基于道路模拟的摩托车平顺性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩托车平顺性是摩托车的重要性能之一。目前,国内摩托车在NVH性能方面与国外差距很大。在摩托车平顺性仿真方面主要采用正弦、阶跃和B级路面等标准信号作为激励,这与实际情况相差较大。道路模拟能在室内再现摩托车实际道路行驶时的振动情况,具有重复性好,安全性高等特点。因此,结合CAD/CAE技术和道路模拟试验技术,对摩托车平顺性进行研究具有重要的理论意义和工程应用价值。
     论文在查阅国内外相关研究文献并详细分析摩托车道路模拟试验技术、摩托车虚拟样机技术和摩托车平顺性评价方法等方面的研究热点及存在的问题基础上,优化了摩托车道路模拟试验方法,提出了基于道路模拟的摩托车平顺性仿真分析方法和基于速度与频率加权的摩托车平顺性客观评价方法,为摩托车开发提供了重要的手段。
     首先,在分析远程参数控制(RPC)原理、道路模拟试验方法及关键技术基础上,建立了两通道轮胎耦合式摩托车道路模拟试验平台,对摩托车道路模拟试验进行了优化。采用优化的试验方案,模拟迭代精度和稳定性明显提高,在室内精确再现了道路载荷谱;通过合理布置加速度和应变信号测点,对多款车型在海南试验场、典型水泥路和碎石路上进行了多工况道路载荷谱采集,建立了国内典型路面摩托车道路载荷谱数据库;采用统计分析、滤波等方法对道路载荷谱进行分析和处理,选取前后轴加速度为期望响应信号,进行了大量模拟迭代和模拟试验,获取了代表摩托车实际行驶振动情况的道路模拟激励谱。
     其次,以某125摩托车为例,结合虚拟样机技术和道路模拟试验技术,建立了摩托车5自由度振动分析模型和摩托车刚柔耦合平顺性仿真平台。一方面,建立了摩托车5自由度线性理论分析模型,运用拉格朗日方法推导了系统运动微分方程和空间状态方程,为摩托车振动分析提供了重要的理论基础。另一方面,建立了摩托车车架有限元模型,应用兰索士法进行模态分析,提取了车架空间柔性体模型,并进行了试验模态频率相关分析和模态置信准则验证;在考虑车架、减振器和轮胎等零部件非线性特性基础上,开发了摩托车人-车刚柔耦合平顺性仿真模型;通过在前后轮添加测试平台,建立了能真实反映摩托车实际行驶振动情况的人-车-路平顺性仿真平台。
     在此基础上,基于凸块路面和实际道路谱输入对摩托车平顺性进行了仿真分析,建立了摩托车平顺性仿真验证评估方法,并提出了摩托车平顺性改进意见。借助建立的摩托车5自由度振动分析模型和摩托车刚柔耦合平顺性仿真平台,以凸块路面和实际道路谱为输入,分别进行了仿真分析;应用摩托车道路模拟试验机,在相同输入下进行了试验,以功率谱密度曲线、时域绝对值最大值和信号平均功率对仿真结果进行了定性和定量综合评估,仿真结果和试验结果具有很好的一致性:根据试验结果和仿真结果,对摩托车振动特性进行了分析,并提出了改进意见。
     最后,在分析现有摩托车平顺性评价方法及车速与加速度响应关系基础上,提出了基于速度和频率加权的摩托车平顺性评价方法,解决了不同车速评价结果不同的矛盾。通过大量试验数据,发现摩托车在碎石路和水泥路上行驶时车速服从一定参数的贝塔分布,采用直接优化参数估计法进行了参数估计,得到了车速加权系数;结合ISO2631和ISO5349中的频率加权系数,采用MATLAB编制程序,计算速度和频率加权加速度均方根值,对摩托车平顺性进行了综合评价。结果表明,速度和频率加权加速度均方根值是各种车速下频率加权加速度均方根值的综合反映。
Ride comfort is an important characteristic of motorcycle. At present, the domestic-made motorcycle's performance in NVH has a large gap with foreign products. In terms of simulation of motorcycle ride comfort, the excitation is standard signals, such as sine, step and grade B road, which has much difference to actual situation. Road simulation can reproduce motorcycle vibration of actual running conditions, and has good repeatability and high security characteristics. So study on motorcycle comfort combined with CAD/CAE and road simulation is necessary and meaningful whether theorily or practically.
     The thesis consulted lots of research literatures home and abroad, and analyzed research focuses and problems of road simulation test technique, virtual prototype technique and evaluation method of motorcycle. Based on this, the method of motorcycle road simulation test was optimized, and the simulation method based on road simulation and evaluation method based on speed and frequency weighting of motorcycle ride comfort were put forward. Studies have provided an effective way for motorcycle development.
     Firstly, by analyzing the principle of remote parameter control and key technology of road simulation test in detail, the platform of motorcycle road simulation test, which is two channels tire-coupling type, was developed, and motorcycle road simulation test was optimized. With the optimized test project, the precision and stability of iteration were greatly improved, and the road load spectrum was accurately reproduced in doors. Through disposing transducer of acceleration and strain, the road load spectrums of several motorcycles were acquired when running on Hainan Proving Ground, typical gravel and concrete road at different speed, then database of motorcycle road load spectrum was established. Using statistcal algorithm and filter to analyze load spectrum, and selecting acceleration of front and rear axles as despired response signal, simulation iteration and simulation test were implemented, at the same time excition spectrum of road simulation which represents actual road was obtained.
     Secondly, taking some 125 motorcycle as example, the 5-DOF vibration model and rigid-flexible coupling simulation platform of motorcycle were developed by combined with virtual protype and road simulation. On the one hand, the 5-DOF multi-body dynamic model was built. Also, the differential equation of motion and state-space formulation were derived according to Lagrange Equation, which provided an important theoretical fundament for vibration analysis of motorcycle. On the other hand, the 3-D finite element model of frame was built. By using Lanczos method, the flexible model of frame was obtained, and the analysis of frenquecy correlation and modal assurance criteria showed that the flexible model is correct. Taking into account non-linear characteristic of frame, absorber and tire, the rigid-flexible coupling simulation model of motorcycle ride comfort was developed, then the simulation platform which can reproduce actual vibration condition of motorcycle was created finally.
     On the basis of 5-DOF vibration model and rigid-flexible coupling simulation platform, the ride comfort of motorcycle was simulated with the pulse road and actual road spectrum as excitation respectively, at the same time the verification and evaluation methods were put forward. Through inputing same excitation into road simulator, the experiments were implemented, and the simulation results were qualitatively and quantitatively evaluated with PSD curve, maximum absolute value and average power. The study showed that simulation results and experimental results matched very well. According to the response signals, the vibration characteristic of the motorcycle was discussed, and some improving suggestions about ride comfort were presented.
     Finally, the thesis analyzed existing evaluation method of motorcycle ride comfort and relation between motorcycle speed and response in detail. Then a new evaluation method of motorcycle ride comfort based on speed and frequency weighting was put forward, which solved the conflict that the evaluation result is different when speed varieties. Lots of test datum showed that when motorcycle runs on gravel and concrete road, the speed obeys 3 distribution, and the parameters ofβdistribution were estimated by experimental datum. Combined with ISO 2631 and ISO 5349, the speed and frequency weighted RMS of acceleration was computed by MATLAB program, and ride comfort of the motorcycle was estimated effectively. The result showed that speed and frequency weighted RMS of acceleration is the synthetical reflection of RMS of acceleration at different speed.
引文
[1]刘惠君,王林.重庆摩托车行业的问题及对策[J].企业活力,2004, (6):24-25
    [2]重庆市经委公众信息网http://wjj.cq.gov.cn/cqgy/gygk/20070429330.HTM[OL]
    [3]王羽,顾方.从区域化到国际化的迈进——2009年第8届中国国际摩托车博览会在重庆召开[J].摩托车技术,2009(10):72-76
    [4]李龙梅.重庆市摩托车工业的技术改造建议[J].科学咨询,2005(11):28
    [5]丁良旭.重庆市摩托车产业可持续发展需关注的问题[J].科学咨询,2005(11):26
    [6]石晓辉,田培棠,廖林清等.重庆市摩托车技术发展现状及分析[J].四川兵工学报,2004(2):3-7
    [7]比亚乔摩托车大举进入中国市场[J].摩托车技术,2009(11):21
    [8]王晋.重庆摩托车行业进一步占领东盟市场的战略分析[J].改革与战略,2005(S1):37-38
    [9]应对全球摩托车市场竞争的思考http:www.dajiang.com.cn[OL]
    [10]史文库.汽车系统动力学[M].吉林:吉林大学出版社,2005(7):128-131
    [11]Sivakumar Balakrishnan, Chandan B. Chavan and Karthikeyan Srinivasan etc. Estimation of Wheel Loads using a Mathematical Model and Correlation with Vehicle Measurements on Motorcycles[J]. JSAE,20076596; SAE,2007-32-0096
    [12]Chandan B. Chavan, Venkata Mangaraju K. and Rajput Bharat. Experimental Study on Effect of Damper Lag on Motorcycle Ride Comfort[J]. JSAE,20066596; SAE,2006-32-0096
    [13]Sharp R. S. The stability and control of Motorcycles[J].The Journal of Mechanical Engineering Science, Vols.13-14, No.5,1971-72, pp.316-329
    [14]Sharp R. S. The influence of frame flexibility on the lateral stability of Motorcycles[J]. The Journal of Mechanical Engineering Science, Vol.15, No.2,1974, pp.117-120
    [15]Sharp R. S. Vibrational modes of motorcycles and their design parameter sensitivity [J]. Vehicle NVH and refinement, Proceedings of IMECH E,1994, pp.107-122
    [16]Sharp R. S., Limebeer D. J. N. A Motorcycle model for stability and control analysis[J], Multibody System Dynamics,6,2001, pp.123-142
    [17]Sharp R. S.,Evangelou S., Limebeer D. J. N. Advances in modeling of Motorcycle Dynamics[J],Multibody system dynamics,12,2004, pp.251-283
    [18]Koenen C. The dynamic behavior of Motorcycle when running straight ahead and when cornering[D],Doctoral dissertation, Delft university,1983
    [19]Genta G. Motor Vehicle Dynamics[M], World Scientific Publishing Co. Pte. Ltd., ISBN 9810229119,1997, pp.441-460
    [20]Cossalter V., Lot R. A Motorcycle Multi-body model for real time Simulat ions based on the Natural Coordinates approach[J], Vehicle System Dynamics,Vol.37, NO.6,2002, pp. 423-447
    [21]Vittore Cossalter, Roberto Lot and Fabiano Maggio. The Influence of Tire Properties on the Stability of a Motorcycle in Straight Running and Curves[J].SAE,2002-01-1572
    [22]Cossalter V., Lot R., Maggio F. The Modal analysis of Motorcycle in straight running and on acurve[J], Meccanica,39,2004, pp.1-16
    [23]B. A. Rajput, Martin Bayliss, D. A. Crolla. A Simplified Motorcycle Model[J].SAE, 2007-01-0829
    [24]Tetsuya KUBOTA, Eiichi YAGI, Moriyuki SAKAMOTO etc. A Study on Motorcycle-Rider System Simulations[J]. JSAE,20024291;SAE,2007-32-0096
    [25]Valentin Ivanov, Mikalai Mikhaltsevich and Barys Shyrokau. Simulation of Brake Control for Motorcycles[J].SAE,2004-01-2061
    [26]Babu R, Karthik M, John Wesley. Optimising steering system design parameters of motorcycles using multi-body computer simulation[J]. JSAE,20024292 SAE,2002-32-1799
    [27]Bryan J. Fleck, Robert Fleck and Robert J. Kee. Validation of a Computer Simulation of a High Performance Two-Stroke Motorcycle Racing Engine [J].SAE,2004-01-3561
    [28]Donida F, Ferretti G, Tanelli M. Object-oriented modelling and simulation of a motorcycle [J]. Mathematical & Computer Modelling of Dynamical Systems [serial online]. April 2008;14(2):79-100.
    [29]SANDRO BARONE and ALESSANDRO CURCIO. A computer-aided design-based system for posture analyses of motorcycles[J]. J. ENG. DESIGN,2004, Vol.15, No.6: 581-595
    [30]CHEN-YUAN LU and MING-CHANG SHIH. An experimental study on the longitudinal and lateral adhesive coefficients hetween the tyre and the road for a light motorcycle[J]. Vehicle System Dynsamics.2005,Vol.43:168-178
    [31]J. R MEIJAARD AND A. A. POPOV. Application of Non-Linear Dynamics to Instability Phenomena in Motorcycles[J]. Vehicle System Dynamics,2004, Vol.41: 567-576
    [32]J. R MEIJAARD AND A. A. POPOV. Tyre modelling for motorcycle dynamics[J]. Vehicle System Dynamics,2005, Vol.43:187-198
    [33]J P Meijaard and A A Popov. Multi-body modelling and analysis into the non-linear behaviour of modern motorcycles[J]. Proc. IMechE,2007, Vol.221:63-76
    [34]V.COSSALTER, A.DORIA, R.LOT etc. Dynamic Properties of Motorcycle and Scooter Tires:Measurement and Comparison[J]. Vehicle System Dynamics,2003, Vol.39, No.5: 329-352
    [35]K S Tan, S V Wong, R S Radin Uma etc. Empirical model for impact response of motorcycle front spoked wheel-tyre assembly[J]. Proc. IMechE,2006, Vol.220: 1547-1563
    [36]K.S.TAN,S.V.WONG and R.S.RADIN UMAR. IMPACT BEHAVIOR MODELING OF MOTORCYCLE FRONTWHEEL-TIRE ASSEMBLY[J]. International Journal of Automotive Technology,2009,Vol.10, No.3:329-339
    [37]H. HAGA. Evaluation of tyre models for durability loads prediction using a suspension-on-a-druni environment[J]. Vehicle System Dynamics,2005, Vol.43: 281-296
    [38]F.BIRAL,D.BORTOLUZZI, V.COSSALTER etc. Experimental Study of Motorcycle Transfer Function for Evaluating Handling[J]. Vehicle System Dynamics,2003, Vol.39,No.1:1-25
    [39]STEPHEN R. JAMES. Lateral Dynamics of an Offroad Motorcycle by System Identification[J]. Vehicle System Dynamics,2002,Vol.38,No.1:1-22
    [40]STEPHEN R. JAMES. Lateral dynamics of motorcycles towing single-wheeled trailers[J]. Vehicle System Dynamics,2005,Vol.43,No.8:581-599
    [41]K. Venkata Mangaraju, V. Yogaraja, M. Karthik etc. Kinematic and Dynamic Analysis of Monoshock Rear Suspension[J].SAE,2004-32-0020
    [42]D. J. Kalsule, R. R. Askhedkar and P. R. Sajanpawar. Engine Induced Vibration Control for a Motorcycle Chassis Frame by Right Combination of Finite Element Method and Experimental Techniques[J]. SAE,1999-01-1754
    [43]Mitsue Koyano, Tsutomu Takeuchi, Takeshi Ohara. Enhancement of Motorcycle Seat Comfort Using 3D Mesh Cushion of Thermoplastic Elastomer[J]. JSAE,20076608;SAE, 2007-32-0108
    [44]Robin Tuluie and Gary Stewart. Motorcycle Suspension Development Using Ride Comfort Analysis with a Laboratory Test System[J]. JSAE,9938031; SAE, 1999-01-3276
    [45]Hirohide Matsushima, Masashi Sakata, Ryo Suzuki. Simulation of Fluctuation Behavior during Motorcycle Acceleration[J]. JSAE,20076607; SAE,2007-32-0107
    [46]Hiroyuki Kuwahara, Yoji Fukui and Hideki Kido. Virtual Assessment of Motorcycle Vibrations[J].SAE,2001-01-1849/4267
    [47]VITTORE COSSALTER, ALBERTO DORIA, STEFANO GARBIN etc. Frequency-domain method for evaluating the ride comfort of a motorcycle. Vehicle System Dynamics,2006, Vol.44, No.4:339-355
    [48]Kenji Sagara, Takayuki Koizumi and Nobutaka Tsujiuchi. The investigation on vibration of ride comfort of motorcycle[J], SAE,2002-08-0364
    [49]Monica Carfagni,Lapo Governi and Yary Volpe. Comfort assessment of motorcycle saddles:a methodology based on virtual prototypes[J]. Int J Interact Des Manuf,2007, Vol.1:155-167
    [50]Dodds C. J. A computer system for multi-channel remote parameter control of a test specimen[M], MTS publication,1977.
    [51]Craig J.B. ITFC-How it works and where to use it[M].Schenck publication,1979.
    [52]Anon. Simulation testing and SPiDAR-IDC[M].Fairhurst Structural Monitoring publication,1987.
    [53]Dodds C. J. and Plummer, A. R.Laboratory Road Simulation for Full Vehicle Testing-A Review[J]. SAE,2001-01-0001.
    [54]Harashima S., Takahashi H. et al.Development of Multi-use Road Simulator[J]. SAE Paper No.931912.
    [55]Harashima S. Evaluation Method of Motorcycle Fatigue Strength Using Road Simulator[J].SAE,951817.
    [56]Korth P. and Berling P. Motorcycle Secondary Drive Testing Using a Servo-Hydraulic Laboratory Test System[J].SAE,2004-32-0045.
    [57]Stewart, G. and Gunness, P. T.Accelerated Motorcycle Testing Using Laboratory Simulation Methods[J].SAE,972148.
    [58]Petrick L. and Gunness P. T.Analysis of Motorcycle Structural-Resonance-Induced Fatigue Problem [J]. SA E,1999-01-3279.
    [59]Balakrishnan S. Muniyasamy K. etc. Application of Fatigue Life Prediction Techniques for Optimising the Motorcycle Center Stand[J].SAE,2004-32-0046.
    [60]Lin K. Y., Chang J. M. etal. Durability Assessments of Motorcycle Handlebars[J]. SAE, 2004-01-0801.
    [61]Goktan, A. G. and Yetkin, A.Road Load Data Estimation on Multiaxial Test Rigs for Exhaust System Vibrations [J].SAE,2002-01-0805.
    [62]Ken-Yuan Lin, Jiun-Ren Hwang, Chih-Tsao Chen etc. Durability Assessment and Riding Comfort Evaluation of a New Type Scooter by Road Simulation Technique[J].SAE,2006-01-0730
    [63]贺蜀山,何玉林,杜静.CAD及相关技术在摩托车设计中的应用研究[J]CAD/CAM与制造业信息化,2005,5:45-48
    [64]何孔德,何玉林,杜静等.基于ADAMS的摩托车参数化虚拟样机建模技术[J].重庆大学学报(自然科学版),2005,28(10):1-4
    [65]张先刚,朱平,韩旭.摩托车车架的动态特性分析及减振优化研究[J].中国机械工程,2005,16(12):114-1117
    [66]张志弘,何玉林,杜静等.摩托车车架动态性能优化设计技术的研究[J].工程图学学报,2006,3:12-17
    [67]顾灿松,李洪亮,吴文江.摩托车车架结构模态分析与减振优化[J].摩托车技术,2006,9:56-58
    [68]夏龙军,王大承.摩托车车架动态特性研究现状[J].机械加工与自动化,2004,11:31-34
    [69]吴龙,陈花玲,陈玲莉.摩托车半主动悬架分层预测控制及仿真[J].系统仿真学报,2006,18(8):2239-2246
    [70]孙学军,何玉林,杜静.摩托车发动机变刚度弹性悬挂系统研究与应用[J].振动与冲击,2005,24(6):124-126
    [71]谭逢友,何玉林,丁一等.摩托车发动机悬挂系统降振仿真分析[J].重庆大学学报(自然科学版),2004,27(12):20-23
    [72]单春贤,陆勇,郭晨海等.摩托车减振器外特性的计算机模拟与分析[J].摩托车技术,2001,8:8-11
    [73]肖雪飞,何天明.基于MSC.ADAMS的摩托车虚拟样机的振动分析[J].小型内燃机与摩托车,2006,35(5):53-55
    [74]严存峰,王建生,熊焕庭.基于柔性车架的摩托车虚拟样机建模及仿真[J].摩托车技术,2005,7:10-12
    [75]何孔德,方子帆,邓守城.基于虚拟样机技术的摩托车发动机安装角度研究[J].小型内燃机与摩托车,2008,37(4):4-7
    [76]杜静,何玉林.虚拟样机技术在摩托车降振中的应用[J].中国制造业信息化,2004,33(10)
    [77]张学江,文武.应用虚拟样机技术进行摩托车性能仿真[J].摩托车技术,2002,9:6-11
    [78]唐倩,范群,朱才朝.基于虚拟样机技术的摩托车平顺性仿真[J].重庆大学学报,2003,26(10):6-9
    [79]冉涌,杜静,刘玉霞.基于虚拟样机技术的摩托车平顺性仿真分析和悬架优化设计[J].现代制造工程,2008,1:21-23
    [80]董艳荣,王建生.基于虚拟样机技术的摩托车平顺性分析[J].五邑大学学报(自然科学版),2008,22(2):31-35
    [81]李立,马力,李鹏飞.基于虚拟样机技术的摩托车平顺性分析系统设计[J].机电工程技术,2005,34(10)66-68
    [82]黄泽好.摩托车人-机刚柔耦合系统动态特性研究[D].重庆:重庆大学机械工程学院,2006
    [83]晋小莉,顾怀宁,段保民.智能化摩托车道路模拟试验台设计[J].新技术新工艺,2004(6):23-24
    [84]黄大志.摩托车电液伺服道路模拟系统建模与仿真[J].淮海工学院学报(自然科学版),2005,14(2):21-23
    [85]张志伟,毛福荣,宋锦春.电液伺服控制摩托车随机疲劳试验台的实验研究[J].东北大学学报(自然科学版),2006,27(8):903-906
    [86]张利国.摩托车疲劳试验台载荷谱编制方法[J].航空制造技术,2005(9):95-99
    [87]张迎辉,张利国.摩托车整车疲劳试验载荷谱编制方法的研究[J].沈阳航空工业学院学报,2004,21(5):25-27
    [88]张清,石晓辉,毛星子等.基于实际道路激励谱的摩托车车架随机响应分析[J].机械设计与制造,2009(2):222-224
    [89]吴跃成,周晓军,吴瑞明等.基于随机变幅动载的驱动桥道路模拟试验研究[J].中国机械工程,2004,15(4):362-364
    [90]茵筱亭,何斌,陆毓琪等.刚柔多体系统动力学离散时间传递矩阵法[J].南京理工大学学报,2006,30(4):389-394
    [91]王国强,张进平,马若丁编.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002
    [92]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.1
    [93]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1993.9
    [94]孙世基,黄承绪.机械系统刚柔耦合动力分析及仿真[M].北京:人民交通出版社2000
    [95]张彦梅,王琪,陆启韶.带约束非线性多体系统动力学方程数值分析方法[J].应用力学学报,2002,19(3):54-58
    [96]原亮明,王成国,刘金朝等.一种求解多体系统微分-代数方程的拉格朗日乘子方法[J].中国铁道科学,2001,22(2):51-54
    [97]邹喜红,柯坚,石晓辉等.摩托车道路模拟试验设计[J].拖拉机与农用运输车,2008,35 (5): 25-29
    [98]彭为,靳晓雄,孙士炜.道路模拟试验中道路载荷谱的选择方法[J].上海工程技术大学学报,2004(1):6-9
    [99]胡文伟,易明,靳晓雄.轿车车头道路模拟试验加载谱研究[J].同济大学学报,2003(7):861-863
    [100]任松茂,辛莹,道路模拟试验方法浅析[J].重型汽车,2003, (1):13-14
    [101]刘成,王仲范,陈军等.汽车道路模拟试验台时域方法控制量的滤波[J].武汉汽车工业大学学报,2000, (3):6-9
    [102]张觉慧,金锋,余卓平.道路模拟试验用载荷谱样本选择方法[J].汽车工程,2004,(2):220-223
    [103]王霄锋,杨春伟,杜永昌.道路模拟控制系统的研制和开发[J].仪表技术与传感器,2004, (10):22-25
    [104]徐中明,卢少波,张志飞.基于MATLAB的摩托车舒适性仿真分析[J].计算机仿真,2006,23(7):248-252
    [105]蔡旭晖,刘卫国,蔡立燕MATLAB基础与应用教程[M].北京:人民邮电出版社,2009.8
    [106]余志生.汽车理论[M].北京:机械工业出版社,2006
    [107]王国权.虚拟试验技术[M].北京:电子工业出版社,2004.3
    [108]赵云波,鲁君尚,侯洪生CATIA V5基础教程[M].北京:人民邮电出版社,2007
    [109]齐朝晖.多体系统动力学[M].北京:科学出版社,2008
    [110]严存峰,王建生,熊焕庭.基于柔性车架的摩托车虚拟样机建模及仿真[J].摩托车技术,2005,7:10-12
    [111]中国标准化与信息分类编码研究所.GB5703-85.人体测量方法[M].北京:中国标准出版社,1986
    [112]周一鸣,毛恩荣.车辆人机工程学[M].北京:北京理工大学出版社,1999
    [113]周焕林,胡宗军,胡龙飞MSC.Patran&MSC.Nastran入门和实例[M].安徽:合肥工业大学出版社,2006.8
    [114]李楚琳,张胜兰,冯樱HyperWorks分析应用实例[M].北京:北京机械工业出版社,2008
    [115]刘兵山,黄聪PATRAN从入门到精通[M].北京:中国水利水电出版社,2003.3
    [116]徐中明,张志飞.摩托车车架模态特性分析[J].小型内燃机与摩托车.2006.06
    [117]曹树谦,张文德,萧龙翔.振动结构模态分析—理论、实验与应用[M].天津:天津大学出版社,2002.06
    [118]谭冬梅,姚三,瞿伟廉.振动模态的参数识别综述[J].华中科技大学学报.2002.09
    [119]王永宪,王兵,任建岳.空间遥感器调焦机构组件动特性分析[J].光学技术.2009,35(2):235-243
    [120]管迪华.模态分析技术[M].北京:清华大学出版社,1996
    [121]陈长征,孙德林,赵玲玲等.某空间遥感器支架桁架的模态计算与试验相关性分析[C].UFC中国用户论文集,2007
    [122]李军,刑俊文,覃文洁ADAMS实例教程[M].北京:北京理工大学出版社,2002.7
    [123]范成建,熊光明,周明飞.虚拟样机软件MSC.ADAMS应用与提高[M].北京:机械工业出版社,2006.9
    [124]GB 5902-86,汽车平顺性脉冲输入行驶试验方法[S],1986
    [125]陈松,蹇开林,黄泽好等.摩托车平顺性的仿真研究[J].机械强度,2006,28(3):465-469
    [126]徐中明,张志飞,李俊鹏等.应用ISO 2631和ISO 5394评价摩托车平顺性[J].小型内燃机与摩托车,2006,35(6):5-8
    [127]ISO 2631, Evaluation of Human Exposure to Wholebody Vibration-Part 1:General requirements[S],2003
    [128]ISO 5349,Measurement and evaluation of human exposure to hand-transmitted vibration-Part 1:General requirements[S],2001
    [129]ISO/TC 108/WG9,Proposals for Generalized Road Inputs to Vehicles[S],1972
    [130]GB 7031-86,车辆振动输入-路面平度表示方式[S],1986
    [131]李筠,祝勇.数据处理的Beta分布拟合法[J].仪器仪表学报,2004,25(4):762-763
    [132]林洪桦.再荐误差的β分布统示法[J].中国计量学院学报,2004,15(2):96-101
    [133]郭盛杰,姚卫星.基于Beta分布形状的拟合优度检验[J].应用数学学报,2007,3(3):468-478
    [134]林宋.贝塔分布的拟合参数优化[J].现代制造工程,2003, (4):59-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700