic Manipulator. IEEE Transactions on Systems, Man, and Cybernetics. 1995, 25(8): 1194~1206
    [50] Sarkar, N., Podder, T.K. Coordinated Motion Planning and Control of Autonomous Underwater Vehicle-Manipulator Systems Subject to Drag Optimization. IEEE Journal of Oceanic Engineering, 2001, 26(2): 228~239
    [51] Tarn, T.J., Shoults, G.A. and Yang, S.P. A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Autonomous Robots, 1996, 3: 269~283
    [52] Yang, S.P. Dynamic modeling and control of underwater vehicle with multi-manipulator system, PhD dissertation, Washington University, 1997
    [53] Bartolini, G., Coccoli, M. and Punta, E. Sliding mode control of an underwater robotic manipulator. In Proc. IEEE Conference on Decision and Control. Sydney,Australia: 2000. 2983~2988
    [54] Bartolini, G. and Punta, E.. Second Order Sliding Mode Tracking Control of Underwater Vehicles. In Proc. of the American Control Conference. USA: 2000. 65~69
    [55] Antonelli, G. and Chiaverini, S. Singularity- free regulation of underwater vehicle- manipulator systems. In Proc. American Control Conf. Philadelphia, PA: 1998. 399~403
    [56] Xu, B., Abe, S. and Sakagami N. et al. A Robust Nonlinear Controller for Underwater Vehicle-Manipulator Systems. In Proc. of the 2005 IEEE/ASME, Int. Conf. on Advanced Intelligent Mechatronics. Monterey, California: 2005. 711~716
    [57] Lee, M. and Choi, H.S.. A Robust Neural Controller for Underwater Robot Manipulators. IEEE Transactions on Neural Networks. 2000, 11(6): 1465~1470
    [58] Xu, B., Sakagami, N. and Pandian, S.R. et al. A Fuzzy Controller for Underwater Vehicle-Manipulator Systems
    [59] Xu, B., Pandian, S.R. and Petry, F. A Sliding Mode Fuzzy Controller for Underwater Vehicle-Manipulator Systems. In Annual Meeting of the North American Fuzzy Information Processing Society. 2005. 181~186
    [60] Santos, C.H., Bittencourt, G. and Guenther, R. Motion Coordination for Underwater Vehicle-Manipulator Systems using a Fuzzy Hybrid Strategy. In Proc. of IEEE/RSJ, Int. Conf. on Intelligent Robots and Systems. Beijing, China: 2006. 3018~3023
    [61] Lee, P.M. and Yuh, J.. Application of Non-regressor Based Adaptive Control to an Underwater Mobile Platform-mounted Manipulator. In Proc. of the 1999 IEEE, Int. Conf. on Control Applications. USA: 1999. 1135~1140
    [62] Sarkar, N., Yuh, J. and Podde,r T.K.. Adaptive Control of Underwater Vehicle-Manipulator Systems Subject to Joint Limits. In Proc. of the 1999 IEEE/RSJ, Int. Conf. on Intelligent Robots and Systems. 1999. 142~147
    [63] Sun, Y.C. and Cheah, C.C.. Adaptive Setpoint Control of UnderwaterVehicle-Manipulator Systems. In Proc. of the 2004 IEEE Conf. on Robotics, Automation and Mechatronics. Singapore: 2004. 434~439
    [64] Zhu, W.H., Xi, Y.G. and Zhong, Z.J. et al. Virtual decomposition based control for generalized high dimensional robotic systems with complicated structure. IEEE Transactions on Robotics and Automation, 1997, 13: 411~436
    [65] Antonelli, G., Caccavale, F. and Chiaverini, S. A Modular Scheme for Adaptive Control of Underwater Vehicle-Manipulator Systems. In Proc. of the American Control Conf. 1999. 3008~3012
    [66] Antonelli, G., Caccavale F. and Chiaverini, S. Adaptive Tracking Control of Underwater Vehicle-Manipulator Systems Based on the Virtual Decomposition Approach. IEEE Trans. on Robotics and Automation, 2004, 20(3): 594~602
    [67] Antonelli, G., Caccavale F. and Chiaverini S. et.al. Tracking Control for Underwater Vehicle-Manipulator Systems with Velocity Estimation. IEEE Journal of Oceanic Engineering, 2000, 25(3): 399~413
    [68] Antonelli, G. Underwater robots: motion and force control of vehicle-manipulator systems (second edition). Springer-Verlag Berlin Heidelberg, Germany, 2006
    [69]刘华平,孙富春,何克忠等.奇异摄动控制系统:理论与应用.控制理论与应用,2003,20(1)
    [70] Canudas, C., Diaz, E.O. and Perrier, M. Nonlinear control of an underwater vehicle/manipulator with composite dynamics. IEEE Trans. on Control Systems Technology, 2000, 8(6): 948~960
    [71] Kim, J., Chung, W.K. and Yuh, J. Dynamic Analysis and Two-Time Scale Control for Underwater Vehicle-Manipulator Systems. In Proc. of the 2003 IEEE/RSJ, Int. Conf. on Intelligent Robots and Systems. USA: 2003. 577~582
    [72] Chung, G.B., Eom, K.S. and Yi, B.J. et.al. Disturbance Observer-Based Robust Control for Underwater Robotic Systems with Passive Joints. In Proc. of the 2000 IEEE, Int. Conf. on Robotics and Automation. USA: 2000. 1775~1780
    [73] Sarkar, N. and Podder, T.K. Motion Coordination of Underwater Vehicle-Manipulator Systems Subject to Drag Optimization. In Proc. of the 1999 IEEE, Int. Conf. on Robotics and Automation. USA: 1999. 386~392
    [74] Tarn, T.J. and Yang, S.P. Modeling and control for underwater robotic manipulators– an example. Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico: 1997, 2166~2171
    [75] Carlos, C.W., Ernesto, O.D. and Michel, P. Control of Underwater Vehicle/Manipulator with Composite Dynamics. In Proc. of the American Control Conference. USA: 1998. 389~393
    [76] Lizarralde, F. and Wen, J.T. Quaternion-Based Coordinated Control of a Subsea Mobile Manipulator with Only Position Measurements. In Proc. of the 34th Conf. on Decision and Control. USA: 1995. 3996~4001
    [77] Kawamura, S. and Sakagami, N.. Analysis on Dynamics of Underwater Robot Manipulators basing on Iterative Learning Control and Time-Scale Transformation. In Proc. of the 2002 IEEE, Int. Conf. on Robotics and Automation, USA: 2002, 1088~1094
    [78] Antonelli, G., Chiaverini, S. and Sarkar, N. External force control for underwater vehicle-manipulator systems. IEEE Trans. on Robotics and Automation, 2001, 17(6): 931~938
    [79] Chiaverini, S. and Sciavicco, L. The Parallel Approach to Force/Position Control of Robotic manipulators. IEEE Trans. on Robotics and Automation, 1993, 9: 361~373
    [80] Dunnigan, M.W., Lane, D.M. and Clegg, A.C. et al. Hybrid Position/Force Control of a Hydraulic Underwater Manipulator. In IEE Proc. Control Theory and Application, 1996, 143(2). 145~151
    [81] Kajita, H. and Kosuge, K. Force Control of Robot Floating on the Water Utilizing Vehicle Restoring Force. In Proc. of IEEERSJ Int. Conf. on Intelligent Robot and Systems. 1997, 1: 162~167
    [82] Dégoulange, E. and Dauchez, P. External Force Control of an Industrial PUMA 560 Robot. J. of Robotic Systems, 1994, 11: 523~540
    [83] Antonelli, G., Chiaverini, and S. Sarkar, N.. An Explicit Force Control Scheme for Underwater Vehicle-Manipulator Systems. In Proc. of the 1999 IEEE/RSJ, Int. Conf. on Intelligent Robots and Systems. 1999. 136~141
    [84] Antonelli, G., Sarkar, N. and Chiaverini, S. External force control for underwater vehicle-manipulator systems. In 38th IEEE Conf. on. Decision and Control. USA: 1999. 2975~2980
    [85] Cui, Y., Podder, T.K. and Sarkar, N. Impedance Control of Underwater Vehicle Manipulator Systems. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. Kyongju, Korea: 1999, 1. 148~153
    [86] Cui, Y. and Sarkar, N. A Unified Force Control Approach for Autonomous Underwater Manipulation. In Proc. of the 2000 IEEE, Int. Conf. on Robotics and Automation. USA: 2000. 1263~1268
    [87] Cui, Y. and Sarkar, N. A Unified Force Control Approach for Autonomous Underwater Manipulation. International Journal of Robotica, 2001, 19(3): 255~266
    [88] Cui, Y., and Yuh, J. A Unified Adaptive Force Control for Underwater Vehicle-Manipulator Systems(UVMS). In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. USA: 2003. 553~558
    [89] Clegg, A.C., Dunnigan, M.W. and Lane, D.M.. Self-tuning Position and Force Control of an Underwater Hydraulic Manipulator. In Proc. of the 2001 IEEE, Int. Conf. on Robotics and Automation. Korea: 2001, 3226~3231
    [90]张奇峰,张艾群.基于能源消耗最小的自治水下机器人—机械手系统协调运动研究.机器人,2006,28(1):444~452
    [91]张奇峰,张艾群.自治水下机器人机械手系统协调运动研究.海洋工程,2006,24(3):79~84
    [92]施生达.潜艇操纵性.北京:国防工业出版社,1995
    [93]郑权旌.工程动力学.武汉:华中理工大学出版社,1991
    [94]李殿璞.船舶运动与建模.哈尔滨:哈尔滨工程大学出版社,1999
    [95]孙元泉、马运义、邓志纯.潜艇和深潜器的现代操纵理论与应用.北京:国防工业出版社,2001
    [96]王耀南.机器人智能控制工程.北京:科技出版社,2004
    [97] R. P. Paul,. Robot Manipulators: Mathematics, Programming, and Control. Cambridge, Massachusettes: MIT Press, 1981
    [98] S. B. Niku,孙富春等译.机器人学导论—分析、系统及应用.北京:电子工业出版社,2004
    [99] Angelds, J.著,宋伟刚译.机器人机械系统原理—理论、方法和算法.北京:机械工业出版社,2004
    [100] Richard M. Murray, Zexiang Li, S Shankar Sastry. A Mathematical Introduction to Robotic Manipulation. USA: CRC Press, 1994
    [101]陈乐生、王以伦.多刚体动力学基础.哈尔滨:哈尔滨工程大学出版社,1995
    [102] L. Meirovitch. Methods of Analytical Dynamics. New York: McGraw-Hill Book Co., 1970
    [103]刘金琨.先进PID控制Matlab仿真.北京:电子工业出版社. 2004
    [104]刘曙光、魏俊民、竺志超.模糊控制技术.北京:中国纺织出版社. 2001
    [105]王立新.模糊系统与模糊控制教程.北京:清华大学出版社. 2003、
    [106] Young, K-K. D. Controller Design for manipulator Using Theory of Variable Structure Systems. IEEE Transaction on Systems, Man, and Cybernetics, SMC-8, February 1978:101~109
    [107]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社. 2005
    [108]王丰尧.滑模变结构控制.北京:机械工业出版社
    [109]姚琼荟,黄继起,吴汉松.变结构控制系统.重庆:重庆大学出版社,1997
    [110]高为炳.变结构控制理论与设计方法.北京:科学出版社,1996.
    [111] ROV1000 MANUAL. Outland company, 2006:4~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700