四桥臂PV-AF系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在人类社会科技与经济高速发展的过程中,不可再生能源的大量使用带来了严重的环境污染和生态恶化的问题,严重地影响了社会的发展和人类的健康,太阳能、潮汐能和风能等可再生能源的利用引起了广泛的重视。光伏发电系统是太阳能利用的重要形式,而且具有有源滤波功能的光伏发电(PhotovoltaicPower Generation and Active Filter,PV-AF)系统拓宽了光伏发电系统的功能,在实现向电网注入有功电能的同时,还能有效地抑制电网中的谐波等问题,具有广阔的发展及应用前景。本文针对接入三相四线制低压电网的四桥臂PV-AF系统关键技术进行了研究。
     在分析基于保守功率理论(Conservative Power Theory,CPT)的谐波电流检测方法的基础上,针对电网电压畸变的情况,提出了一种基于电网电压消谐的改进型CPT谐波电流检测方法,通过提取公共连接点电压中的基波成分,抑制电压中谐波成分对补偿电流计算的影响。仿真和实验验证了所提方法的合理性及可行性。
     最大功率点跟踪(Maximum Power Point Tracking,MPPT)技术是提高能量转换的关键环节,决定了四桥臂PV-AF系统的工作效率,本文对各种MPPT方法进行了比较,对扰动观察法在最大功率点(Maximum Power Point,MPP)附近的振荡进行了分析,研究了系统工作点处于MPP附近的判断方法,提出了一种扰动观察法与恒定电压法相结合的改进型MPPT新方法。实验和仿真表明该方法能够准确快速地跟踪最大功率点。
     四桥臂PV-AF系统的控制策略中,电压外环用于直流侧电压的控制和最大功率点的跟踪,电流内环用于跟踪基波并网电流和电网中谐波电流指令,电流环控制性能至关重要,本文提出了一种基于PI和重复H_∞控制的复合控制器的电流环控制策略,PI控制环节保证系统的动态性能,内模环节使得稳态误差更小,鲁棒控制环节有效增强了系统的抗干扰性能,在连续域对复合控制器参数进行设计,通过离散化完成控制器的数字实现,并且在离散域中研究了离散化对系统性能的影响。在不同情况下对提出的复合控制器进行了实验和仿真验证,结果表明系统具有良好的动态性能、更小的稳态误差和优良的鲁棒性,具有穿越低电压区域的能力。
     针对系统中存在的负阻抗将会影响系统稳定性的问题,本文研究了基于小信号模型的四桥臂PV-AF系统阻抗建模,对不同控制策略下参数变化对系统阻抗特性的影响进行了比较研究。验证了优化后的复合控制器参数,在保证系统性能的前提下,能够有效地减小负阻抗对系统稳定性的影响。
     主电路参数是影响四桥臂PV-AF系统性能的关键因素之一,本文对四桥臂PV-AF系统主电路参数进行了设计,对器件进行了选型,搭建了5kVA三相四桥臂PV-AF系统实验平台。
In recent years, with the rapid development of technology and economy, themass utilization of non-renewable energy has brought severe problems ofenvironmental pollution and ecological deterioration, which has a negative impact onthe social development and human health. Thus, much attention has been paid to therenewable energy, such as solar energy, tidal energy, wind energy, etc. Photovoltaic(PV) power generation system is an important form of utilization of solar energy andone kind of distributed power generation systems. Besides, photovoltaic powergeneration and active filter (PV-AF) system broadens the function of PV powergeneration system. As the active power is injected into the grid, harmonics in the gridcan be suppressed effectively. Thus PV-AF system has broad development andapplication prospect. In this dissertation, key technology for three-phase four-wirelow-voltage four-leg PV-AF system has been studied.
     Based on the analysis of conservative power theory (CPT) harmonic currentdetection method, an improved CPT harmonic current detection method based on gridvoltage harmonic elimination has been proposed in distorted grid voltage conditions,by extracting the fundamental component of voltage at the point of common coupling(PCC), which inhibits the influence of voltage harmonic components on the currentcalculation. Simulation and experimental results verify the rationality and feasibilityof the proposed method.
     The maximum power point tracking (MPPT) technique is the key to improve theenergy conversion, maintaining the operation efficiency of four-leg PV-AF system. Inthis dissertation, different kinds of MPPT methods are compared. The oscillationnearby the maximum power point (MPP) is analyzed while adopting the perturb andobserve method. The method judging whether the MPP is nearby the MPP has beenstudied and an improved MPPT method has been proposed. Experiments andsimulation show that the proposed method can track the MPP quickly and accurately.
     As for the control strategy of four-leg PV-AF system, the outer voltage loop isadopted for controlling DC voltage and tracking the MPP. The inner current loop isused to track the fundamental grid current and the harmonic current reference value,which is vital to the entire system controlling. In this dissertation, a novel current loopcontrol strategy based on compound controller with PI (Proportional Integral)controller and H_∞repetitive controller has been proposed. PI controller ensures the dynamic performance of the system. The internal model makes smaller steady-stateerror. Robust control effectively enhances the anti-interference performance of system.The parameters for the compound controller have been designed and the digitalimplementation for the controller has been conducted by discretization. The influenceof the discretization on the system performance has been studied in the discretedomain. Simulation and experiments have been implemented on the proposedcompound controller under different conditions. The results show that the systemowns decent dynamic performance, smaller steady-state error, good robustness andlow voltage ride through ability.
     For that the existence of negative impedance in the system will affect thestability of the system, the small-signal impedance modeling for the four-leg PV-AFsystem has been studied. Via different control strategies, the research about theinfluence of impedance mpedance characteristics on system stability has beenconducted comparatively. On the premise of guaranteeing the system performance,the impact of the negative impedance on system stability has been reduced throughthe optimization of the controller parameters, which has been verified.
     The main circuit parameters are the key factors affecting the performance of thefour-leg PV-AF system. In this dissertation, the parameters for the main circuit offour-leg PV-AF system have been designed. The devices are selected. Experimentalplatform of5kVA three-phase four-leg PV-AF system have been set up.
引文
[1] BOSE B K. Global Warming: Energy, Environmental Pollution and the Impact of PowerElectronics[J]. Industrial Electronics Magazine,2010,4(4):6-17.
    [2]戴攀,邹家勇,田杰,等.中国电力行业碳减排综合优化[J].电力系统自动化,2013,37(14):1-6.
    [3] SIRAKI A G, CURRY N, PILLAY P, et al. Power Electronics Intensive Solutions forIntegrated Urban Building Renewable Energy Systems[C]. Porto: Industrial Electronics,2009. IECON '09.35th Annual Conference of IEEE,2009:3998-4006.
    [4] Jr. CHARLES H K, SINNADURAI N. Electronics, energy, and the environment[C].Electronics System-Integration Technology Conference,2008:11-18.
    [5]刘吉臻.大规模新能源电力安全高效利用基础问题[J].中国电机工程学报,2013,33(16):1-8.
    [6]杨勇平,杨志平,徐钢,等.中国火力发电能耗状况及展望[J].中国电机工程学报,2013,33(23):1-11.
    [7]蒋敏华,黄斌.燃煤发电技术发展展望[J].中国电机工程学报,2012,32(29):1-8.
    [8]郝新东.中美能源消费结构问题研究[D].武汉:武汉大学,2013.
    [9] LIU J, GOLDSTEIN D. Understanding China's renewable energy technology exports[J].Energy Policy,2013,52(12):417-428.
    [10] YUAN X, WANG X, ZUO J. Renewable energy in buildings in China—A review[J].Renewable and Sustainable Energy Reviews,2013,24:1-8.
    [11]丁明,陈忠,苏建徽,等.可再生能源发电中的电池储能系统综述[J].电力系统自动化,2013,37(1):19-25.
    [12]黄汉云.太阳能光伏发电应用原理[M].北京:化学工业出版社,2013.
    [13] H. S O, MACGILL I, PASSEY R. Estimating the net societal value of distributed householdPV systems[J]. Solar Energy,2014,100:9-22.
    [14]王伟,吴犇,金科,等.太阳能光伏/市电联合供电系统[J].电工技术学报,2012,34(10):249-254.
    [15] HUE N. Comparative costs of electricity generation technologies in Australia consideringcarbon pricing, Government's subsidisation, and intermittent renewable integration costs[C].Clean Electrical Power (ICCEP),2013International Conference on,2013:535-542.
    [16] SUGIHARA H, YOKOYAMA K, SAEKI O, et al. Economic and Efficient VoltageManagement Using Customer-Owned Energy Storage Systems in a Distribution NetworkWith High Penetration of Photovoltaic Systems[J]. IEEE TRANSACTIONS ON POWERSYSTEMS,2013,28(1):102-111.
    [17] ISLAM M S, ISLAM A. Economic Feasibility Analysis of Electrical Hybrid Grid in a CityArea[C]. Southeastcon,2013Proceedings of IEEE,2013:1-6.
    [18] MITTAL A. Energy Efficiency Enabled by Power Electronics[C]. Electron DevicesMeeting (IEDM),2010IEEE International,2010:121-127.
    [19] BOSE B K. Global Energy Scenario and Impact of Power Electronics in21st Century[J].IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2013,60(7):2638-2651.
    [20] CHOWDHURY S, SUMITA U, ISLAM A. Exploratory Study of PV Industry,1990-2008:Lesson from Japan and Germany[C]. Developments in Renewable Energy Technology(ICDRET),20122nd International Conference,2012:1-4.
    [21] SAKATA I, AKIYAMA M. THE IMPACT OF A RAPIDLY CHANGING GLOBAL PVMARKET ON THE PV MANUFACTURING SUPPLY CHAIN[C]. TechnologyManagement for Emerging Technologies (PICMET),2012Proceedings of PICMET '12,2012:1648-1650.
    [22] Centre Joint Research.光伏现状报告2011[R].,2012.
    [23] EPIA. GLOBAL MARKET OUTLOOK FOR PHOTOVOLTAICS UNTIL2015[R].,2011.
    [24] The American Clean Energy and Security Act of2009[J]. Washington and Lee Journal ofEnergy, Climate and the Environment,2010,1(1):1-7.
    [25] WIKIPEDIA. American Clean Energy and Security Act[Z].2013.
    [26]亓坤.光伏崛起看德国[J].新理财,2012(11):41.
    [27]雷鸣.日本与德国新能源产业结构转型的比较分析[J].现代日本经济,2013,187(1):79-86.
    [28]洪磊,贾峰,吴克.德国可再生能源现状及其配套法规建设[C].合肥:安徽新能源技术创新与产业发展博士科技论坛论文集,2010.
    [29]北极星太阳能光伏网讯.德国2012年可再生能源法案征税标准增加[Z].2011.
    [30] WATANABE C. Identification of the role of renewable energy A view from Japan'schallenge: The New Sunshine Program[J]. Renewable Energy,1995,6(3):237-274.
    [31] OKANO-HEIJMANS M. Japan's ‘green’ economic diplomacy: environmental and energytechnology and foreign relations[J]. The Pacific Review,2012,25(3):339-364.
    [32]俞培果.日本能源政策抉择及其对我国的启示[J].现代日本经济,2012,186(6):34-41.
    [33]刘青荣,顾群音,阮应君,等.日本太阳能光伏发电系统的政策和实例[J].华东电力,2009,37(2):279-283.
    [34]中国行业研究网.2013年8月日本光伏系统安装量达10GW[Z].2013.
    [35]中国资源综合利用协会可再生能源专业委员会.中国光伏发电的技术现状及展望[J].可再生能源,2002,103(3).
    [36]国家发展改革委员会.可再生能源中长期发展规划[Z].2007.
    [37]戚汝庆.中国光伏产业创新系统研究[D].华中科技大学,2012.
    [38]刘骊光.中美太阳能光伏发电产业政策比较与发展态势[J].中国人口.资源与环境,2012,22:421-425.
    [39]邢宇欣,刘增泰.我国的新能源与可再生能源政策与规划分析[J].电源技术应用,2012(10):126-128.
    [40]财政部.关于印发《太阳能光电建筑应用财政补助资金管理暂行办法》的通知[Z].2009.
    [41]财政部,科技部,国家能源局.关于实施金太阳示范工程的通知[Z].2009.
    [42]中国规划建设的第一个光伏并网发电特许权项目——甘肃敦煌1O Mw光伏发电项目9月28日在敦煌奠基[N].世界能源导报.
    [43]新闻中心.中国光伏发电装机容量已超美国位居世界第三[Z].2013.
    [44] PHARNE I D, BHOSALE Y N. A Review on Multilevel Inverter Topology[C].2013International Conference on Power, Energy and Control (ICPEC),2013:700-703.
    [45] BARNES A K, BALDA J C, STEWART C M. Selection of Converter Topologies forDistributed Energy Resources[C]. Applied Power Electronics Conference and Exposition(APEC),2012Twenty-Seventh Annual IEEE,2012:1418-1423.
    [46] ABDEL-RAHIM O, ORABI M, AHMED M E. Development of high-gain high-efficiencygrid-connected inverter for PV Module[C]. Power Electronics for Distributed GenerationSystems (PEDG),20102nd IEEE International Symposium on,2010:368-373.
    [47] AMIRABADI M, TOLIYAT H A, ALEXANDER W C. A Multiport AC Link PV InverterWith Reduced Size and Weight for Stand-Alone Application[J]. IEEE Transactions onIndustry Applications,2013,49(5):2217-2228.
    [48] HOFREITER E, BAZZI A M. Single-Stage Boost Inverter Reliability in Solar PhotovoltaicApplications[C]. Power and Energy Conference at Illinois (PECI),2012IEEE,2012:1-4.
    [49] JAIN S, AGARWAL V. A Single-Stage Grid Connected Inverter Topology for Solar PVSystems With Maximum Power Point Tracking[J]. IEEE Transactions on PowerElectronics,2007,22(5):1928-1940.
    [50] CHATTOPADHYAY R, CHATTERJEE K. PV based stand alone single phase powergenerating unit[C]. IECON2012-38th Annual Conference on IEEE Industrial ElectronicsSociety,2012:1138-1144.
    [51] CITRO C, LUNA A, ROCABERT J, et al. Overview of Power Processing Structures forEmbedding Energy Storage in PV Power Converters[C]. IECON2011-37th AnnualConference on IEEE Industrial Electronics Society,2011:2492-2498.
    [52] DAS M, AGARWAL V. Novel PV fed three phase single power stage system forstand-alone applications[C]. Photovoltaic Specialists Conference (PVSC),201238th IEEE,2012:1405-1410.
    [53] COSTA L F, TORRICO-BASCOPE R P. STAND-ALONE PHOTOVOLTAIC SYSTEMWITH THREE ENERGY PROCESSING STAGES[C]. Brazilian: Power ElectronicsConference (COBEP),2011:651-656.
    [54]马进红.光伏离网型逆变系统关键技术的研究[D].杭州:浙江大学,2013.
    [55]杨秀媛,刘小河,张芳,等.大型太阳能并网发电模型及应用[J].中国电机工程学报,2011,31:19-22.
    [56]王飞,余世杰,苏建徽,等.太阳能光伏并网发电系统的研究[J].电工技术学报,2005,20(5):72-91.
    [57]唐婷,石祥花,黄如海,等.非隔离型光伏并网逆变器漏电流抑制机理分析与改进[J].电力系统自动化,2013,37(18):25-37.
    [58]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2005.
    [59]周娟.四桥臂有源电力滤波器关键技术研究[D].徐州:中国矿业大学,2011.
    [60] CABAL-YEPEZ E, MIRANDA-VIDALES H, GARCIA-PEREZ A, et al. Harmoniccomponent estimation through DFSWT for active power filter applications[C]. IndustrialElectronics Society, IECON2013-39th Annual Conference of the IEEE,2013.
    [61] SANKARA SIDDARTHA A N R, BASU T S, CHAKRABORTY C. A simple time domainapproach for harmonic, load unbalance and reactive power compensation[C]. IndustrialElectronics Society, IECON2013-39th Annual Conference of the IEEE,2013.
    [62] IEC. IEC61000-2-2Compatibility levels for low-frequency conducted disturbances andsignalling in public low-voltage power supply systems[S]. Geneva:IEC:1990.
    [63] IEC. IEC61000-3-2Electromagnetic compatibility (EMC)–Part3-2: Limits–Limits forharmonic current emissions[S]. Geneva:2009.
    [64] IEC. IEC61000-3-6Electromagnetic compatibility (EMC)-Part3-6: Limits-Assessmentof emission limits for the connection of distorting installations to MV, HV and EHV powersystems[[S]. Geneva: IEC,2008.
    [65] IEEE Std.519-1992IEEE Recommended Practices and Requirements for Harmonic Controlin Electrical Power Systems[S]. New York: INSTITUTE OF ELECTRICAL ANDELECTRONICS ENGINEERS I,1993.
    [66]中华人民共和国国家标准GB/T14549-1993电能质量公用电网谐波[S].北京:1993.
    [67] TRINH Q, LEE H. An Advanced Current Control Strategy for Three-Phase Shunt ActivePower Filters[J]. Industrial Electronics, IEEE Transactions on,2013,60(12):5400-5410.
    [68] ANGULO M, RUIZ-CABALLERO D A, LAGO J, et al. Active Power Filter ControlStrategy With Implicit Closed-Loop Current Control and Resonant Controller[J]. IndustrialElectronics, IEEE Transactions on,2013,60(7):2721-2730.
    [69] BIRD B M, MARSH J F, MCLELLAN P R. Harmonic reduction in multiplex convertors bytriple-frequency current injection[J]. Electrical Engineers, Proceedings of the Institution of,1969,110(10):1730-1734.
    [70] SASAKI H, MACHIDA T. A New Method to Eliminate AC Harmonic Currents byMagnetic Flux Compensation-Considerations on Basic Design[J]. Power Apparatus andSystems, IEEE Transactions on,1971,90(5):2009-2019.
    [71] L G, C S E. Active ac power filters[C]. Proc of IEEE/IAS Annual Meeting,1976:529-535.
    [72] QUINN C A, MOHAN N. Active filtering of harmonic currents in three-phase, four-wiresystems with three-phase and single-phase nonlinear loads[C]. Applied Power ElectronicsConference And Exposition, APEC Conference Proceedings Seventh,1992:829-836.
    [73] RAM S K, DAS B B. Comparison of different control strategy of conventional and digitalcontroller for active power line conditioner (APLC) for harmonic compensation[C].Environment and Electrical Engineering (EEEIC),201312th International Conference on,2013:209-214.
    [74] ZUJUN D, BAOLIAN L. Design and Research on Active Power Filter in Three Phase FourWire System[C]. Digital Manufacturing and Automation (ICDMA),2013FourthInternational Conference on,2013:441-444.
    [75] WANG Y, XIE Y, LIU X, et al. Minimum DC-side voltage design for three-phase four-wireActive Power Filter[C]. Industrial Electronics Society, IECON2013-39th AnnualConference of the IEEE,2013.
    [76] CIPRIAN B, GELU G, TOADER M, et al. Comparison of three phase4-leg shunt activepower filter algorithms[C]. Electrical Machines and Power Electronics and2011Electromotion Joint Conference (ACEMP),2011International Aegean Conference on,2011:478-483.
    [77]LU H, LI B. A control method of the three-phase four-leg active power filter[C]. InformationScience and Engineering (ICISE),20102nd International Conference on,2010:4823-4826.
    [78] De KOONING J, MEERSMAN B, VANDOORN T, et al. Comparison of Three-PhaseFour-Wire Converters for Distributed Generation[C]. Universities Power EngineeringConference (UPEC),201045th International,2010:1-6.
    [79] VODYAKHO O, KIM T. Shunt active filter based on three-level inverter for three-phasefour-wire systems[J]. Power Electronics, IET,2009,2(3):216-226.
    [80] VODYAKHO O, TAEHYUNG K, SANGSHIN K. Three-level inverter based active powerfilter for the three-phase, four-wire system[C]. IEEE Power Electronics SpecialistsConference,2008:1874-1880.
    [81] VODYAKHO O, MI C C. Three-Level Inverter-Based Shunt Active Power Filter inThree-Phase Three-Wire and Four-Wire Systems[J].2009,24(5):1350-1363.
    [82] LAM C, WONG M. System and control design of a hybrid active power filter in three-phasefour-wire system[C]. Power Electronics Systems and Applications,2009. PESA2009.3rdInternational Conference on,2009:1-5.
    [83] LAMICH M, BALCELLS J, GARCIA J, et al. New Structure for Three Phase Four WiresHybrid Active Filters[C]. IEEE Industrial Electronics, IECON2006-32nd AnnualConference on,2006:1603-1608.
    [84] LAMICH M, BALCELLS J, GONZALEZ D, et al. Three phase four wires shunt hybridfilter[C]. Electronics, Circuits and Systems,2008. ICECS2008.15th IEEE InternationalConference on,2008.
    [85] LAMICH M, BALCELLS J, GONZALEZ D, et al. Control of a three phase four wires shunthybrid filter[C]. Industrial Electronics,2008. ISIE2008. IEEE International Symposium on,2008:2247-2252.
    [86]刘鑫正.具有光伏发电功能的并联型有源电力滤波器的研究[D].济南:山东大学,2009.
    [87] CHENG L, CHEUNG R, LEUNG K H. Advanced photovoltaic inverter with additionalactive power line conditioning capability[C]. Power Electronics Specialists Conference,1997. PESC '97Record.,28th Annual IEEE,1997.
    [88] SUNG N, LEE J, KIM B, et al. Novel concept of a PV power generation system adding thefunction of shunt active filter[C]. Transmission and Distribution Conference and Exhibition2002: Asia Pacific. IEEE/PES,2002.
    [89] WU T F, NIEN H S, SHEN C L, et al. A half-bridge1Φ2W PV inverter system with activepower filtering and real power injection[C]. Applied Power Electronics Conference andExposition,2005. APEC2005. Twentieth Annual IEEE,2005:428-434.
    [90] WU T, NIEN H, SHEN C, et al. A single-phase inverter system for PV power injection andactive power filtering with nonlinear inductor consideration[J]. Industry Applications, IEEETransactions on,2005,41(4):1075-1083.
    [91] WU T, NIEN H, HSIEH H, et al. PV Power Injection and Active Power Filtering WithAmplitude-Clamping and Amplitude-Scaling Algorithms[J]. Industry Applications, IEEETransactions on,2007,43(3):731-741.
    [92] SEO H, JANG S, KIM G, et al. Hardware based performance analysis of a multi-functionsingle-phase PV-AF system[C]. Energy Conversion Congress and Exposition,2009. ECCE2009. IEEE,2009:2213-2217.
    [93]吴春华,黄建明,陈卫民,等.单相光伏并网与有源滤波的统一控制[J].电工技术学报,2011,26(10):103-117.
    [94]王海宁.光伏并网功率调节系统及其控制的研究[D].合肥:合肥工业大学,2005.
    [95]汪海宁,苏建徽,张国荣,等.具有无功功率补偿和谐波抑制的光伏并网功率调节器控制研究[J].太阳能学报,2006,27(6):540-544.
    [96] SEO H, KIM G, ALI M H, et al. A study on the Performance Analysis of theGrid-Connected PV-AF System[C]. Electrical Machines and Systems,2007. ICEMS.International Conference on,2007:371-375.
    [97]张国荣,张铁良,明丁,等.光伏并网发电与有源电力滤波器的统一控制[J].电力系统自动化,2007,31(8):61-66.
    [98] BAI H, SHANG S. A research of combined multifunctional three phase grid-connectedinverter/active power filter for PV system[C]. Power Electronics for Distributed GenerationSystems (PEDG),20102nd IEEE International Symposium on,2010:224-228.
    [99] DU C, ZHANG C, CHEN A. Amplitude limiting for the photovoltaic (PV) grid-connectedinverter with the function of active power filter[C]. Power Electronics for DistributedGeneration Systems (PEDG),20102nd IEEE International Symposium on,2010:426-432.
    [100]杜春水,张承慧,刘鑫正,等.带有源电力滤波功能的三相光伏并网发电系统控制策略[J].电工技术学报,2010,25(9):163-169.
    [101] KHANI S, HOSSEINI S H, MOHAMMADIAN L. Application of the vectorial theory inPV-AF system for load supply and harmonic compensation with unbalanced and distortedsupply voltages[C]. Electrical Engineering (ICEE),201119th Iranian Conference on,2011.
    [102] RAHMANI S, HAMADI A, AL-HADDAD K, et al. A multifunctional power flowcontroller for photovoltaic generation systems with compliance to power qualitystandards[C]. IECON2012-38th Annual Conference on IEEE Industrial ElectronicsSociety,2012:894-903.
    [103]赵为.太阳能光伏并网发电系统的研究[D].合肥:合肥工业大学,2003.
    [104]刘鑫正.具有光伏发电功能的并联型有源电力滤波器的研究[D].济南:山东大学,2006.
    [105] KHANI S, MOHAMMADIAN L, HOSSEINI S H. Controlling a4-wire PV-AF system inexistence of unbalanced and distorted supply voltages[C]. Electrical Engineering (ICEE),201220th Iranian Conference on,2012:473-478.
    [106] AKAGI H, KANAZAWA Y, NABAE A. Instantaneous Reactive Power CompensatorsComprising Switching Devices without Energy Storage Components[J]. IndustryApplications, IEEE Transactions on,1984,20(3):625-630.
    [107]庞健,惠晶.改良FBD法在谐波电流检测中的应用研究[J].电力电子技术,2012,46(1):63-65.
    [108]曲轶龙,于晶荣,吴伟标.基于FBD法的新型谐波电流检测方法研究[J].电源技术,2012,36(8):1143-1146.
    [109]刘开培,陈艳慧,张俊敏.基于p-q-r法的电力系统谐波检测方法[J].中国电机工程学报,2005,25(14):25-29.
    [110]韩雪.电网无功和谐波电流综合检测技术研究[D].南京:南京理工大学,2012.
    [111]韩素敏,王要东,杨常星.基于标准正弦波的ip-iq谐波电流检测方法[J].河南理工大学学报(自然科学版),2013,32(2):205-208.
    [112]马莉,周景海,吕征宇,等.一种基于dq变换的改进型谐波检测方案的研究[J].中国电机工程学报,2000,20(10):55-63.
    [113] AREDES M, AKAGI H, WATANABE E H, et al. Comparisons Between the p-q and p-q-rTheories in Three-Phase Four-Wire Systems[J]. Power Electronics, IEEE Transactions on,2009,24(4):924-933.
    [114] AKAGI H, KANAZAWA Y, NABAE A. Generalized theory of the instantaneous reactivepower in three-phase circuits[C]. IEEE&JIEE.Proceedings IPEC.,1983:1375-1386.
    [115]周林,易强,秦梅,等.不对称三相四线制系统有害电流的检测方法[J].重庆大学学报,2002,25(10):9-16.
    [116] KIM H, AKAGI H. The instantaneous power theory on the rotating p-q-r referenceframes[C]. Power Electronics and Drive Systems,1999. PEDS '99. Proceedings of theIEEE1999International Conference on,1999:422-427.
    [117]顾炜,陈明凯.一种改进的p-q-r理论在电力系统谐波检测中的应用[J].华北电力大学学报,2005,32(5):11-14.
    [118]宫鑫,蒋云峰,张蔷,等.三相四线制系统谐波检测的p-q-r法[J].电力自动化议备,2005,25(5):5-9.
    [119] STAUDT V. Fryze-Buchholz-Depenbrock: A time-domain power theory[C]. NonsinusoidalCurrents and Compensation,2008. ISNCC2008. International School on,2008:1-12.
    [120] TENTI. A Time-Domain Approach to Power Term Definitions under Non-SinusoidalConditions[C]. Sixth International Workshop on Power Definitions and Measurementsunder Non-Sinusoidal Conditions,2003:3-7.
    [121] PAREDES H K M, MARAFAO F P, BRANDAO D I, et al. Conservative power theorydiscussion and evaluation by means of virtual instrumentation[C]. Brazilian: Paredes,H.K.M.; Marafao, F.P.; Brandao, D.I.; Diniz, I.S. Power Electronics Conference,2009.COBEP '09.,2009:423-430.
    [122] PAREDES H K M, BRANDAO D I, TERRAZAS T M, et al. Shunt active compensationbased on the Conservative Power Theory current's decomposition[C]. Brazilian: PowerElectronics Conference (COBEP),2011Brazilian,2011.
    [123] PAREDES H K M, MARAFAO F P, DA SILVA L C P. A comparative analysis of FBD,PQ and CPT current decompositions—Part I: Three-phase, three-wire systems[C].Bucharest: PowerTech,2009IEEE Bucharest,2009:1-8.
    [124] PAREDES H K M, MARAFAO F P, DA SILVA L C P. A comparative analysis of FBD,PQ and CPT current decompositions—Part II: Three-phase four-wire systems[C].Bucharest: PowerTech, IEEE Bucharest,2009:1-6.
    [125] MARAFAO F P, PAREDES H K M, DA SIVA L. Critical evaluation of FBD, PQ and CPTcurrent decompositions for four-wire circuits[C]. Brazilian: Power Electronics Conference,2009. COBEP '09. Brazilian,2009:49-57.
    [126]张兴,曹仁贤.太阳能光伏并网发电及其逆变控制[M].北京:机械工业出版社,2010.
    [127]邵龙,刘观起,胡婷.光伏发电系统最大功率点跟踪方法研究综述[J].电网与清洁能源,2013,29(2):80-85.
    [128]周林,武剑,栗秋华,等.光伏阵列最大功率点跟踪控制方法综述[J].高电压技术,2008,34(6):1145-1154.
    [129] SUBUDHI B, PRADHAN R. A Comparative Study on Maximum Power Point TrackingTechniques for Photovoltaic Power Systems[J]. Sustainable Energy, IEEE Transactions on,2013,4(1):89-98.
    [130] KHANNA R, ZHANG Q, STANCHINA W E, et al. Maximum Power Point Tracking UsingModel Reference Adaptive Control[J]. Power Electronics, IEEE Transactions on,2014,29(3):1490-1499.
    [131] BASRI Y E, LAHORE C, SEGUIER L, et al. Adaptive digital synchronous P&O MPPTalgorithm for Photovoltaic DC power conversion[C]. Taipei, Taiwan: Industrial Electronics(ISIE),2013IEEE International Symposium on,2013:1-6.
    [132] AFGHOUL H, KRIM F, CHIKOUCHE D. Increase the photovoltaic conversion efficiencyusing Neuro-fuzzy control applied to MPPT[C]. Ouarzazate: Renewable and SustainableEnergy Conference (IRSEC),2013International,2013:348-353.
    [133]葛丽芳,吴晓波,赵梦恋.基于固定电压法的太阳电池MPPT系统[J].微电子学,2008,38(5):703-707.
    [134]熊远生,俞立,徐建明.固定电压法结合扰动观察法在光伏发电最大功率点跟踪控制中应用[J].电力自动化设备,2009,29(6):85-88.
    [135]冯涛,陈华.固定电压法结合电导增量法在光伏发电最大功率点跟踪控制中的应用[J].电源技术应用,2011,14(6):23-27.
    [136]李俊良,王新涛,史吏,等.但定电瓜法与变步长滞妹比较孩结合的MPPT算孩研究[J].电网技术,2012:55-59.
    [137] YANG Q, WANG Q. An Improving Control Method of CTV+P&O on PhotovoltaicPower Generation Maximum Power Point Tracking[C]. Intelligent Human-MachineSystems and Cybernetics (IHMSC),20135th International Conference on,2013:285-288.
    [138]徐瑞东,胡义华,陈昊,等.一种改进的光伏阵列最大功率点跟踪方法[J].工矿自动化,2011(3):25-28.
    [139]陈运运.光伏并网发电系统中MPPT及孤岛检测新技术研究[D].南京:南京理工大学,2012.
    [140]朱铭炼,李臣松,陈新,等.一种应用于光伏系统MPPT的变步长扰动观察法[J].电力电子技术,2010,44(1):20-22.
    [141] AASHOOR F A O, ROBINSON F V P. A variable step size perturb and observe algorithmfor photovoltaic maximum power point tracking[C]. Universities Power EngineeringConference (UPEC),201247th International,2012:1-6.
    [142] JIANG Y, QAHOUQ J A A, HASKEW T A. Adaptive Step Size WithAdaptive-Perturbation-Frequency Digital MPPT Controller for a Single-SensorPhotovoltaic Solar System[J]. Power Electronics, IEEE Transactions on,2013,28(7):3195-3205.
    [143]刘邦银,段善旭,刘飞,等.基于改进扰动观察法的光伏阵列最大功率点跟踪[J].电工技术学报,2009,24(6):91-94.
    [144] HSIAO Y, CHEN C. Maximum power tracking for photovoltaic power system[C]. IndustryApplications Conference, Th IAS Annual Meeting,2002:1035-1040.
    [145]陈兴峰,曹志峰,许洪华,等.光伏发电的最大功率点跟踪算法研究[J].可再生能源,2005,1(119):8-11.
    [146] RAHMAN N H A, OMAR A M, SAAT E H M. A Modification of Variable Step Size INCMPPT in PV System[C]. Langkawi,Malaysia: Power Engineering and OptimizationConference (PEOCO),2013IEEE7th International,2013:340-345.
    [147] ZAKZOUK N E, ABDELSALAM A K, HELAL A A, et al. Modified variable-stepincremental conductance maximum power point tracking technique for photovoltaicsystems[C]. Industrial Electronics Society, IECON2013-39th Annual Conference of theIEEE,2013:1741-1748.
    [148] MEI Q, SHAN M, LIU L, et al. A Novel Improved Variable Step-SizeIncremental-Resistance MPPT Method for PV Systems[J]. Industrial Electronics, IEEETransactions on,2011,58(6):2427-2434.
    [149] LIU F, DUAN S, LIU F, et al. A Variable Step Size INC MPPT Method for PV Systems[J].Industrial Electronics, IEEE Transactions on,2008,55(7):2622-2628.
    [150]郭明明,沈锦飞.基于改进变步长电导增量法光伏阵列MPPT研究[J].电力电子技术,2011,45(7):14-16.
    [151]刘敏安,王佳佳,陈湘,等.基于变步长电导增量的光伏阵列MPPT控制策略的优化[J].大功率电流技术,2011(5):21-25.
    [152]勤黄,靖赵,睿凌,等.基于改进变步长电导增量法的MPPT控制[J].计算机工程,2013,39(2):245-249.
    [153]胡茗哲,马学军.一种基于电导增量法的可变步长MPPT算法的研究[J].湖北理工学院学报,2013,29(4):20-23.
    [154]刘萌,王印松,宋雨倩.基于模型参考电导增量法的光伏电池MPPT控制[J].电力科学与工程,2013,29(1):16-20.
    [155]王志兵.基于恒压法结合变步长电导增量法的最大功率点跟踪[J].2012,12(19):4638-4642.
    [156]吴志鹏,卿湘运,杨富文,等.光伏发电系统的最大功率点跟踪算法及仿真研究[J].电源学报,2013(4):20-25.
    [157]曾正,杨欢,赵荣祥,等.多功能并网逆变器研究综述[J].电力自动化设备,2012,32(8):5-15.
    [158]张兴,张崇巍. PWM整流器及其控制[M].北京:机械工业出版社,2011.
    [159] CHIANG S J, AI W J, LIN F J. Parallel operation of capacity-limited three-phase four-wireactive power filters[J]. Electric Power Applications, IEE Proceedings,2002,149(5):329-336.
    [160] KANJIYA P, KHADKIKAR V, ZEINELDIN H H. A Noniterative Optimized Algorithmfor Shunt Active Power Filter Under Distorted and Unbalanced Supply Voltages[J].Industrial Electronics, IEEE Transactions on,2013,60(12):5376-5390.
    [161] YUAN X, MERK W, STEMMLER H, et al. Stationary frame generalized integrators forcurrent control of active power filters with zero steady state error for current harmonics ofconcern under unbalanced and distorted operation conditions[J]. Industry Applications,IEEE Transactions on,2002,38(2):523-532.
    [162]刘斌,伍家驹,涛邹,等.基于比例谐振的PFC控制器及其单次谐波抑制[J].电工技术学报,2011,26(7):230-236.
    [163]刘斌,谢积锦,李俊,等.基于自适应比例谐振的新型并网电流控制策略[J].电工技术学报,2013,28(9):186-195.
    [164] MATTAVELLI P. A closed-loop selective harmonic compensation for active filters[J].Industry Applications, IEEE Transactions on,2001,37(1):81-89.
    [165]孙培德,叶礼清.比例-谐振控制器在单级式太阳能并网逆变器中的应用[J].东华大学学报(自然科学版),2012,38(1):99-102.
    [166]马琳,金新民,唐芬,等.三相并网逆变器比例谐振控制及其网压前馈问题分析[J].电工技术学报,2012,27(8):56-63.
    [167]黄伟煌,胡书举,林资旭,等.一种采用相位超前校正技术的电压源逆变器单环控制策略[J].中国电机工程学报,2013,33(30):18-25.
    [168] Teodorescu Remus, Liserre Marco.光伏与风力发电系统并网变换器[M].北京:机械工业出版社,2012.
    [169]李玉梅,马伟明.基于无差拍控制的光伏电站低电压穿越技术的研究[J].电力系统自动化,2001:28-30.
    [170]陈燕东,罗安,周乐明,等.一种功率前馈的鲁棒预测无差拍并网控制方法[J].中国电机工程学报,2013,33(36):62-69.
    [171]王志良,王永,警振宁,等.基于无差拍控制的有源电力滤波器研究[J].电力电子技术,2012,46(11):55-56.
    [172]周二彪,晁勤,常喜强,等.三相光伏并网逆变器控制策略的研[J].低压电器,2013(6):34-40.
    [173]郑长春,李凯,颜亮.无差拍控制在单相逆变电源中的应用研究[J].自动化与仪器仪表,2013(2):121-123.
    [174]张超,王章权,蒋燕君,等.无差拍控制在光伏并网发电系统中的应用[J].电力电子技术,2007,41(7):3-5.
    [175] INOUE T, NAKANO M, IWAI S. High accuracy control of servomechanism for repeatedcontouring[C]. In10th Annual symp. on Incremental Motion Control systems and Devices,1981:285-292.
    [176]陈东.并网逆变器系统中的重复控制技术及其应用研究[D].杭州:浙江大学,2012.
    [177]许明夏,林平,张涛,等.有源电力滤波器重复控制方法的设计[J].电源学报,2012,40(2):16-20.
    [178]武健,何娜,徐殿国.重复控制在并联有源滤波器中的应用[J].中国电机工程学报,2008,28(18):66-72.
    [179]曹以龙,戴定君.三相并联有源滤波器的电流重复控制[J].上海电力学院学报,2013,29(3):205-208.
    [180]乔鸣忠,夏益辉,梁京辉,等.基于重复-PI的复合控制应用于并联有源滤波器研究[J].电力系统保护与控制,2013,41(14):54-59.
    [181] CHEN B, GONG J, XIONG L, et al. Analysis and Realization of a Novel RepetitiveController in Active Power Filter System[C]. Power Electronics and Drive Systems,2009.PEDS2009. International Conference on,2009.
    [182] ENGEL S, RIGBERS K, De DONCKER R W. Digital repetitive control of a three-phaseflat-top-modulated grid tie solar inverter[C]. Power Electronics and Applications,2009.EPE '09.13th European Conference on,2009.
    [183] SHIH-LIANG J, HSIANG-SUNG H, YING-YU. T. A three-phase PWM AC-DC converterwith low switching frequency and high power factor using DSP-based repetitive controltechnique[C].29th Annual IEEE Power Electronics Specialists Conference,1998:517-523.
    [184]周娟,秦静,王子绩,等.内置重复控制器无差拍控制在有源滤波器中的应用[J].电工技术学报,2013,28(2):233-238.
    [185] HORNIK T, ZHONG Q. A Current-Control Strategy for Voltage-Source Inverters inMicrogrids Based on H∞and Repetitive Control[J]. IEEE TRANSACTIONS ON POWERELECTRONICS,2011,26(3):943-952.
    [186] R T, S W, R D. A case study on the application of the Nyquist stability criterion as appliedto interconnected loads and sources on grids[J]. Industrial Electronics, IEEE Transactionson,2013,60(7):2740-2749.
    [187] M C, J S. Impedance Modeling and Analysis of Grid-Connected Voltage-SourceConverters[J]. Power Electronics, IEEE Transactions on,2014,29(3):1254-1261.
    [188] M L, R T, F B. Stability of photovoltaic and wind turbine grid-connected inverters for alarge set of grid impedance values[J]. Power Electronics, IEEE Transactions on,2006,21(1):263-272.
    [189]李芬,邹旭东等.并网LCL滤波的PWM整流器输入阻抗分析[J].电工技术学报,2010,25(1):97-103.
    [190] J T V, C C D, G V. Hierarchical approaches to modeling high-power-factor AC-DCconverters[J]. IEEE Transactions on Power Electronics,1991,6(2):179-187.
    [191] J S. Small-Signal Methods for AC Distributed Power Systems–A Review[J]. IEEETransactions on Power Electronics,2009,24(11):2545-2554.
    [192] M C, J S. Modeling and mitigation of harmonic resonance between wind turbines and thegrid[C]. Energy Conversion Congress and Exposition (ECCE),2011IEEE. IEEE,2011:2109-2116.
    [193] YANG D, RUAN X, WU H. Impedance Shaping of the Grid-Connected Inverter with LCLFilter to Improve Its Adaptability to the Weak Grid Condition[J]. Power Electronics, IEEETransactions on,2014(99):1.
    [194] KANAAN H Y, HAYEK A, GEORGES S, et al. Averaged modelling, simulation and linearcontrol design of a PWM fixed frequency three-phase four-wire shunt active power filterfor a typical industrial load[C]. Power Electronics, Machines and Drives,2006. The3rdIET International Conference on,2006:252-256.
    [195] KANAAN H Y, GEORGES S, HAYEK A, et al. Frequency-domain small-signal modelingof a three-phase four-wire shunt Active Power Filter[C]. Circuits and Systems,2007.NEWCAS2007. IEEE Northeast Workshop on,2007:542-545.
    [196]吴涛,阮新波.分布式供电系统中负载变换器的输入阻抗分析[J].中国电机工程学报,2008,28(12):66-72.
    [197]吴涛,阮新波.分布式供电系统中源变换器输出阻抗的研究[J].中国电机工程学报,2008,28(3):66-72.
    [198]王建华,张方华,龚春英.电压控制型Buck DC/DC变换器输出阻抗优化设计[J].电工技术学报,2007,22(8):18-23.
    [199] M C, J S. Low-Frequency Input Impedance Modeling of Boost Single-Phase PFCConverters[J]. IEEE Transactions on Power Electronics,2007,22(4):1402-1409.
    [200]刘增,刘进军.带变流器负载的三相交流电源系统稳定性判据的研究[J].中国电机工程学报,2012,32(25):143-148.
    [201] PUUKKO J, MESSO T, NOUSIAINEN L, et al. Negative output impedance in three-phasegrid-connected renewable energy source inverters based on reduced-order model[[C].Renewable Power Generation (RPG2011), IET Conference on,2011:1-6.
    [202]RADWAN A A A, MOHAMED Y A R I. Linear active stabilization of converter-dominatedDC microgrids[J]. Smart Grid, IEEE Transactions on,2012,3(1):203-216.
    [203] L H, M B, S L. Input-admittance calculation and shaping for controlled voltage-sourceconverters[J]. Industrial Electronics, IEEE Transactions on,2007,54(6):3323-3334.
    [204] RADWAN AAA, MOHAMED YARI. Analysis and Active-Impedance-Based Stabilizationof Voltage-Source-Rectifier Loads in Grid-Connected and Isolated MicrogridApplications[J]. Sustainable Energy, IEEE Transactions on,2013,3(4):563-576.
    [205]谢川.数字控制大容量并联型APF关键技术研究[D].杭州:浙江大学,2012.
    [206]曾晓生,杨苹,林旭成.重复和PI复合控制在光伏逆变器中的应用[J].电气传动,2012,42(8):47-49.
    [207] G. W, M. H. Repetitive control of MIMO systems using H∞design[J]. AUTOMATICA,1999,35(7):1185-1199.
    [208] ELLIS G. Control System Design Guide(Third Edition)[M]. London: Elsevier AcademicPress,2003.
    [209] WANG X, BLAABJERG F, LISERRE M, et al. An Active Damper for StabilizingPower-Electronics-Based AC Systems[J]. Power Electronics, IEEE Transactions on,2014,29(7):3318-3329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700