预条件可压流算法在桥梁风工程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文简要回顾了桥梁风工程的发展,总结了桥梁计算风工程中的研究现状。基于预条件处理技术下可压流N-S方程的求解算法,建立了低速非定常流场求解的有限体积方法。采用Delaunay三角形背景网格算法,实现了流场中运动网格的数值模拟。开发了可用于桥梁断面气动参数计算和气动现象模拟的专用软件,分别进行了典型桥梁断面的静力三分力计算、涡激振动现象模拟和参数计算、颤振导数计算。本文的主要研究内容有:
     1.在桥梁断面绕流数值计算中引入预条件处理技术求解可压流非定常N-S方程,克服了传统可压缩流N-S方程求解算法在计算低速流场时面临的收敛慢、精度低的“刚性”问题。
     2.采用Delaunay三角形背景网格算法定位网格点关系,实现了对运动网格的模拟,并与传统的弹簧网格算法进行了对比。计算结果表明,基于Delaunay背景图映射的动态网格变形方法无需迭代计算,效率高,稳定性好。
     3.开发了能有效模拟运动边界、实现动网格功能的非定常流场的计算软件。众多典型算例的结果表明,预条件处理技术将可压缩流N-S方程的应用范围拓展到了低马赫数的桥梁风工程流场环境,有效地提高了收敛速度。同时,还将固体振动方程融入所开发的流体计算软件中,实现了对流固耦合问题的求解。
     4.采用自研软件分别对两种典型桥梁断面的三分力进行了数值求解,其结果均与试验值吻合较好;基于钝体桥梁断面研究了不同湍流模型下静力三分力的计算精度问题。
     5.采用自研软件对桥梁断面涡激振动现象进行了数值模拟,结合对数值绕流场的分析,明确了桥梁断面涡激振动发生发展的气动机理:桥梁断面受涡激力作用发生振动,从而导致其上气动载荷的增大,进而引起桥梁断面振动加剧,并逐渐达到“锁定”状态。
     6.采用自研软件,基于强迫振动法对薄平板和某大跨度桥梁断面的颤振导数开展了数值求解。利用竖弯和扭转条件下的自激气动力计算数据和最小二乘算法获得了8个颤振导数,并与理论值和风洞试验结果进行了对比,验证了该软件用于颤振导数计算的可行性。
This dissertation reviewed the researches of wind effects on the long span bridge, and summarized the current researches on the numeric simulation in bridge wind engineering. Based on the solving algorithm of unsteady compressible N-S equations considering a preconditioning processing technic, the finite volume method for solving the unsteady low velocity flow field had been established. Using Delaunay triangulation mesh algorithm, the generation of dynamic mesh during unsteady flow field had been achieved. Developed professional software can be used for effective numerical calculation of aerodynamic parameters and numerical simulating of aerodynamic phenomena of bridge girders. The static aerodynamic force coefficients and flutter derivatives can be obtained, and the phenomenon of vortex-induced vibration can be simulated using the software.
     The dissertation mainly contains following contents:
     1. By using a preconditioning processing technic expanded into the unsteady compressible N-S equations, the problems of the algorithm tending to fare poorly for low speed flow fields can be solved.
     2. Using Delaunay triangulation mesh to locate the relationship between grid points, the generation of dynamic mesh during unsteady flow field calculation had been achieved. Comparing with the traditional spring mesh method, Delaunay triangulation mesh method need any iterative computation and can provide high efficiency and good stability.
     3. Developed professional software for effective numerical calculation and simulation of unsteady low velocity flow fields with moving boundaries. The results of several examples indicated that the preconditioning processing technic can extend the effective calculating range of the compressible algorithm to the low Mach number, especially to the low flow velocity condition of wind engineering for bridges. By combining with the structural dynamic equations, the software can provide the simulation of fluid-bridge coupling interaction.
     4. The static aerodynamic forces of bridge girders were treated with unsteady numerical simulation using the software. The results had a good agreement with the ones in wind tunnel tests. Based on the bluff body bridge girder section and different turbulence models, the solving precision of the static aerodynamic forces had been studied.
     5. Based on the numerical simulation for the vortex-induced vibration phenomenon in bridges and the analysis of the numerical flow field, a mechanism of vortex-induced vibration is eventually formed:when the vortex-induced vibration occurs, the bridge girder motion induced by initial vortex-induced aerodynamic loads can magnify the following aerodynamic loads, and the amplitude of bridge girder is increasing until the "lock in" status.
     6. Based on the least squares fitting and the aerodynamic force in vertical and torsion motion, the flutter derivatives of thin plate and bridge girder had been obtained using forced vibration method of numerical simulation. The comparison between calculated results and theoretical results and wind tunnel test results can validate the feasibility of the software in the calculation of flutter derivatives.
引文
[1]Ammann, O.H., T. Von Karman, and G.B. Woodruff.1941. The Failure of the Tacoma Narrows Bridge[R]. Report to the Federal Works Agency. Washington, DC (March 28).
    [2]Anderson, J. D.2002. Computational Fluid Dynamics:The Basics with Applications[M]. McGraw-Hill Companies, Inc.
    [3]Baldwin B. S., Lomax H.1978. Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows[C], AIAA Paper 78-257, Huntsville,AL,USA
    [4]Batina J.T.1990. Implicit Flux-split Euler Schemes for Unsteady Aerodynamic Analysis Involving Unstructured Dynamic Meshes[R]. N91-10918.
    [5]Batina J. T.1991. Unsteady Euler Algorithm With Unstructured Dynamic Mesh for Complex-aircraft Aerodynamic Analysis[R]. AIAA Journal,29(3):327-333.
    [6]Battista R.C, Pfeil M.S.1995. Passive damping of vortex-induced oscillations of Rio-Niteroi bridge[C]. Passive Damping Vol. of Proc. of SPIE's Smart Structures & Materials Conference.
    [7]Blazek J.2005. Computation of Fluid Dynamics:Principles and Applications.2nd ed. [M].Oxford:Elsevier.
    [8]Bruno L, Khris J.1998:Contribution of numerical simulation to evaluating the effect of section details on the aerodynamic behavior of a long-span bridge deck. Balkema, Rotterdam,1229-1236.
    [9]Chen H,Kandasamy S, Orszag S, et al.2003. Extended Boltzmann Kinetic Equation for Turbulent Flows[J].Science,301(5633):633-636.
    [10]Choi YH, Merkle CL.1993.The Application of Preconditioning to Viscous Flows[J]. Journal of Computational Physics,105(2):207-23.
    [11]Chorin A.J.1967. A Numerical Method for Solving Incompressible Viscous Flow Problems[J]. Journal of Computational Physics,2(1):12-26.
    [12]C.K. Lau, K.Y. Wong and K.W.Y. Chan.1998. Preliminary Monitoring Results of Tsing Ma Bridge[C]. Proceedings of the 14th National Conference on Bridge Engineering, Shanghai, Vol.2:730-740 (in Chinese).
    [13]Clarence O. E. Burg,2004. A Robust Unstructured Grid Movement Strategy using Three-Dimensional Torsional Springs [C],34th AIAA Fluid Dynamics Conference and Exhibit[C], AIAA:2004-2529.
    [14]Davenport, A.G.1961. The application of statistical concepts to the wind loading of structures[C]. Proc. ICE,19(2):449-472.
    [15]Davenport, A.G.1962a.The response of slender line-like structures to a gusty wind[C]. Proc. ICE,23(6):389-408.
    [16]Davenport, A.G.1962b. Buffeting of suspension bridge by storm winds[J]. Journal of Structure. Div., ASCE.,88(6):233-264.
    [17]Davenport, A.G.1968. The dependence of wind load upon meteorological parameters [C]. Proc. Int. Res. Seminar on Wind Effects on Building and Structure. University of Toronto Press, Toronto:19-82.
    [18]Ferziger, Joel H. P, Milovan.2002. Computational Methods for Fluid Dynamics[M]. 3rd ed., Springer-verlag.
    [19]Fluent Inc.2003. Fluent User's Guid.[Z], Fluent. Inc.
    [20]Fujii K.2005. Progress and Future Prospects of CFD in Aerospace—Wind Tunnel and Beyond[J]. Progress in Aerospace,41:455-470.
    [21]Gu, M., Zhang, R. X. and Xiang, H. F.2000. Identification of Flutter Derivatives of Bridge Decks [J]. Journal of Wind Engineering and Industrial Aerodynamics,84: 151-162.
    [22]Hirsch C.2007.Numerical Computation of Internal and External Flows:The Fundamentals of Computational Fluid Dynamics.2nd ed. [M].New York:Elsevier.
    [23]Hirt C. W., Amsden A. A., Cook J L.1974, An Arbitrary Lagrangian Eulerian Computing Method for All Flow Speeds[J]. Journal of Computational Physics, 14(3):227-253.
    [24]H. K. Versteeg, W. Malalasekera.2007. An Introduction to Computational Fluid Dynamics:The Finite Volume Method[M]. Pearson Prentice Hall, Inc.
    [25]Jameson A., Yoon S.1987. Lower-upper implicit schemes with multiple grids for the Euler equations [J]. AIAA Journal. (7):929-935.
    [26]Joe F. Thompson, Bharat K. Soni, Nigel P. Weatherill.1999. Grid Generation[M], CRC Press LLC.USA.
    [27]Larsen A, Walther J H.1997.Aeroelastica analysis of bridge girder sections based on discrete vortex simulations [J]. J. of Wind Engineering and Industrial Aerodynamics, 67(2):253-265.
    [28]Launder, B. E. and Spalding, D. B.1974. The Numerical Computation of Turbulent Flows[J]. Computational Methods Application Mechanics Engineering,vol.3:279-289
    [29]L. Devroye, E. Mucke, B. Zhu,1998. A Note on Point Location of Delaunay Triangulation of Random Points[J], Algorithmica 22 (4):477-482.
    [30]L.D. Zhu, Y.L. Xu, K.Y. Wong and K.W.Y. Chan.1999. Wind Charateristics and Response of Tsing Ma Bridge During Typhoon Victor[C], Proceedings of The Second International Conference on Advances in Steel Structures 15-17 December 1999, Hong Kong, China, Vol.1:497-504.
    [31]L.P. Chew.1989. Constrained Delaunay Triangulations[J], Algorithmica 4:97-108.
    [32]Main, J.A. and N.P. Jones.1999. Full-Scale Measurements of Stay Cable Vibration[C]. Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, Denmark,21-24.
    [33]Main, J.A., N.P. Jones and H. Yamaguchi.2001. Characterization of Rain-Wind Induced Stay Cable Vibrations From Full-Scale Measurements[C]. Proceedings of the Fourth International Symposium on Cable Dynamics, Montreal, Canada, May 28-30:235-242.
    [34]Mark Filipiak.1996. Mesh Generation[M], Technology Watch Report (Version1.0), Edinburgh Parallel Computing Centre, The University of Edinburgh.
    [35]Matsumoto Masaru, Shirato Hiromichi, Yagi Tomomi, et al.2003. Effects of Aerodynamic Interferences between Heaving and Torsional Vibration of Bridge Decks: The Case of Tacoma Narrows Bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics,91(12/13/14/15):1547-1557.
    [36]Menter, F. R.1992a. Influence of Freestream Values on k-w Turbulence Model Predictions[J], AIAA Journal, Vol.30, No.6:1657-1659.
    [37]Menter, F. R.1992b. Performance of Popular Turbulence Models for Attached and Separated Adverse Pressure Gradient Flows[J], AIAA Journal, Vol.30, No.8: 2066-2072.
    [38]Menter, F. R.1992c. Improved Two-Equation k-w Turbulence Models for Aerodynamic Flows[R], NASA TM-103975.
    [39]M. Farraskhalvat.2003. Basic Structured Grid Generation with an Introduction to Unstructured Grid Generation[M], Butterworth Heinemann.
    [40]M W Sarwar, T Ishihara, K Shimada, Y Yamasaki, T Ikeda.2008. Prediction of aerodynamic characteristics of a box girder bridge section using the LES turbulence model[J]. Journal of Wind Engineering and Industrial Aerodynamics.96(10-11): 1895-1911
    [41]M W Sarwar, T Isshihara.2010. Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures[J]. Journal of Wind Engineering and Industrial Aerodynamics.98(12):701-711
    [42]O. C. Zienkiewicz, R. L. Taylor and P. Nithiarasu,2008. The Finite Element Method For Fluid Dynamics[M], Elsevier(Singapore) Pte Ltd.
    [43]Patankar S. V., Spalding D. B.1972. Calculation Procedure for Heat, Mass and Momentum Transfer in 3-D Flows [J]. Int. J. Heat Mass Transfer, (15):1787-1806.
    [44]Patankar S.V.1980. Numerical heat transfer and fluid flow [M]. New York: McGraw-Hill.
    [45]P.H.W. Prenninger.1990. Reliability of Bridge Structures Under Wind Load: Consideration of Uncertainties of Wind Load Parameters[J]. Journal of Wind Engineering and Industrial Aerodynamics,(33):385-394.
    [46]P.L. Roe.1981. Approximate Riemann Solvers, Parameter Vectors and Difference Schemes[J], Journal of Computational Physics. Vol43(2):357-372.
    [47]Prandtl L.1925. Uber Die Ausgebildete Turbulenz[J], ZAMM,vol.5:136-139.
    [48]Ren A. L., Chen W Q, Li G. W.2004. An ALE Method and DDM with High Accurate Compact Schemes for Vortex-induced Vibrations of an Elastic Circular Cylinder [J]. Annual of Hydrodynamics:Ser B,16:708-715.
    [49]Sarkar, P. P., Jones, N. P. and Scanlan, R. H.1992. System Identification for Estimation of Flutter Derivatives[J]. Journal of Wind Engineering and Industrial Aerodynamics, 41-44:1243-1254.
    [50]Satoshi Kashima, Yukikazu Yanaka.2001. Shuichi Suzuki. Monitoring the Akashi Kaikyo Bridge:First Experiences [J]. Structure Engineering International, (2):120-123.
    [51]Scanlan, R.H., Sabzevari, A.1967. Suspension bridge flutter revisited[C], Preprint No.468. ASCE National Meeting on Structural Engineering, Seattle.
    [52]Scanlan R.H, Tomko J.1971. Airfoil and bridge deck flutter derivatives [J]. J. Engrg.Mech.Div., ASCE,97(6):1717-1737.
    [53]Scanlan R.H., et al.1974. Indicial aerodynamic functions for bridges deck[J]. J. Engrg.Mech.Div, ASCE,100(4):657-672.
    [54]Scanlan R.H, Gade, R.H.1977. Motion of suspended bridge spans under gusty wind[J]. J. Struct. Div., ASCE.,103ST9:1867-1883
    [55]Scanlan R.H.1978a. The action of flexible bridges under wind I:Flutter theory[J]. Sound and Vibration.60(2):187-199.
    [56]Scanlan R.H.1978b. The action of flexible bridges under wind II:buffeting theory[J]. J. Sound and Vibration,60(2):201-211.
    [57]Selvam R Panneer, Tarini Michael J, Larsen Allan.1998. Computer modeling of flow around bridges using LES and FEM[J]. Journal of Wind Engineering and Industrial Aerodynamics,77/78:643-651
    [58]Spalart, P. R. and Allmaras, S. R.1992. A One-Equation Turbulence Model for Aerodynamic Flows[C], AIAA Paper 92-0439.
    [59]Steger, J. L., Warming, R.F.1981. Flu vector splitting of the inviscid gas-dynamics equations with application to finite difference methods[J]. Journal of Computational Physics,40(2):263-293.
    [60]Succi S, Amati G, Benzi R.1998, Challenges in lattice Boltzmann computing[J]. Journal of Statistical Physics,81(1):5-16.
    [61]T.Miyata, H.Yamada, H.Katsuchi and M.Kitagawa.2002. Full-scale Measurement of Akashi-Kaikyo Bridge During typhoon[J]. Journal of Wind Engineering and Industrial Aerodynamics,90:1517-1527.
    [62]Turkel E.1987. Preconditioned methods for solving the incompressible and low speed compressible equations[J]. Journal of Computational Physics,72(2):277-298.
    [63]Turkel E.1992. Review of Preconditioning Methods for Fluid Dynamics[R]. NASA Contractor Report 189712&ICASE Report No.92-47.
    [64]Van Leer B.1979. Towards the ultimate conservation difference scheme V:a second-order sequel to Godunov's method[J]. Journal of Computational Physics,32: 101-136.
    [65]Van Leer B.1982. Flux vector splitting for Euler equation. In:Eighth International Conference on Numerical Methods in Fluid Dynamics[C]. Lecture Notes in Physics, Vol.170,507-512. Berlin,
    [66]Van Leer B.2001. Computational Fluid Dynamics:Science or Toolbox? [C] AIAA paper,2001-2520.
    [67]Venkateswaran S, Li D, Merkle CL.2003. Influence of Stagnation Regions on Preconditioned Solutions at Low Speeds[C]. AIAA 2003-0435.
    [68]Walshe, D. E. and Wyatt, T. A.1992. Bridge Aerodynamics 50 Years after Tacoma Narrows, Part II:A New Discipline Word-Wide[J]. Journal of Wind Engineering and Industrial Aerodynamics 40:327-336.
    [69]Walther J H, Larsen A.1997.2D Discrete vortex method for application to bluff body aerodynamics [J]. Journal of Wind Engineering and Industrial Aerodynamics,67-68: 183-193.
    [70]Weiss JM, Smith WA.1995. Preconditioning Applied to Variable and Constant Density Flows[J]. AIAA Journal,33(11):2050-7.
    [71]Wilcox, D. C and Alber, I. E.1972. A Turbulence Model for High Speed Flows[C], Proc. of the Heat Trans. Fluid Mech. Inst., Stanford Univ. Press:231-252.
    [72]Wilcox, D. C.1974. Numerical Study of Separated Turbulent Flows[C], AIAA Paper 74-584, Palo Alto, CA.
    [73]Wilcox, D. C. and Chambers, T. L.1975. Further Refinement of the Turbulence Model Transition-Prediction Technique[R], DCW Industries Report DCW-R-03-02, La Canada, CA.
    [74]Wilcox, D. C. and Traci, R. M.1976. A Complete Model of Turbulence[C], AIAA Paper 76-351, San Diego, CA.
    [75]Wilcox, D. C. and Chambers, T. L.1977a. Streamline Curvature Effects on Turbulent Boundary Layers[J], AIAA Journal, Vol.15, No.4:574-580.
    [76]Wilcox, D. C.1977b. A Model for Transitional Flows[C], AIAA Paper 77-126, Los Angeles, CA.
    [77]Wyatt, T. A.1992. Bridge Aerodynamics 50 Years after Tacoma Narrows, Part I:the Tacoma Narrows Failure and after[J]. Journal of Wind Engineering and Industrial Aerodynamics 40:317-326.
    [78]Xinzhong Chen, Matsumomto M., Kareenm A.2000. Time Domain Flutter and Buffeting Response Analysis of Bridges[J]. Journal of Engineering Mechanics, ASCE, 126(1):7-16.
    [79]Xinzhong Chen, Ahsan Kareem.2006. Revisiting Multimode Coupled Bridge Flutter Some New Insights[J]. Journal of Engineering Mechanics, ASCE,132(10):1115-1123.
    [80]Xu, Y. L., Sun, D. K., Ko, J. M. and Lin, J. H.2000. Fully Coupled Buffeting Analysis of Tsing Ma Suspension Bridges [J]. Journal of Wind Engineering and Industrial Aerodynamics,85(1):97-117.
    [81]Xu, Y. L. and Zhu, L. D.2003. Buffeting Response of Long Suspension Bridges to Skew Winds[J]. Wind and Structure,6(3):179-196.
    [82]Xueqiang Liu, Ning Qin.2006. Fast Dynamic Grid Deformation Based on Delaunay Graph Mapping[J]. Journal of Computational Physics 211:405-423.
    [83]Yakhot, V. Orszag, S. A., Thangam, S., Gatski, T. B. and Speziale, C. G.1992. Development of Turbulence Models for Shear Flows by a Double Expansion technique[J], Physics of Fluids A, vol.4,No.7:1510-1520
    [84]Zhu, L. P., Xu, Y. L. and Xiang, H. F.2002a. Tsing Ma Bridge Deck Under Skew Winds—Part1:Aerodynamic Coefficient[J]. Journal of Wind Engineering and Industrial Aerodynamics,90(7):781-805.
    [85]Zhu, L. D., Xu, Y. L. and Xiang, H. F.2002b. Tsing Ma Bridge Deck Under Skew Winds—Part2:Flutter Derivatives[J]. Journal of Wind Engineering and Industrial Aerodynamics,90(7):807-837.
    [86]曹丰产,项海帆.1998.低雷诺数下方柱和圆柱涡致振动的数值分析[J].同济大学学报,26(4):382-386.
    [87]陈艾荣,艾辉林.2010.计算桥梁空气动力学[M].北京:人民交通出版社
    [88]邓见,任安禄,邹建锋.2005.方柱绕流横向驰振及涡致振动数值模拟[J].浙江大学学报(工学版)39(4):595-599.
    [89]丁泉顺.2001.大跨度桥梁耦合颤抖振响应的精细化分析[D].上海:同济大学博士论文.
    [90]方平治,顾明.2008.高雷诺数条件下二维方柱涡致振动的数值模拟[J].同济大学学报(自然科学版),36(2):161-165.
    [91]刘仙名,符松.2004.预条件算法在非定常流动计算中的应用[J].清华大学学报(自然科学版),44(2):240-243.
    [92]葛耀君,项海帆,HTnanka.2003.随机风荷载作用下的桥梁颤振可靠性分析[J].土木工程学报,36(6):42-46.
    [93]顾明.2006.土木结构抗风研究进展及基础科学问题.建筑、环境与土木工程学科发展战略研究报告[M].北京:科学出版社.
    [94]李晓渝,索奇峰,强士中.2002.钝体绕流的随机涡方法[J].西南交通大学学报,37(01):40-43.
    [95]李雪松,徐建中,2006,低耗散TVD格式及叶轮机内低马赫数流动模拟[J],航空动力学报,21(3):442-447.
    [96]刘天成.2008..桥梁气动弹性的Lattice Boltzmann方法研究[D].上海:同济大学
    [97]刘仙名,符松,2004,预条件算法在非定常流动计算中的应用[J],清华大学学报(自然科学版),44(2):240-243.
    [98]刘学强,李青,柴建忠.2008.一种新的动网格方法及其应用[J].航空学报29(4):817-822.
    [99]肖天航,昂海松,余少志,王旭刚,段文博,2007, 预条件法求解定常/非定常混 合网格的全速流场[J],空气动力学学报,25(4):425-430
    [100]肖天航,昂海松,2008,运动边界非定常全速流场的数值模拟[J],空气动力学学报,vol26:71-77
    [101]肖天航,2009.低雷诺数非定常流场的数值方法及其在微型飞行器上的应用[D],南京,南京航空航天大学博士学位论文.
    [102]徐枫,欧进萍.2005.方柱非定常绕流与涡激振动的数值模拟[J].东南大学学报(自然科学版),35(S1):35-39.
    [103]阎超等.2011.CFD模拟方法的发展成就与展望[J].力学进展.vol.41.NO.5:562-589.
    [104]张若雪.1998.桥梁结构气动参数识别的理论和试验研究[D].上海:同济大学博士论文.
    [105]周述华.1993.大跨度悬索桥空间非线性抖振响应仿真分析[D].成都:西南交通大学博士论文.
    [106]周志勇,陈艾荣,项海帆.2002.涡方法用于桥梁断面颤振导数和颤振临界风速的数值计算[J].振动工程学报,15:327-331.
    [107]周志勇,陈艾荣,项海帆.2003.涡方法分析并列圆柱的旋涡脱落现象[J].空气动力学学报,(2):38-46.
    [108]祝志文,2002,桥梁风效应的数值方法及应用[D].中南大学.
    [109]祝志文,2004,数值模拟桥梁断面颤振导数和颤振临界风速[J].中国公路学报,(03).:41-45.
    [110]祝志文,顾明,陈政清.2006.理论平板及其中央开槽颤振特性的CFD研究[J].湖南大学学报,(05):16-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700