悬索桥施工猫道抗风减振性能精细化分析和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬索桥施工猫道是施工人员机械进行主缆施工作业的高空脚手架,是大跨度的柔性透风索结构,结构刚度小,对动力作用敏感。猫道在风荷载和施工人员行走时若产生较大变位,将导致牵引索股的扭转、鼓丝、散丝现象,会影响成桥后主缆的受力甚至主缆的施工安全。随着我国跨海连岛工程的建设,恶劣施工环境中的特大跨度悬索桥及其主缆施工猫道将不断出现,因此系统深入研究猫道的抗风减振性能,发展行之有效的猫道抗风减振技术,有十分重要的意义。
     本文系统全面探讨猫道对风反应特点,国内外首次进行猫道结构的涡振性能风洞试验,可知避免猫道产生涡激振动的侧网临界透风率为70%,底网透风率大小对涡振性能没有影响,所采用的试验方法和试验结论对于研究类似透风结构的涡振性能有一定参考价值,分析猫道升力系数和阻力系数的特点,可知其不可能发生驰振现象。
     采用节段模型静力三分力风洞试验结果和有限元分析相结合的方法进行猫道非线性静风响应分析,根据猫道承重绳的张力和位移随风速的变化规律,可知猫道发生静力扭转发散的内在原因是由其所受的静力三分力的特点决定的,国内外首次对猫道减振构造(包括抗风缆系统、水平制振索、抗风门架和斜索、斜拉索和外索)的抗风性能进行系统的参数化分析,得出抗风减振构造设计参数变化时对猫道在风荷载作用下位移响应及静力扭转发散临界风速的影响,为工程技术人员设置猫道减振构造提供理论参考和依据。
     在国内外首次进行猫道的人行侧向振动分析,通过类比风致振动中的涡激振动,提出人行侧向振动的自激力特性,借鉴人行桥侧向振动的研究结论,通过一定修正应用到猫道中,可计算避免发生猫道-行人同步侧向振动的临界行人数量和密度以及猫道所需的阻尼,也可估算一定行人密度时猫道的侧向位移响应。
     联结绳是一种增大猫道阻尼的简便有效的方法,其制振效果的影响因素包括联结绳自身的振动频率、阻尼、质量、联结位置,在国内外首次进行联结绳的参数化试验研究,根据试验结果,综合考虑各种因素,为保证联结绳制振效果,建议联结绳与猫道面层之间的斜交角在40°~50°范围内,联结绳的质量在猫道面层质量的1%左右取值,联结绳频率尽可能与猫道面层固有频率接近,联结绳的阻尼越大,制振效果越好。
Catwalk of suspension bridge is the scaffold at high altitude erected as the sidewalk for constructor and machines. With long span and low stiffness catwalk is sensitive to dynamic forces. Large displacements induced by wind and walking constructors can lead to torsion, drumming and dispersing of cable wires, which has bad effects on the performances of cables. The torsional collapse of catwalk can result in the danger of constructor and machines. Along with the construction of suspension bridges spanning over sea and connecting islands, more and more long-span catwalks under bad construction conditions have appeared. So it is obviously significant to study wind-resistant and vibration-control performance and develop effective relative techniques for catwalks.
     Characteristics of reaction to wind for catwalk are comprehensively studied in this dissertation. The wind tunnel tests are conducted to study the vortex produced by the side cover and bottom cover of catwalks. It is verified that the vortex-induced vibration of catwalks can be avoided if the wind penetration rate of side cover is more than 70%. The wind penetration rate of bottom cover has no influence on this conclusion. The test method and conclusion can help to study the similar structure that allows wind penetrating. The gallop vibration cannot happen to catwalks according to the characteristics of lift force and resistant force tested through wind tunnel tests.
     Nonlinear analysis is performed by FEM method using sectional model tests results. According to the inner force and displacement of catwalk rope exposed to the wind load, it is indicated that near the critical wind velocity for torsional collapse the stress of the catwalk rope begins to lack because of upward air lifting, and then the resisting force of catwalk is less than the air moment. This is the cause of torsional collapse for catwalk. Nonlinear analyses are conducted for catwalk with the vibration control conformations including storm ropes, horizontal ropes, stay ropes and outside ropes. The displacements and critical wind velocity for torsional collapse are also calculated to compare the vibration control effects. Based on these conclusions the conformations above can be installed on catwalks by designers.
     The human-induced lateral vibrations on catwalks are analyzed in this dissertation. By comparing to vortex-induced vibration for bridges it is indicated that human-induced lateral vibration has a self-excited nature. With reference to the research of human-induced lateral vibration on footbridges the methods are amended to be suitable for analyzing this vibration on catwalks. The analysis leads to an equation for predicting critical number of pedestrians and needed damp for catwalk to avoid synchronized excitation. The lateral displacement of catwalks with a certain number of pedestrians can also be estimated through the analysis.
     Connecting rope is a simple and effect method for increasing the damp of catwalks. The vibration control effects of connectiong ropes are influenced by natural vibration frequency, damp, mass and connecting position. Vibration tests are conducted to study the relationship between damp increasing level and the factors above. Considering vibration control effects and construction practice, the angle between connecting rope and catwalk longitudinal axis should be between 40°and 50°. The mass of connecting rope should be one percent of the catwalk mass. The natural vibration frequency of connecting rope and catwalk should be similar to the largest extent. The vibration control effects get better with the damp of connecting rope increasing.
引文
[01]雷俊卿,郑明珠,徐恭义.悬索桥设计[M] .北京:人民交通出版社,2002
    [02]牛和恩.虎门大桥工程(第二册:悬索桥)[M] .北京:人民交通出版社,1998
    [03]刘健新,胡兆同.大跨度吊桥[M] .北京:人民交通出版社,1996
    [04]Silas A. Holmes. Engineers and Superintendent on the 5th Course of Tower Masonry above Roadway[R]. Museum of the City of New York.
    [05]严国敏.现代悬索桥[M] .人民交通出版社,2002
    [06]河口浩二,福永勧.明石海峡大橋のキャツトゥォ—ク構造[J] .本四技報, Vol 19, No.74: 10-16
    [07]平野信一,北條哲男,麓輿一郎.来島大橋キャツトゥォ—クの設計·施工[J] .橋梁と基礎, 97-6, 13-19
    [08]江苏省长江公路大桥建设指挥部.江阴长江公路大桥工程建设论文集[C].北京:人民交通出版社,2000
    [09]宜昌长江公路大桥工程建设开发公司.宜昌长江公路大桥工程建设论文集[C].北京:人民交通出版社, 2002
    [10]杨学祥,张明卓,朱艳等.大跨度悬索桥施工猫道若干问题综述[J] .世界桥梁,2007,2,61-64
    [11]蒋德俊.鹅公岩大桥悬索桥施工猫道主索制作工艺[J] .公路交通技术,2002,3,64-67
    [12]李全军.丰都长江大桥轻型猫道施工[J] .桥梁建设,1998,3,23-25
    [13]韦世国,薛光雄,沈良成等.润扬大桥悬索桥猫道系统设计与施工[J] .桥梁建设,2004,4,29-32
    [14]靳明君,张志国,张晓民等.悬索桥猫道构造述评[J] .西部探矿工程,2003,10,18-19
    [15]毛鸿银.悬索桥施工猫道抗风性能研究[D].同济大学硕士学位论文,1996
    [16]郑史雄,周述华,廖海黎.悬索桥施工猫道的非线性抗风静力稳定性分析[J].西南交通大学学报,2000,35(4):348-351
    [17]杨鑫炎.大跨度悬索桥施工猫道抗风稳定性分析[J].铁道工程学报,2004(2) :46-48
    [18]韦世国,廖海黎,赵有明等.润扬大桥悬索桥施工猫道抗风稳定性分析[J].桥梁建设,2004(4):1-3
    [19]西南交通大学风工程试验研究中心.润扬大桥施工猫道抗风稳定性风洞模型试验及分析研究[R],2003
    [20]西南交通大学风工程中心.宜昌长江公路大桥施工猫道抗风稳定性研究[R],1999
    [21]伊藤学等.キャツトゥォ—クの耐風性に關すゐ研究[R].
    [22]四渡河大桥项目经理部.猫道设计施工图[G]
    [23]中交公路规划设计院.公路桥梁抗风设计规范[S].北京:人民交通出版社,2004
    [24]常英,乐云祥,胡晓伦.武汉阳逻长江大桥施工猫道设计与验算[J].公路交通科技,2005,22 (12):88-93
    [25]E.希缪,R.H.斯坎伦.刘尚培,项海帆,谢霁明译.风对结构的作用—风工程导论[M].上海:同济大学出版社,1992
    [26]乐云祥,常英,胡晓伦.武汉阳逻长江大桥施工猫道抗风稳定性分析[J].公路交通科技,2005,22 (8):40-43
    [27]Dallard P., Fitzpatrick A.J., Flint A., et al. The London Millennium Footbridge[J]. Structure Engineer, 2001, 79(22):17-33
    [28]Dallard P., Fitzpatrick A.J., Flint A. , et al. London Millennium Footbridge: Pedestrian-induced Lateral Vibration[J]. Journal of Bridge Engineering, 2001, 6(6):412-417
    [29]Fujino Y., Pacheco B.M., Nakamura S., Wamitchai P. Synchronization of Human Walking Observed during Lateral Vibration of a Congested Pedestrian Bridge[J]. Earthquake Engineering, 1993, 22:741-758
    [30]Andriacchi T. P., Ogle J. A., Galante J. O. Walking Speed as a Basis for Normal and Abnormal Gait Measurement[J]. Journal of Biomechanics, 1977, 10:261-268 [7\31]Bertram J.E.A., Ruina A. Multiple Walking Speed-frequency Relations are Predicted by Constrained Optimization[J]. Journal of Theoretical Biology, 2001, 209(4):445-453
    [32]Masani K., Kouzaki M., Fukunaga T..Variability of Ground Reaction Forces during Treadmill Walking[J]. Journal of Applied Physiology, 2002, 92(5):1885-1890
    [33]Galbraith F.W., Barton M. V. Ground Loading from Footsteps[J]. Journal of the Acoustic Society of America, 1970, 48(5):1288-1292
    [34]Wheeler J.E. Pedestrian-induced Vibrations in Footbridges[A]. Proceedings of the 10th Australian Road Research Board (ARRB) Conference, 1980, Sydney, Australia, August27-29, 10(3):21-35
    [35]Wheeler J. E., Prediction and Control of Pedestrian Induced Vibration in Footbridges[J].ASCE Journal of the Structure Division, 1982, 108(ST9):2045-2065
    [36]Kerr S.C., Bishop N. W. M. Human Induced Loading on Flexible Staircases[J]. Engineering Structures, 2001, 23:37-45
    [37]Bachman H., Pretlove A. J., Rainer H. Dynamics Forces from Rhythmical Human Body Motions[R]. Vibration Problems in Structures: Practical Guidelines, Birkhauser, Basel, 1995,Appendix G
    [38]Bachman H. Case Studies of Structures with Man-induced Vibrations[J]. Journal of Structure Engineering, 1992, (118):631-647
    [39]Bachman H. Vibration Upgrading of Gymnasia, Dance Halls, and Footbridges[J]. Structural Engineering International, 1992, (2):118-124
    [40]Fujino Y. Packeco B. M. Nakamura Si. et al. Synchronization of Human Walking Observed during Lateral Vibration of a Congested Pedestrian Bridge[J]. Earthquake Engineering and Structure Dynamics, 1993, 22: 741-758
    [41]Ji T. On the Combination of Structural Dynamics and Biodynamic Methods in the Study Of Human-structure Interaction[R]. The 35th UK Group Meeting on Human Response to Vibration, Vol. l, Institute of Sound and Vibration Research, University of Southampton , England, September 13-15, 2000, PP.183-194
    [42]Zheng X., Brownjohn J. M. W. Modeling and Simulation of Human-floor System under Vertical Vibration[R]. Proceedings of SPIE, Smart Structures and Materials, Vol.4327, March 5-8, Newport Beach, CA, USA, 2001,PP. 513-520
    [43]Sachse R.The Influence of Human Occupants on the Dynamic Properties of Slender Structures[D].PhD Thesis, University of Sheffield, Sheffield, UK,2002
    [44]Saehse R., Pavic A., Reynolds P. The Influence of a Group of Humans on Modal Properties of a Structure[R]. Proceedings of the Fourth International Conference on Structural Dynamics, Eurodyn, Vol.2, Munich, Germany, September, 2-5, 2002, PP.1241-1246
    [45]Ohlsson S. V. Floor Vibration and Human Discomfort [D].PhD Thesis, University of Sheffield, UK,1997
    [46]Pimentel R. L. Vibration Performance of Pedestrian Bridges Due to Human-Induced Loads [D].PhD Thesis, University of Sheffield, UK,1997
    [47]Willford M. Dynamic Actions and Reactions of Pedestrians[R]. Proceedings of the International Conferences on the Design and Dynamic Behaviors of Footbridges, Paris, France, November 20-22, 2002, PP.66-73
    [48]Yao S., Wright J., Pavic A., et al. Forces Generated When Bouncing or Jumping on a Flexible Structure[R]. Proceedings of the International Conferences on Noise and Vibration, Vol.2, Leuven, Belgium, September 16-18, 2002, PP.563-572
    [49]Pavic A., Yu C. H., Brownjohn J. et al. Verification of the Existence of Human-induced Horizontal Forces due to Vertical Jumping[R]. Proceedings of IMAC XX, Vol.l, Los Angeles, CA, February 4-7, 2002, PP.120-126
    [50]孙利民,闫兴非.人行桥人行激励振动及设计方法[J] .同济大学学报(自然科学版),2004,32(8):996-999
    [51]Shun-ichi Nakamura, P.E. Model for Lateral Excitation of Footbridges by Synchronous Walking[J]. Journal of Structural Engineering(ASCE), January, 2004, 32-37
    [52]Steel Concrete and Composite Bridges-Part 2: Specification for Loads; Appendix C: Vibration Serviceability Requirements for Foot and Cycle Track Bridges[S], BS 5400. UK: British Standards Association, London, 1978
    [53]OHBDC, Ontarion Highway Bridge Design Code[S], Highway Engineering Division, Ministry of Transportation and Communication, Ontarion, Canada, 1983
    [54]Action on Structures, Swiss Society of Engineers and Architects[S], SIA Standards 160, Zurich, 1989
    [55] ISO, Bases for Design of Structures-Serviceability of Buildings Against Vibrations[S], ISO 10137, International Standardization Organization, Geneva, Switzerland, 1992
    [56]CEB-FIP Model Code 1990, Design Code 1990, Design Code[S], ComitéEuro -International du Béton, Thomas Telford Services, London, 1993
    [57]AASHTO, Guide Specification for Design of Pedestrian bridges[S], American Association of State, Highway and Transprtation Officials, August, 1997
    [58]T. M. Roberts. Lateral Pedestrian Excitation of Footbridges [J]. Journal of Bridge Engineering(ASCE), January/February, 2005, 107-112
    [59] David E. Newland. Pedestrian Excitation Of Bridge–Recent Results[R]. Tenth International Congress on Sound and Vibration, Stockholm, Sweden, July 7-10, 2003,
    [60]李子青,郝宪武,刘健新.结构振动与控制[M] .北京:人民交通出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700