沿岸流不稳定运动的实验研究及理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以沿岸流不稳定实验采集的垂直岸线方向和沿岸方向的流速时间历程和墨水运动轨迹图片资料为基础,利用最大熵谱分析方法分析了实验室观测到的沿岸流不稳定运动的频率;利用测量的墨水运动轨迹分析了其传播速度;利用三角函数回归法分析了其波动幅值在垂直岸线方向的变化特征;并讨论了这些量随入射波波高、入射波周期、地形的变化。用线性剪切不稳定模型理论分析了实验观测到的结果,得到了对应实验情况的沿岸流不稳定运动的频率、波长和传播速度,并与实验结果进行了对比分析,发现了实验中两个不同坡度(1:40和1:100)海岸上所观察到的沿岸流不稳定运动分别对应两种不同的剪切流线性不稳定模式,即1:40坡度海岸的不稳定运动是由于沿岸流速度剖面后剪切所引起,而1:100坡度海岸的不稳定运动是由于沿岸流速度剖面前剪切所引起。讨论了平均沿岸流速度剖面对不稳定增长模式的影响,利用解析速度剖面分析了速度剖面对不稳定多模式的影响。以浅水方程为控制方程,基于波能守恒方程计算波浪辐射应力,建立了平均沿岸流数学模型。数值分析了沿岸流不稳定对平均沿岸流的影响。
     文中首先阐述了沿岸流不稳定运动对研究近岸污染物、泥沙输移的重要意义,并指出目前沿岸流不稳定运动实验研究比较少,因此,通过实验来研究沿岸流不稳定运动有助于更加直观、深刻、全面的认识沿岸流不稳定运动的特性,并为沿岸流不稳定运动数值模拟的研究以及与沿岸流不稳定运动相关的其它方面提供实验结果。
     第二章详细介绍了沿岸流不稳定运动的实验,具体包括该实验的物理模型布置,仪器布置以及墨水投放的实验,并给出了实验采集的30个波况垂直岸线方向、沿岸方向的流速时间历程以及用CCD系统采集的墨水运动轨迹的图片。基于采集的实验结果,本文就其不同波况下的流速时间历程和墨水运动特点作了详细分析,着重分析了在规则波和不规则波情况下是否出现了长周期波动,并分析了质量输移流、沿岸流、大尺度漩涡和沿岸流不稳定运动对墨水运动轨迹的影响;波高对沿岸流不稳定运动空间结构的影响。
     第三章介绍了沿岸流不稳定运动实验结果分析方法。用最大熵谱方法确定沿岸流不稳定运动的频率;用三角函数回归法确定其波动幅值;用墨水运动轨迹来确定其传播速度。
     第四章用第三章的方法分析了规则波和不规则波情况对应的两种坡度1:100和1:40地形条件下沿岸流不稳定运动的频域特性、幅值特性和传播速度特性。
     第五章利用沿岸流线性不稳定运动理论模型对实验中观测到的不稳定进行了理论分析。首先用二阶中心差分格式对该模型进行离散,得到了计算不稳定增长模式的矩阵方程,并采用Garbow,Moler等提出算法基础上改进的QZ算法对矩阵方程进行了求解,通过与已有计算结果的对比对所用的数值格式进行了验证。利用本章的沿岸流线性不稳定的理论模型计算了30个实验波况下的沿岸流不稳定运动增长模式,并将计算结果与实验结果进行了比较。
     第六章利用无因次的沿岸流线性不稳定模型,分析讨论了坡度对沿岸流增长模式的影响;分析了前剪切、后剪切对沿岸流增长模式的影响;分析讨论了规则波与不规则波情况不稳定周期不同的原因。
     第七章利用Allen给出的解析速度分析了不稳定模式出现不连续的情况,即多模式情况。并分析了速度剖面最大值发生变化后对于不稳定的影响。
     第八章建立了二维平均沿岸流的数学模型并分析了沿岸流不稳定对平均沿岸流的影响,并初步分析了沿岸流不稳定引起的侧混系数的范围。首先给出了平均沿岸流计算模型,该模型利用二维浅水方程为控制方程,其中波高变化利用波能守恒方程求得,从而计算出了波浪辐射应力。用交替方向隐式(ADI)法对该模型进行了数值求解,并将计算结果与实验结果进行了比较。然后数值分析了沿岸流不稳定对平均沿岸流的影响。
     最后给出了本文的结论以及对于本研究的展望。
Based on the recorded cross-shore and longshore velocity time series and collected images of dye patch movement,the variations of dominant periods of shear instabilities of longshore currents,oscillation amplitudes(u',v') in cross-shore direction and propagation speed with incident wave height,wave period and bottom topography were analyzed using the maximum entropy method,regression method of trigonometric function and linear fit;the observations were investigated using the linear shear instability model.The longshore currents methemetical model is built.And the influences of the instability of longshore currents on the mean longshore currents are studied.At last,the effects of velocity profiles on the growth mode are analyzed numerically.
     Firstly,the important meanings of the shear instabilities of longshore current to investigate transportaion of coastal pollutant,sendiment were explained.And it is pointed out that the experimental study of shear instabilities of longshore currents is few.Hence,it is helpful to investigate the shear instabilities of longshore currents by the experimental study intuitively,deeply and all-around,and provide empirical parameters for the numerical modeling of the shear instabilities and other related studies with them.
     The experiment of the shear instabilities including the experimental set-up,instruments deployment and the release of dye are introduced in detail and the recorded cross-shore and longshore velocity time series and collected images of dye patch movement are given.The characteristics of the observations are analyzed in detail.Especially,whether the oscillation with long period occurs under all cases is analyzed,and the results show that this kind of oscillation occurs under all cases.The wavy dye patches are also observed in the collected images.And we analyze the effects of mass transport currents,alongshore currents,large vorticities and the instabilities of alongshore currents on the movement of the dye patch.And the spatial structures of shear instabilities are analyzed using these collected photos.
     In chapter 3,the maximum entropy method,regression method of trigonometric function and measurement method are introduced.
     In chapter 4,the results about the frequency,variations of amplitude in cross-shore direction and propagation speed of the instabilities of longshore currents under regular waves and random waves are given detailed.
     In chapter 5,the linear shear instability model is formulated.And the model is discretized using the second order centered finite difference scheme.The obtained matrix equation after discretizing is solved using the modified QZ algrorithm.Putrevu and Svendsen solved the instability equation using fourth order finite difference scheme.The comparison between Putrevu and Svendsen' and the present scheme is conducted.The comparison shows that the present scheme has enough accuracy.The shear instability modes of longshore currents in present experiment are calculated using the present numerical model.And we make the comparison between numerical results and measurements.And the growth modes of shear instabilities under present laboratory are calculated using the built linear instability model.
     In chapter 6,the effects of slope on the growth mode are analyzed using nondimensional linear instability model,and we investigate the effects of frontshear and backshear on the shear instability mode.Because the shear wave periods are different under regular waves and irregular waves,we discuss the reason.
     In chapter 7,the multi-mode cases are analyzed numerically using analytical velocity profiles.And we investigate the effects of distance of maximum of mean longshore currents on the instability mode.
     In chapter 8,two dimensional longshore currents numerical model is built.The governing equations are two dimensional shallow water equations.The variations of wave height are calculated using the conservasion equation of wave energy.And the comparison between the numerical results and measurements is made.The comparison shows that the numerical results agree with measurements well.The influences of the instability of longshore currents on the mean longshore currents are studied numerically.And the lateral mixing coefficient due to the instability of longshore currents is estimated.
     To the end,the conclusions and prospect about the present study are given.
引文
[1]邱大洪.海岸和近海工程学科中的科学技术问题[J].大连理工大学学报,2000,40(6):631-637.
    [2]Battjes J A.Developments in coastal engineering research[J].Coastal Engineering Journal,2006(53):121-132.
    [3]Batteen M L,Kennedy R A,Miller H A.A process-oriented numerical study of currents,eddies and meanders in the Leeuwin Current System[J].Deep-Sea Research Part Ⅱ,2007,54(8-10):859-883.
    [4]Burchard H,Craig P D,Gemmrich J R et al.Observational and numerical modeling methods for quantifying coastal ocean turbulence and mixing[J].Progress in Oceanography,2008,76:399-442.
    [5]左其华.近岸波浪引起的水流及长波研究进展[J].海洋工程,2003,21(04):115-122.
    [6]Fleming C A,Swart D H.New Framework for Prediction of Longshore Currents[C].Proceedings of Coastal Engineering.1982.
    [7]Oltman-Shay J,Howd P A,Birkemeier W A.Shear instabilities of the mean longshore current 2.field observations[J].Journal of Geophysical Research,1989,94(C12):18031-18042.
    [8]Russell P E.Mechanisms for beach erosion during storms[J].Continental shelf research,1993,13(11):1243-1265.
    [9]Holman R A.The CRC Handbook of Coastal Processes and Erosion[M].Boca Raton:CRC Press,1983.
    [10]Miles J R,Russell P E,Ruessink B G et al.Field observations of the effect of shear waves on sediment suspension and transport[J].Continental Shelf Research,2002,22(4):657-681.
    [11]Smith G G,Mocke G P.Interaction between breaking/broken waves and infragravity-scale phenomena to control sediment suspension transport in the surf zone[J].Marine Geology,2002,187:329-345.
    [12]Aagaard T,Greenwood B.Suspended sediment transport and the role of infragravity waves in a barred surf zone[J].Marine geology,1994,118:23-48.
    [13]Sanchez M O,Losada M A,Baquerizo A.On the development of large-scale cuspate features on a semi-reflective beach:Carchuna beach,Southern Spain[J].Marine geology,2003,198:209-223.
    [14]Coco G,O' Hare T J,Huntley D A.Beach Cusps:A Comparison of Data and Theories for Their Formation[J].Journal of Coastal Research,1999,15(3):741-749.
    [15]Holman R A,Sallenger A.Setup and swash on a natural beach[J].Journal of geophysical research,1985,90(C1):945-953.
    [16]冯砚青,陈子粲.长重力波运动与近岸过程研究综述[J].海洋通报,2005,24(5):85-90.
    [17]Falques A,Montoto A,Vila D.A note on hydrodynamic instabilities and horizontal circulation in the surf zone[J].Journal of Geophysical Research,1999,104(C9):20 605-20615.
    [18]Dalrymple R A.Rip currents and their causes[C].Proceeding of the 16th conference on coastal engineering.Ney York.1979.
    [19]邹志利.水波理论及其应用[M].北京:科学出版社,2005.
    [20]吴宋仁.海岸动力学[M].北京:人民交通出版社,2000.
    [21]Longuet-Higgins M S,Stewart R W.Radiation stresses in water waves:a physical discussion with applications[J].Deep-Sea Research,1964,11(4):529-562.
    [22]Longuet-Higgins M S.Longshore currents generated by obliquely incident sea waves,2[J].Journal of Geophysical Research,1970,75:6790-6801.
    [23]Bowen A J,Holman R A.Shear instabilities of the mean longshore current 1.Theory[J].Journal of Geophysical Research,1989,94(C12):18023-18030.
    [24]Crowson R A,Birkemeier W A,Klein H M et al.SUPERDUCK nearshore process experiment:Summary and studies CERC field research facility[C].Vicksburg,Miss:Coastal Eng.Res.Cent.1988.
    [25]Noyes T J,Guza R T,Elgar Set al.Field observations of shear waves in the surf zone[J].Journal of Geophysical Research,2004,109(C0):1031,doi:10,1029/2002JC001761.
    [26]Reniers A,Battjes J A,Falques A et al.A laboratory study on the shear instability of longshore currents[J].Journal of Geophysical Research,1997,102(C4):8597-8609.
    [27]Reniers A,Battjes J A.A laboratory study of longshore currents over barred and non-barred beaches[J].Coastal Engineering,1997,30(1):1-21.
    [28]Dodd N.On the destabilization of a longshore current on a plane beach:Bottom shear stress,critical conditions,and onset of instability[J].Journal of Geophysical Research,1994,99:811-824.
    [29]Dodd N,Iranzo V,Caballeria M.A subcritical instability of wave-driven alongshore currents[J].Journal of Geophysical Research,2004,109(C02018):doi:10,1029/2001JC00106.
    [30]Dodd N,Oltman-Shay J,Thornton E B.Shear instabilities in the longshore current:A comparison of observations and theory[J].Journal Physics of Oceanography,1992(22):62-82.
    [31]Dodd N,Thornton E B.Growth and energetics of shear waves in the nearshore[J].Journal of Geophysical Research,1990,95(C9):16075-16083.
    [32]Dodd N,Thornton E B.Longshore current instabilities:Growth to finite amplitude[C].Proc.23th Intl.Conf.Coastal Eng.1992.
    [33]Falques A,Iranzo V,Caballeria M.Shear instability of longshore currents:effects of dissipation and non-linearity[C].Proc.24th Intl.Conf.Coastal Eng.1994.
    [34]Putrevu U,Svendsen I A.Shear instability of longshore currents- A numerical study[J].Journal of Geophysical Research,1992,97(C5):7283-7303.
    [35]Allen J S,Newberger P A,Holman R A.Nonlinear shear instabilities of alongshore currents on plane beaches[J].Journal of Fluid Mechanics,1996,310:181-213.
    [36]Slinn D N,Allen J S,Newberger P A et al.Nonlinear shear instabilities of alongshore currents over barred beaches[J].Journal of Geophysical Research,1998,103(C9):18357-18380.
    [37](O|¨)zkan-Haller H T,Kirby J T.Numerical study of low frequency surf zone motions[C].Proc.25th Intl.Conf.Coastal Eng.1996.
    [38](O|¨)zkan-Haller H T,Kirby J T.Shear Instabilities of Longshore Currents:Flow Characteristics and Momentum Mixing During Superduck[C].Proceedings of Coastal Dynamics.1997.
    [39](O|¨)zkan-Haller H T,Kirby J T.Nonlinear evolution of shear instabilities of the longshore current:A comparison of observations and computations[J].Journal of Geophysical Research,1999,104:25953-25984.
    [40]Feddersen F.Weakly nonlinear shear waves[J].Journal of Fluid Mechanics,1998,372:71-91.
    [41]Shemer L,Dodd N,Thornton E B.Slow-time modulation of finite-depth nonlinear water waves:relation to longshore current oscillations[J].Journal of Geophysical Research,1991,96(C4):7105-7113.
    [42]Fowler R E,Dalrymple R A.Wave group forced nearshore circulation[C].Proc.22nd Intl.Conf.Coastal Eng.1990.
    [43]Haller M C,Putrevu U,Oltman-Shay J et al.Wave group forcing of low frequency surf zone motion[J].Coastal Engineering Journal,1999,41:121-136.
    [44]Reniers A J H M,Battjes J A,Falques A et al.Shear wave laboratory experiment[C].Proc.Int.Symp.:Waves-Physical and Numerical Modeling.Vancouver,Canada.1994.
    [45]邹志利,任春平,金红,邱大洪,孙鹤泉.沿岸流不稳定性运动实验研究[C].第十二届中国海岸工程学术讨论会.2005.
    [46]金红,邹志利,邱大洪等.波生流对海岸污染物输移的影响[J].海洋学报(中文版),2006,28(6):144-150.
    [47](O|¨)zkan-Haller H T,Kirby J T.Nonlinear evolution of shear instabilities of the longshore current[C].Newark,Delaware:Ocean Engineering Laboratory University of Delaware.1997.
    [48]Baquerizo A,Caballeria M,Losada M A et al.Frontshear and backshear instabilities of the mean longshore current[J].Journal of Geophysical Research,2001,106(C8):16997-17012.
    [49]Feddersen F.Weakly nonlinear finite amplitude shear waves[C].Transactions of the American Geophysical Union Fall Meeting.San Francisco,California.1996.
    [50](O|¨)zkan-Haller H T,Kirby J T.Nonlinear evolution of shear instabilities of the longshore current[R].NEWARK:CENTER FOR APPLIED COASTAL RESEARCH OCEAN ENGINEERING LABORATORY,UNIVERSITY OF DELAWARE,U.S.A.1997.
    [51]Shemer L,Dodd N,Thornton E B.Slow-time modulation of finite-depth nonlinear water waves:Relation to longshore current oscillations[J].Journal of Geophysical Research,1991,96:7105-7113.
    [52]Shrira V I,Voronovich V V,Kozhelupova N G.Explosive Instability of Vorticity Waves[J].Journal of Physical Oceanography,1997,27(4):542-554.
    [53]Visser P J.Laboratory Measurements of Uniform Longshore Currents[J].Coastal Engineering 1991,15:563-593.
    [54]孙鹤泉,康海贵.DPIV流场测试技术中的数据处理[J].大连理工大学学报,2000,40(3):364-367.
    [55]孙鹤泉,康海贵,李广伟.PIV的原理与应用[J].水道港口,2002,23(1):42-45.
    [56]孙鹤泉,沈永明,邱大洪等.波流实验中的图像处理技术[J].水利水电科技进展,2004,24(4):37-39.
    [57]孙鹤泉,沈永明,王永学等.PIV技术的几种实现方法[J].水科学进展,2004,15(1):105-108.
    [58]Takewaka S,Misaki S,Nakamura T.Dye diffusion experiment in a longshore current field[J].Coastal Engineering Journal,2003,45(3):471-487.
    [59]孙涛,韩光.波生沿岸流数值模拟研究及其实验验证[J].水利学报,2002(011):1-7.
    [60]孙涛,陶建华.波浪作用下缓坡近岸海域沿岸流分布影响因素分析[J].水动力学研究与进展:A辑,2004,19(004):558-564.
    [61]唐军.近岸波流共同作用下污染物运动的研究[D].大连:大连理工大学,2005.
    [62]唐军,邹志利,沈永明等.海岸带波浪破碎区污染物运动的实验研究[J].水科学进展,2003,14(5):542-547.
    [63]唐军,邹志利,沈永明等.近岸海域波浪场中污染物运动的实验研究[J].海洋学报,2004,26(1):105-112.
    [64]Peregrine D H.Vorticity and eddies in the surf zone[C].Proceeding of Coastal Dynamics'95,ASCE.Gydnia.1995.
    [65]Peregrine D H.Surf zone currents[J].Theoretical Computation Fluid Dynamics,1998,10:295-309.
    [66]Ursell F.Edge waves on a sloping beach[J].Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,1952,214:79-97.
    [67]徐伯勋,白旭滨.最大熵谱估计在油气检测中的应用[J].石油物探,1990,29(002):1-12.
    [68]黄文梅,熊桂林,杨勇.信号分析与处理-Matlab语言及应用[M].长沙:国防科技大学出版社,2000.
    [69]叶英,董波.美国东部近岸海流观测资料的初步分析[J].海洋预报,2005,22(1):22-30.
    [70]叶英.美国东部近岸海流观测资料的初步分析[D]:中国海洋大学,2003.
    [71]潘永才,王子旭,游治.数字FIR滤波器的MATLAB设计[J].半导体技术,2001,26(8):52-57.
    [72]冉茂华.基于DSP的FIR数字滤波器的设计[D]:武汉理工大学,2006.
    [73]彭红平,杨福宝.基于Matlab的FIR数字滤波器设计[J].武汉理工大学学报,2005,27(5):275-278.
    [74]董良威,刘龙春.线性相位数字滤波器的设计[J].常州工学院学报,2006,19(002):18-22.
    [75]Lutovac M D.信号处理滤波器设计:基于MATLAB和Mathematica的设计方法[M].北京:电子工业出版社,2004.
    [76]靳希,杨尔滨,赵玲.信号处理原理与应用[M].北京:清华大学出版社,2004.
    [77]叶万兴,叶大田,曹宇.双向滤波法去除瞬态诱发耳声发射检测中的刺激伪迹[J].声学学报,2004,29(1):89-95.
    [78]胡广书.数字信号处理理论,算法与实现[M]:清华大学出版社,2003.
    [79]Van de Vegte J.数字信号处理基础[M].北京:电子工业出版社,2003.
    [80]高频贤.趋势项对时域参数识别的影响及消除[J].振动、测试与诊断,1994(6):8-10.
    [81]王广斌,刘义伦,金晓红等.基于最小二乘原理的趋势项处理及其MATLAB的实现[J].有色设备,2004(5):4-8.
    [82]曾禹村,张宝俊,吴鹏冀.信号与系统[M].北京:北京理工大学出版社,1992.
    [83]骆少泽,阎诗武.水流信号的最大熵谱估计程序及其应用[J].水利水运科学研究,1992(3):245-254.
    [84]高品贤.趋势项对时域参数识别的影响及消除[J].振动、测试与诊断,1994,14(2):20-26.
    [85]黄文海,熊桂林,杨勇.信号分析与处理[M].长沙:国防科技大学出版社,2000.
    [86]陈怀深,吴大正,高西全.MATLAB及在电子信息课程中的应用(第二版)[M].北京:电子工业出版社,2003.
    [87]刘波,文忠,曾涯.MATLAB信号处理[M]:电子工业出版社,2006.
    [88]张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    [89]Burg J P.Maximum entropy spectral analysis[C].37th Ann.Int.Meet.Soc.Exploration Geophys.Oklahoma City.1967.
    [90]Burg J P.Maximum entropy spectral analysis[D]:Stanford University,1975.
    [91]中国电子仪器仪表学会信号处理学会.振动数字信号处理程序库[M].北京:科学出版社,1988.
    [92]杨秉心,杨艺洁.最大熵法海浪谱估计[J].重庆交通学院学报,1986,1:104-109.
    [93]陈军.短信号分析技术及其在故障诊断中的应用[D].武汉:武汉理工大学,2003.
    [94]聂士忠,王玉泰.最大熵谱分析方法和Matlab中对短记录资料的谱分析[J].山东师范大学学报(自然科学版),2005,20(3):40-51.
    [95]吴剑锋,赵玉芹.现代谱估计在引信信号处理中的应用[J].战术导弹技术,2005(3):25-28.
    [96]董锦坤.结构驰振理论分析及风振控制[D].沈阳:东北大学,2005.
    [97]周巍,赵树元.最大熵谱分析中Burg算法和Marple算法比较[J].石油物探,1998,37(2):118-124.
    [98]王丽敏,冯锐.地震面波的熵谱分析[J].中国地震,1989,5(2):35-43.
    [99]吉培荣,何振亚.最大熵谱模型的定阶及谱值快速计算[J].武汉水利电力大学(宜昌)学报,1997,19(001):30-34.
    [100]Haykin S.谱分析的非线性方法[M].北京:科学出版社,1986.
    [101]宋华,熊贤培.阶数对最大熵谱估计的影响及其仿真实现[J].陕西师范大学学报(自然科学版),2004,32:201-202.
    [102]李玉华.最大熵谱估计在旋转设备故障诊断中的应用研究[J].化工及自动化及仪表,2006,33(3):64-66.
    [103]邹鲲,袁俊泉,龚享铱.MATLAB信号处理[M].北京:清华大学出版社,2002.
    [104]徐伯勋,白旭滨.最大熵谱估计中振幅谱和相位谱的求法[J].石油物探,1987,26(2):66-74.
    [105]张白林,杨梦岩.最大熵谱的振幅谱和相位谱计算[J].西南石油学院学报,1993,15(004):16-24
    [106]Kauppinen J K,Saario E K.What is wrong with MEM?[J].Applied spectroscopy,1993,47(8):1123-1127.
    [107]Sawada Y,Ohtomo N,Tanaka Y et al.New technique for time series analysis combining the maximum entropy method and non-linear least squares method:its value in heart rate variability analysis[J].Medical and Biological Engineering and Computing,1997,35(4):318-322.
    [108]Kane R P.Prediction of the sunspot maximum of solar cycle 23 by extrapolation of spectral components[J].Solar Physics,1999,189(1):217-224.
    [109]Heath M T,张威,贺华et al.科学计算导论(应用数学译丛)[M].北京:清华大学出版社,2005.
    [110]曹志浩.矩阵特征值问题[M]:上海科学技术出版社,1980.
    [111]Noyes T J.Field Observations of Shear Waves[D].San Diego:University of California,2002.
    [112]Guza R T.边缘波的实验室模拟[J].海岸工程,1997,16(1):64-70.
    [113]Bowen A J,Guza R T.Edge waves and surf beat[J].Journal of Geophysical Research,1978,83(C4):1913-1920.
    [114]Holman R A.Infragravity energy in the surf zone[J].Journal of Geophysical Research,1981,86(C7):6 442-6 450.
    [115]王淑萍.沿岸流的研究[D]:大连理工大学,2001.
    [116]陈矛章.粘性流体力学基础[M].北京:高等教育出版社(第一版),1993.
    [117]蒋长锦.线形代数计算方法[M].合肥:中国科学技术大学出版社,2003.
    [118]Moler C B,G W S.An Algorithm for Generalized Matrix Eigenvalue Problems[J].SIAM Journal on Numerical Analysis,1973,10:241-256.
    [119]Garbow B S.Algorithm 535:The QZ algorithm to solve the generalized eigenvalue problem for complex matrices[F2][J].ACM Transactions on Mathematical Software(TOMS),1978,4(4):404-410.
    [120]威尔金森J H.代数特征值问题[M].北京:科学出版社,2001.
    [121]曹志浩.数值线性代数[M].上海复旦大学出版社,1996.
    [122]Drazin P G,Howard L N.Hydrodynamic stability of parallel flow of inviscid fluid[M]:Academic Press,1966.
    [123]邹志利.水波理论及其应用[M].北京:科学出版社,2005.
    [124]Battjes J A.Modeling of turbulence in the surf zone[C].Proc.Symposium on Modeling Techniques.San Francisco.1975.
    [125]Roelvink J A.Surf beat and its effect on cross-shore profiles[D]:Delft Uviversity of Technology,1993.
    [126]李孟国.波生近岸流的数学模型研究[J].水道港口,2003,24(4):161-166.
    [127]李孟国,王正林.近岸波浪传播变形数学模型的研究与进展[J].海洋工程,2002,20(4):43-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700