玉米光合及产量相关性状的QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米的叶绿素含量、光合性状和产量等大多数光合相关性状都是由多基因控制的数量性状。为了探讨玉米光合相关性状的遗传机制,本研究利用两套具有不同遗传背景的材料(Y114×Y115和Y105×Y106)分别组配出两个含有189个单株的F2群体(GY和FR群体),对叶绿素含量,光合性状和产量性状进行测定,从分子水平上进行了QTL分析。主要研究结果如下:
     (1)构建了两张F2遗传连锁图谱
     利用JionMap4.0软件构建了两张分别包含193和212个SSR标记的F2遗传连锁图谱,覆盖玉米全基因组的总长分别为1164.6cM和1153.3cM,标记间的平均距离分别为6.10cM和5.44cM,达到了QTL定位的基本要求。
     (2)检测到控制叶绿素含量的21个QTL
     于五叶期和灌浆期进行了玉米叶绿素含量各个指标的测定,并进行QTL分析,共检测到了21个QTL,分布于第1、4、6和10染色体上。
     对于GY群体,在第4染色体的imc2391-mmc0371区间检测到控制五叶期叶绿素a、叶绿素b和总含量的QTL各1个,单个QTL可解释表型变异的8.65%-9.87%;在第10染色体的mmc0501-bnlg1451区间检测到控制灌浆叶绿素a、叶绿素b和总含量的QTL各1个,单个QTL可解释表型变异的6.77%-6.93%。
     对于FR群体,共检测到15个QTL,各QTL的LOD值为2.60-4.71,单个QTL可解释表型变异的5.25%-10.22%。其中,在第1、1、10染色体上检测到3个控制五叶期叶绿素a含量相关的QTL,分别可解释表型变异的7.50%、9.77%、6.17%;3个与五叶期叶绿素总含量相关的QTL,分别可解释表型变异的7.86%、10.22%、5.47%。在第1染色体上检测到2个控制五叶期叶绿素b含量相关的QTL,分别可解释表型变异的8.64%、7.17%;2个与灌浆期叶绿素a含量相关的QTL,分别可解释表型变异的6.62%、9.87%;2个控制灌浆期叶绿素总含量的QTL,分别可解释表型变异的7.20%、9.48%。在第1、1、6染色体上检测到3个控制灌浆期叶绿素b含量的QTL,分别可解释表型变异的8.08%、6.87%、5.25%。并且在第1染色体上的umc1073-bnlg1803区间检测到了控制五叶期控制叶绿素总含量的1个主效QTL,可解释表型变异的10.22%,同时在这个区间检测到1个控制五叶期叶绿素a含量的QTL,可解释表型变异的9.77%。
     (3)检测到控制光合性状的11个QTL
     GY群体和FR群体共检测到11个控制光合性状的QTL,分布于第1、2、3、4、5、6和10染色体上。
     GY群体中共检测到6个光合性状QTL,分别位于第1、4、6和10染色体上,其中1个净光合速率QTL、1个气孔导度QTL、2个胞间CO2浓度QTL、2个蒸腾速率QTL,单个QTL可解释表型变异的5.64%-7.73%。FR群体共检测到5个光合性状OTL,分布于第1、2、3、5和6染色体上,其中2个净光合速率QTL、1个气孔导度QTL、1个胞间CO2浓度QTL、1个蒸腾速率QTL,单个QTL可解释表型变异的5.79%-9.24%。两个群体中没有检测到“一致性”QTL。
     (4)检测到控制产量性状的26个QTL
     两个群体共检测到26个产量性状QTL,分布于除第8染色体外的其它染色体上。其中7个穗长QTL,2个穗行数OTL,4个行粒数QTL,6个百粒重QTL,7个轴粗QTL,没有检测到穗粗QTL。两个群体在第7染色体上的umcl408-umcl944区间内检测到1个控制百粒重的“一致性”QTL。
     GY群体中检测到13个QTL,分布于第1、2、4、6、7和10染色体上。其中检测到2个穗长主效QTL、1个穗行数主效QTL、2个行粒数主效QTL、2个百粒重主效QTL、2个轴粗主效QTL,单个QTL可解释表型变异的10.15%-18.25%。
     FR群体检测到13个QTL,分布于第1、3、4、5、7、9和10染色体上;其中4个与穗长相关的QTL、1个与穗行数相关的QTL、2个与行粒数相关的QTL、2个与百粒重相关的QTL、4个与轴粗相关的QTL,单个QTL可解释表型变异的5.83%-12.14%。并检测到行粒数和轴粗的2个主效QTL,分别可解释表型变异的12.14%、10.25%。
     (5)与主效QTLs紧密连锁的分子标记
     GY群体中,qYFCa-4和qYFCt-4两个五叶期叶绿素含量的主效QTL均与标记nmc0371紧密连锁,qYEL-1和qYEL-6-2两个穗长主效QTL分别与标记umc1590、nc012紧密连锁,穗行数的主效QTL qYKPE-4与标记umc1051紧密连锁,行粒数的两个主效QTL qYKPR-6、qYKPR-10分别与标记umc1248.bnlg2190紧密连锁,百粒重的两个主效QTL qYHKW-4. qYHKW-7分别与标记bnlg1265.umc1944紧密连锁,轴粗的两个主效QTL qYCD-2b、qYCD-5分别与标记umc2005.mmc0481紧密连锁。
     FR群体中,五叶期叶绿素含量的两个主效TL qRFCa-1-2、qRFCt-1-2均与标记umc1073紧密连锁,灌浆期叶绿素含量的两个主效QTL qRPCa-1-2、qRPCt-1-2均与标记bn1g1007紧密连锁,行粒数的主效QTL qRKPR-4与标记umc1702紧密连锁,轴粗的主效QTL qRCD-10与标记phi050紧密连锁。
Most of the photosynthesis-related traits of maize, such as Chlorophyll content, photosynthetic function, and yield, are quantitative traits controlled by many genes. In order to explore the genetic mechanism of maize photosynthetic traits, two F2 populations (GY and FR) with different genetic background were used in this study. Chlorophyll content, photosynthetic traits and yield traits were measured and QTL analysis was made at molecule level. The main results were as follows:
     (1) Two genetic linkage maps of F2 populations were constructed
     For GY population,193 SSR markers were used to develop the maize genetic linkage maps covering 1164.6cM of the whole genome with an average interval of 6.10cM. For FR population, 212 SSR markers were selected to construct the maize genetic linkage maps covering 1153.3cM of the whole genome with an average interval of 5.44cM. That can achieve the basic requirements of the QTL mapping.
     (2) 21 QTLs for chlorophyll content were detected
     Three traits associated with chlorophyll content were detected at the five-leaf stage and at the Postulation stage. Total 21 QTLs were detected on the chromosomes of 1,4,6 and 10.
     In GY population, One QTL for chlorophyll-a content (FChla), one QTL for chlorophyll-b content (FChlb) and one QTL for total chlorophyll content (FChlt) at five-leaf stage on the marker interval umc2391-mmc0371 of chromosome 4, respectively; Each QTL can explained phenotypic variance 8.65%-9.87%. One QTL for chlorophyll-a content (PChla), one QTL for chlorophyll-b content (PCh1b) and one QTL for total chlorophyll content (PChlt) at the Postulation stage on the marker interval mmc0501-bn1g1451 of chromosome 10, respectively; Each QTL can explain phenotypic variance 6.77%-6.93%.
     In FR population, fifteen putative QTLs were detected with percentage of variance explained (PVE) running between 5.25%-10.22%,and LOD of QTLs 2.60-4.71. Of those Putative QTLs, three for chlorophyll-a content at the five-leaf stage (FChla) were detected on chromosomes 1,1 and 10, with PVE of 7.50%,9.77% and 6.17%,respectively; Three controlling total chlorophyll content at the five-leaf stage (FChlt) on chromosomes 1,1 and 10, PVE 7.86%,10.22% and 5.47%. Two for chlorophyll-b content at the five-leaf stage (FChlb) on chromosome 1,PVE 8.64% and 7.17%;Two controlling chlorophyll-a content at the postulation stage (PChla) on chromosome 1, PVE 6.62% and 9.87%; Two controlling total chlorophyll content at the postulation stage (PChlt) on chromosome 1, PVE 7.20% and 9.48%. Three controlling chlorophyll-b content at the postulation stage (PChlb) on chromosomes 1,1 and 6, PVE 8.08%,6.87% and 5.25%. There was a major QTL for chlorophyll content at the five-leaf stage (FChlt) on the marker interval umc1073-bn1g1803 of chromosome 1, which explained 10.22% of the phenotypic variance.
     (3) 11 QTLs for photosynthetic traits were detected
     In total, eleven QTLs were detected on chromosomes1,2,3,5,7,8 and 9. There has detected not the "consistency" QTL in the two populations.
     In GY population, six photosynthetic traits QTL were detected which located on chromosomes 1,4,6 and 10, respectively; Of those Putative QTLs, one QTL for net photosynthetic rate (Pn), one OTL for stomata conductance (Sc), two OTL for intercellular CO2 concentration (Ci), two OTL for transpiration rate (Tr), the phenotypic variation of a single QTL was 5.64%-7.73%.
     In FR population, five photosynthetic traits QTL were detected which located on chromosomes 1,4,6 and 10, respectively; of those Putative QTLs, Two QTL for net photosynthetic rate (Pn), one OTL for stomata conductance (Sc), two OTL for intercellular CO2 concentration (Ci), two OTL for transpiration rate (Tr), the phenotypic variation of a single QTL was 5.79%-9.24%.
     (4) 26 QTLs for yield traits were detected
     26 QTLs were investigated on all the chromosomes except for chromosomes 8. In the two populations, a major QTL for kernel weight was detected on the marker interval umc1408-umcl944 of chromosome 7.
     13 QTLs were detected in the GY population, which distributed in chromosomes 1,2,4,6,7 and 10. Of those Putative QTLs, two major QTL for ear length (EL), one major QTL for rows per ear (RPE), two major QTL for kernel per row (KPR), two major QTL for 100-kernel weight (HKW), two major QTL for Cob diameter (CD), a single major QTL contribution rate of 10.15%-18.25%.
     13 QTLs were detected in the FR population, which distributed in chromosomes 1,3,4,5,7,9 and 10. Four QTL for ear length (EL), one QTL for rows per ear (RPE), two QTL for kernel per row (KPR), two QTL for 100-kernel weight (HKW), four QTL for Cob diameter (CD), a single QTL could explain the phenotypic variation of 5.83%-12.14%. There were two major QTLs for KPR and CD, which explained 12.14% and 10.25% of the phenotypic variance, respectively.
     (5) Markers close to the major QTLs.
     SSR marker mmc0371 was the nearest marker close to qYFCa-4 and qYFCt-4.umc1590 link with qYEL-1 closely, nc012 link with qYEL-6-2. umc1051 was the nearest marker close to qYKPE-4.vmc1248 link with qYKPR-6, bnlg2190 link with qYKPR-10. bnlg1265 link with qYHKW-4, umc1944 link with qYHKW-7. umc2005 was the nearest marker close to qYCD-2b, mmc0481 was the nearest marker close to qYCD-5.SSR marker umc1073 were the nearest marker close to qRFCa-1-2 and qRFCt-1-2. bnlg1007 were the nearest marker close to qRPCa-1-2 and qRPCt-1-2. umc1702 link with qRKPR-4 phi050 was the nearest marker close to qRCD-10.
引文
[1]Tanksley S D.Mapping Polygenes[J]. Annual Review of Genetics,1993,27:205-233.
    [2]Paterson A H, et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms[J]. Nature, 1988,335:721-726,.
    [3]徐云碧,朱立煌等.利用分子标记连锁图谱进行水稻数量基因的区间作图[J].中国科学(B辑化学生命科学地学),1994,971-976.
    [4]邢永忠,徐才国等.水稻穗部性状的QTL与环境互作分析[J].遗传学报,2001:439-446.
    [5]方宣钧,王敬强,宛煜嵩等.我国“应县小黑豆”对SCN4号生理小种抗性的SSR及ISSR分子标记研究[J].农业生物技术学报,2002,10(1):81-85.
    [6]Wenzl P, Carling J, et al. Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci,2004.7(101):9915-9920.
    [7]Wenzl P, Raman H, Wang J, Zhou M, Huttner E, et al.A DArT platform for quantitative bulked segregant analysis.BMC Genomics,2007,8:196.
    [8]Akbari M, Wenzl P, et al.Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome.Theor Appl Genet,2006.11,113:1409-1420.
    [9]Semagn K, Bjornstad A, et al.Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population.Genome,2006.5,49:545-555.
    [10]Mace E S, Xia L, et al.DArT markers:diversity analyses and mapping in Sorghum bicolor.5MC Genomics,2008,9:26.
    [11]李玉玲,吕德彬,王延召等.利用SSR标记研究爆裂玉米自交系的遗传变异及其与普通玉米的遗传关系[J].中国农业科学,2004,(11):1604-1610.
    [12]余汉勇,魏兴华等.应用形态、等位酶和SSR标记研究水稻矮仔占衍生品种的遗传差异[J].中国水稻科学,2004,18(6):477-482.
    [13]任小平,姜慧芳等.花生分子标记的研究进展[J].植物遗传资源学报,2006,7(3):3368-3371.
    [14]孙玉刚,张延明.小麦SSR标记的应用[J].牡丹江师范学院学报(自然科学版),2007,(3):20-21.
    [15]苏君伟等.花生分子标记的研究进展[J].安徽农业科学,2011,39(10),5704-5705,5710.
    [16]邵宏.柳家英.植物分子系统分类学的新技术—-VNTR及DNA指纹图.生命世界,1994,6:35-41.
    [17]郑学项,冯素萍,李维国.DNA分子标记研究进展[J].安徽农业科学,2009,12420-12422.
    [18]黄映萍.DNA分子标记研究进展[J].中山大学研究生学刊(自然科学.医学版),2010:27-36.
    [19]吕香玲,王邦太,张世煌等.玉米抗甘蔗花叶病毒SCAR分子标记开发[J].中国农业科学,2009,1980-1987.
    [20]史利玉,张世煌等.玉米抗粗缩病毒SCAR分子标记的开发[J].中国农业科学,2011,1763-1774.
    [21]赵晓彦,王晓鸣,王述民.普通菜豆抗炭疽病基因SCAR标记鉴定[J].作物学报,2007:1815-1821.
    [22]查仁明,桑贤春,赵芳明,凌英华等AFLP增效和减效位点预测杂交水稻产量性状模型构建[J].中国农学通报,2010:18-22.
    [23]刘静AFLP分子标记的发展及应用[J].山东农业科学,2010:10-14.
    [24]郭静佩,王晓林,周鹏,周延清AFLP标记技术及其在花生上的应用研究[J].河南农业科学,2011:12-15.
    [25]张婷,刘双青,郭淑倩,姚瑶.油茶AFLP分子标记体系的建立[J].江苏农业科学,2011,69-71.
    [26]Waugh R, McLean K, et al.Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet,1997,2:687-694.
    [27]Gribbon B M, Pearce S R,et al.Phylogeny and transpositional activity of Tyl-copia group retrotransposons in cereal genomes. Mol Gen Genet,1999,8:883-891.
    [28]Queen R A, Gribbon B M, et al.Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat.Mol Genet Genomics,2004.2,:91-97.
    [29]娄群峰,刘强,陈劲枫.黄瓜SSAP标记技术的建立[J].江苏农业科学,2007:82-85.
    [30]Tam S M, Mhiri C, Vogelaar A, et al.Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR[J]. Theor Appl Genet,2005.3,110:819-831.
    [31]高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,(3):175-179.
    [32]Zeng Z B.Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loclProc Natl Acad Sci,1993:10972-10976.
    [33]王建康.数量性状基因的完备区间作图方法[J].作物学报,2009,35(2):239-245.
    [34]Cockerham C CAn Extension of the Concept of Partitioning Hereditary Variance for Analysis of Covariances among Relatives When Epistasis Is Present[J].Genetics,1954, 39(11):859-882.
    [35]Kao C H, Zeng Z B, Teasdale R D.Multiple interval mapping for quantitative trait loci[J]. Genetics,1999,152(7):1203-1216.
    [36]朱军.数量性状遗传分析的新方法及其在育种中的应用[J].浙江大学学报(农业与生命科学版),2000,26(1):1-6.
    [37]Wang D L, Zhu J, et al. Paterson.Mapping QTLs with epistatic effects and QTLxenvironment interactions by mixed linear model approaches. Theor Appl Genet,1999,(11):1255-1264.
    [38]Wang D, Zhu J, Li Z, Paterson A H.QTLMapper Version 1.6-A Computer Software for Mapping Quantitative Trait Loci (QTLs) with Additive Effects, Epistatic Effects and QTL Environment Interactions.2003.
    [39]Zhu J.Analysis of conditional genetic effects and variance components in developmental genetics. Genetics,1995.12,141:1633-1639.
    [40]Kirkpatrick M, Heckman N.A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters J Math Biol,1989,27:429-450.
    [41]Pletcher S D, Geyer C J.The genetic analysis of age-dependent traits:modeling the character process. Genetics,1999.10,153:825-835.
    [42]Yang R, Tian Q, Xu S.Mapping quantitative trait loci for longitudinal traits in line crosses.Genetics, Aug 2006,173(8):2339-2356.
    [43]Wu W, Zhou Y, Li W, Mao D, Chen Q.Mapping of quantitative trait loci based on growth models.Theor Appl Genet,2002.11,105(11):1043-1049.
    [44]章元明.作物QTL定位方法研究进展[J].科学通报,2006.10,51(19):2223-2231
    [45]Jansen R C, Nap J P.Genetical genomics:the added value from segregation.Trends Genef,2001.7,17:388-391.
    [46]Gibson G, Weir B.The quantitative genetics of transcription [J].Trends Genet,2005.11, 21:616-623.
    [47]库丽霞,孙朝辉,王翠玲,张君,张伟强,陈彦惠.玉米光周期敏感相关性状发育动态QTL定位[J].作物学报,2010:602-611.
    [48]Churchill G A, Doerge R W.Empirical threshold values for quantitative trait mapping[J]. Genetics,1994.11,138:963-971
    [49]Beavis W D, Grant D, Albertsen M.Quantitative trait loci four plant height in four maize populations and their associ tion with qualitative genetic loci.Theor Appl Genet, 1991,83:141-145.
    [50]Austin D F, Lee M, et al.Genetic mapping in maize with hybrid progeny across testers and generations. Theor Appl Genet,2001:163-176.
    [51]Yan J B, Tang H, et al. Dynamic analysis of QTL for plant height at different developmental stages in maize(Zea mays L.).Chinese Science Bulletin,2003.12,48,2601-2607.
    [52]汤华,严建兵,黄益勤,郑用琏,李建生.玉米5个农艺性状的QTL定位[J].遗传学报,2005,32(2):203-209.
    [53]吴建伟,刘成等.不同水分条件下玉米株高和穗位高的QTL分析[J].植物遗传资源学报,2005,6(3):56-63.
    [54]张志明,赵茂俊,荣廷昭,潘光堂.玉米SSR连锁图谱构建与株高及穗位高QTL定位[J].作物学报,2007,33(2):341-344.
    [55]杨晓军,路明,张世煌等.玉米株高和穗位高的QTL定位[J].遗传,2008,30(11):1477-1486.
    [56]蒋锋,刘鹏飞,张姿丽,王晓明.甜玉米穗位高的QTL定位[J].中国农学通报,2011,27(12):73-76.
    [57]高世斌,赵茂俊,兰海,张志明.玉米雄穗分枝数与主轴长的QTL鉴定[J].遗传,2007,29(8):1013-1017.
    [58]王迪,李永祥等.控制玉米雄穗分枝数目和雄穗重的主效QTL的定位[J].植物学报,2011,46(1):11-20.
    [59]Mickelson S M, Stuber C S, Senior L, Kaeppler S M.Quantitative Trait Loci Controlling Leaf and Tassel Traits in a B73 x Mo17 Population of Maize.Crop Sci.,2002.11,42:1902-1909
    [60]贾波,蒋思霞,邓德祥等.玉米农艺性状QTL定位分析[J].玉米科学,2011,19(3):31-34.
    [61]路明,周芳,谢传晓,李明顺,徐云碧,Warburton M,张世煌.玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析[J].遗传,2007,29(9):1131-1138.
    [62]Jorgenson L, Brewbaker H E.A comparison of selfed lines of corn and first generation crosses between them. Agronomy Journal,1927:1.
    [63]Jenkins M T,Ph D.Correlation studies with inbred and crossbred strains of maize. Journal of agricultural research,1928:677-721.
    [64]兰进好,李新海,高树仁,张世煌,张宝石.不同生态环境下玉米产量性状QTL分析[C].全国玉米种质扩增、改良、创新与分子育种学术会议,中国北京,2004:157-164.
    [65]兰进好,李新海,高树仁,张宝石,张世煌.不同生态环境下玉米产量性状QTL分析[J].作物学报,2005:1253-1259.
    [66]王爱玉.玉米光合特性的QTL定位:[硕士学位论文].山东泰安,山东农业大学,2008:33-45.
    [67]马金亮.利用玉米骨干系进行产量及相关性状的QTL分析:[硕士学位论文].河南郑州,河南农业大学,2010:2544.
    [68]张君.玉米株型及产量相关性状QTL定位与分析:[硕士学位论文].河南郑州,河南农业大学,2010:2647.
    [69]王晓鹏.玉米抗旱性及产量相关性状的QTL分析:[硕士学位论文].山东泰安,山东农业大学,2011:33-55.
    [70]郑祖平,何川,李钟,黄玉碧.两种供氮水平下玉米穗长QTL定位分析[J].玉米科学,2005:102-104,108.
    [71]靳晓春,李庭峰,吴方勇等.玉米产量及相关性状的QTL分析[J].玉米科学,2011:10-18.
    [72]王阳,刘成,王天宇,石云素,宋燕春,黎裕.干旱胁迫和正常灌溉条件下玉米产量性状的QTL分析[J].植物遗传资源学报,2007:179-183.
    [73]石海春.玉米营养品质性状的QTL定位[J].四川大学学报(自然科学版),2009,46.
    [74]孙海艳,蔡一林等.玉米主要营养品质性状的QTL定位[J].农业生物技术学报,2011,616-623.
    [75]刘宗华,王艳朋等.施氮和不施氮对玉米子粒品质性状的影响及QTL分析[J].植物营养与肥料学报,2009:778-785.
    [76]Goldman I L, Rocheford T R, Dudley J W.Molecular Markers Associated with Maize Kernel Oil Concentration in an Illinois High Protein×Illinois Low Protein Cross.Crop Sci., 1994,34:908-915.
    [77]赵素贞.不同发育时期玉米籽粒品质性状的QTLs动态分析:[硕士学位论文].新疆乌鲁木齐,新疆农业大学,2007:21-32.
    [78]魏昕,李丽华,王振华,宋锐,曾兴,张志明,荣廷昭,潘光堂.玉米丝裂病的抗性QTL定位[J].作物学报,2009:741-744.
    [79]刘小红,何道文,张红伟,张红梅,谭振波,荣廷昭.玉米抗矮花叶病毒B株系的QTL定位[J].河北农业大学学报,2006:56-59.
    [80]赵茂俊,张志明,高世斌,李晚忱,荣廷昭,潘光堂.玉米抗纹枯病QTL定位[J].作物学报,2006:698-702.
    [81]Welz H G, et al. QTLs for resistance to Setosphaeria turcica in and early maturing Dent X Flint maize population. Theoretical and Applied Genetics,1999:45-51.
    [82]郑祖平,刘小红,黄玉碧,李钟,何川,谭振波.玉米大斑病抗性基因的QTL定位[J].西南农业学报,2007,634-637.
    [83]刘亚娟.玉米芽苗期抗旱性QTL定位的研究:[硕士学位论文].首都师范大学,2006:35-44.
    [84]肖炎农.玉米耐旱QTL定位和遗传分析:[博士学位论文].湖北武汉,华中农业大学,2005:25-78.
    [85]郝转芳.玉米耐旱主效QTL定位与候选基因鉴定[博士学位论文].北京,中国农业科学院,2005:35-66.
    [86]李萌.玉米耐低磷产量因子的QTL分析:[硕士学位论文].山东泰安,山东农业大学,2010:23-43.
    [87]沈波,庄杰云,樊叶杨,蒋靓,郑康乐.不同供水条件下水稻叶绿素含量的QTL分析[J].浙江大学学报(农业与生命科学版),2007:400-406.
    [88]王爱玉,张春庆.玉米叶绿素含量的QTL定位[J].遗传,2008.
    [89]Cai H, Chu Q, Yuan L, Liu J, Chen X, Chen F, Mi G, Zhang F.Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply Molecular Breeding,2011:1-16.
    [90]Heichel G H, Musgrave R B. Varietal Differences in Net Photosynthesis of Zea mays L. Crop Sci.,1969,9:483-486.
    [91]董树亭,王空军,胡昌浩.玉米品种更替过程中群体光合特性的演变[J].作物学报,2000:200-204.
    [92]吴尔福.玉米品种资源光能利用的研究[J].中国农业科学,1982:25-32.
    [93]李少昆,赵明,许启风等.我国常用玉米自交系光合特性的研究[J].中国农业科学,1999:55-61.
    [94]赵明,王美云.玉米亲本及杂交种光合速率的关系[J].北京农业大学学报,1995:265-269.
    [95]Duncan W G, Hesketh J D.Net Photosynthetic Rates, Relative Leaf Growth Rates, and Leaf Numbers of 22 Races of Maize Grown at Eight Temperatures. Crop Sci.,1968,8:670-674.
    [96]高新学,马龙波,都森烈,叶金才,王长明.玉米光合速率的遗传分析[J].山东农业科学,1988:5-8.
    [97]周艳敏,张春庆.玉米生育后期光合特性的遗传分析[J].中国农业科学,2008:1900-1907.
    [98]Teng S, Qian Q, Zeng D, Kunihiro Y, Fujimoto K, Huang D, Zhu L.QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.).Euphytica, 2004.6:1-7.
    [99]孔令娜,胡茂龙.水稻光合作用及相关生理性状的QTL定位研究进展[J].中国农学通报,2010:115-120.
    [100]崔世友,喻德跃.大豆光合性状QTL的初步定位[J].大豆科学,2007:6-10.
    [101]印志同,宋海娜,孟凡凡,许晓明,喻德跃.大豆光合气体交换参数的QTL分析[J].作物学报,2010:92-100.
    [102]Herve D, Fabre F, E. Berrios F, Leroux N, Planchon C, Sarrafi A, Gentzbittel L.QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) under greenhouse conditions.J Exp Bot,2001.9,52:1857-1864.
    [103]胡茂龙.水稻光合功能相关性状QTL分析及转绿型白叶突变体基因的图位克隆:[博士学位论文].江苏南京,南京农业大学,2006:33-79.
    [104]许大全.气孔的不均匀关闭与光合作用的非气孔限制[J].植物生理学通讯,1995:246-252.
    [105]Teng S, Qian Q, Zeng D, Kunihiro Y, Fujimoto K, Huang D, Zhu L. QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica,2004.6:1-7.
    [106]Ishimaru K, Yano M, Aoki N, Ono K, Hirose T, Lin S Y, Monna L, Sasaki T, Ohsugi R.Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theoretical and Applied Genetics,2001,5:793-800.
    [107]胡茂龙,王春明,杨权海等.水稻光合功能相关性状QTL分析[J].遗传学报,2005,32(8):818-824.
    [108]刘贞琦,刘振业,曾淑芬,马达鹏.水稻某些光合生理特性的研究[J].贵州农业科学,1986:29.
    [109]赵延明,董树亭,严敏,高宏伟.玉米叶片叶绿素含量的发育遗传动态及环境互作效应分析[J].中国生态农业学报,2008,16(3):649-654.
    [110]王春丽.玉米穗部性状及主要农艺性状发育动态的QTL定位:[硕士学位论文].河南郑州,河南农业大学,2005:33-45.
    [111]刘宗华,谢惠玲,王春丽等.氮胁迫和非胁迫条件下玉米不同时期叶绿素含量的QTL分析[J].植物营养与肥料学报,2008:845-851.
    [112]FB F, JD R. Soybean leaf nitrogen,chlorophyll content,and chlorophyll a/b ratio[J]. Photosynthetica,2007:92-98.
    [113]K K, KP H.Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant.Cell and Environ,2003:857-865.
    [114]汪斌,兰涛,吴为人,李维明.水稻叶绿素含量的QTL定位[J].遗传学报,2003:1127-1132.
    [115]Yang D L, Jing R L, Chang X P, Li W.Quantitative Trait Loci Mapping for Chlorophyll Fluorescence and Associated Traits in Wheat (Triticum aestivum).植物学报(英文版) 2007,49(5):646-654.
    [116]Fracheboud Y, J. M. Ribaut, M. Vargas, R. Messmer, and P. Stamp. Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot,2002.9,53:1967-1977.
    [117]Alpert,et al.High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA,1996,93.
    [118]曾长英,徐芳森,孟金陵,王运华,胡承孝.从QTL到QTG的路还有多远[J].遗传,2006:1191-1198.
    [119]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches.Theor Appl Genet, 1999:1255-1264.
    [120]Atchley W R, Zhu J. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics,1997,147(10):765-776.
    [121]毛双林.小麦重要性状QTL元分析及光合功能与耐湿性QTL定位:[博士学位论文].四川雅安,四川农业大学,2010:34-88.
    [122]何慈信,朱军等.水稻叶挺长发育动态的QTL分析[J].云南大学学报(自然科学版),2000,14(4):193-198.
    [123]严建兵,汤华,黄益勤,石永刚,李建生,郑用琏.不同发育时期玉米株高QTL的动态分析[J].科学通报,2003,48(18):1959-1964.
    [124]孙德生.大豆重要农艺性状发育动态QTL分析:[硕士学位论文].哈尔滨,东北农业大学,2005:15-34.
    [125]刘丽,李卫华,刘伟,曹连莆,李保云,刘广田.小麦谷蛋白膨胀指数发育动态的QTL分析[J].中国农业科学,2008,41(11):3838-3844.
    [126]闫庆祥.木薯重要经济性状发育动态QTL分析:[硕士学位论文].海南大学,2010:35-42.
    [127]李广军,李河南,程利国,章元明.大豆叶绿素含量动态表达的QTL分析[J].作物学报,2010,36(2):242-248.
    [128]Rudner L M.A User's Guide to the Meta-Analysis of Research Studies:Meta-Stat, Software to Aid in the Meta-Analysis of Research Findings:Educational Resources Information Center, Clearinghouse on Assessment and Evaluation,2002.
    [129]Goffinet B, Gerber S.Quantitative trait loci:a meta-analysis[J]. Genetics,2000.5,155:463-473
    [130]Chardon F, Virlon B, Moreau L, Falque M, Decousset L, Murigneux A, Charcosset A.Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome[J]. Genetics,2004.12,168:2169-2185.
    [131]齐照明,孙亚男等.基于Meta分析的大豆百粒重的QTLs定位[J].中国农业科学,2009:3795-3803.
    [132]吉海莲,李新海,谢传晓,郝转芳,吕香玲,史利玉,张世煌.基于元分析的抗玉米丝黑穗病QTL比较定位[J].植物遗传资源学报,2007:132-139.
    [133]栗文娟,刘志斋,石云素,宋燕春,王天宇,徐辰武,黎裕.基于元分析和生物信息学分析的玉米抗旱相关性状QTL一致性区间定位[J].作物学报,2010:1457-1467.
    [134]苏正淑,张宪政.几种测定植物叶绿素含量的方法比较[J].植物生理学通讯,1989:77-78.
    [135]KOSAMBI D D. The estimation of map distance from recombination values[J].Genetics, 1943,12:172-175.
    [136]Edwards M D, Stuber C W, Wendel J F.Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action[J]. Genetics,1987.5,116:113-125.
    [137]严建兵,汤华,黄益勤,郑用琏,ChanderS,李建生.玉米产量及构成因子主效和上位性QTL的全基因组扫描分析[J].科学通报,2006:1413-1421.
    [138]杨晓军.玉米重要性状QTL定位与遗传效应分析:[硕士学位论文].新疆乌鲁木齐,新疆农业大学,2008:12-45.
    [139]崔世友,喻德跃.大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析[J].作物学报,2007,33(5):744-750.
    [140]Li H, Hearne S, Banziger M, Li Z, Wang J.Statistical properties of QTL linkage mapping in biparental genetic populations[J]. Heredity (Edinb),2010.9,105:257-267'.
    [141]李慧慧,张鲁燕,王建康.数量性状基因定位研究中若干常见问题的分析与解答[J].作物学报,2010,36(6):918-931.
    [142]Wang J, Wan X, Li H, Pfeiffer W, Crouch J, Wan J.Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach[J], Theor Appl Genet,2007.6:87-100.
    [143]Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, Wan J.QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines[J].Genet Res, 2006.10,88:93-104.
    [144]王帮太,吴建宇,丁俊强,席章营.玉米产量及产量相关性状QTL的图谱整合[J].作物学报,2009:1836-1843.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700