压电双晶梁在微电机及微力传感器上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电式传感器和执行器具有结构简单、响应速度快、高频适用性强、驱动和处理电路简单等特点,在超声检测、精密位移和定位、声学及力学量的检测等方面已经得到了广泛的应用。压电双晶梁是一种典型的力学敏感结构,是一种多功能的应用元件。作为执行器,压电双晶梁具有位移放大的特点,可以实现相对大幅度的运动空间,来完成压电叠堆型结构所无法达到的驱动效果;作为传感器,它具有柔性好、灵敏度高的特点,通过优化结构和缩小尺寸,可以测量微小的载荷。随着微电子机械系统(MEMS)技术的不断发展,采用微加工技术制造而成的微型压电悬臂越来越受到研究者的重视,并可望成为更加具有应用前景的微型驱动和传感元件。
     本文在对国内外压电式微型传感器和微型执行器的研究现状和存在的问题进行了深入分析和研究的基础上,利用压电双晶梁的结构和功能特点,将其应用于压电微型电机的驱动和微力学量的测量两个方面。主要开展了以下3个方面的研究工作:
     1、把压电双晶梁结构应用于压电微型电机。分析了压电双晶梁的结构特点,讨论了双压电层双晶梁和单压电层双晶梁的传感执行模型,重点分析和说明了压电双晶梁在作为执行器时所具有的对压电结构输出位移能够进行放大的特点;研究了串联型压电双晶梁,即串联弯曲臂的椭圆运动轨迹形成机理,并通过实验验证了椭圆运动轨迹的存在以及该结构的位移放大特性,获得了椭圆运动横向和纵向位移随电压幅值和频率变化的规律;首次设计了串联弯曲臂型压电微电机的结构,分析了结构特点以及驱动原理;首次制造了两种不同尺寸和驱动组的串联弯曲臂压电微电机的样机;通过实验测试了电机的性能,得到了电机的输出空载转速、输出转矩与驱动电压幅值、驱动电压频率之间的关系;研究了预紧力以及摩擦磨损对电机的输出性能的影响。实验结果表明,串联弯曲臂压电微电机的输出性能与现有的同类尺寸压电微电机比较,有了较大提高,对于直径为5mm的样机,其输出空载转速可以达到325rpm,输出转矩可以达到36.5μNm。
     2、对压电双晶梁结构进行了微型化工艺研究。研究了采用溶胶-凝胶法在硅衬底上制备PZT压电薄膜材料的工艺,分析了衬底对薄膜质量的影响;分析了压电薄膜起泡和开裂的原因,并通过改进热处理条件,避免了该现象的发生。通过测试分析了PZT薄膜的结构特点、RC阻抗特性以及铁电性能参数。测试结果表明,本文所制备的PZT薄膜沿着PZT<111>方向择优生长、阻抗较高、有着优良的铁电性能;PZT薄膜的图形化工艺对其在微器件上的应用具有重要意义,因此本文研究了PZT薄膜的干法和湿法刻蚀工艺。通过改进腐蚀过程,减小了湿法腐蚀造成的侧蚀;并找到了一种有效的ICP
Piezoelectric sensors and actuators with many advantages including simple structure, fast response, high frequency, and simple driving and measuring circuits, have been extensively applied to ultrasonic devices, precision positioning, detecting of acoustics and mechanic parameters, etc. Piezoelectric biomorph beams are classic sensitive structures, and they are also multifunction platforms. Piezoelectric biomorph cantilevers have shown outstanding characteristics in displacement amplification when they are used as actuators. It can realize a relatively large displacement that stack piezoelectric units can hardly achieve. When the biomorph cantilever is used as a sensor, it also has many advantages, including good flexibility, high sensitivity, etc. This cantilever can measure a micro load by optimizing the structure and scaling down the dimensions. With the development of Microelectromechanical Systems (MEMS) technologies, micro piezoelectric biomorph beams fabricated with microfabrication techniques become more and more attractive and have more possible applications to microsensors and microactuators.In this dissertation, based on the piezoelectric bimorph cantilevers, the applicatons to piezoelectric micromotors and micro force sensors were investigated, which covers the fellowing three aspects:1. The applicaton of piezoelectric bimorph structures to piezoelectric micromotors was conducted. The structures and characteristics of piezoelectric bimorph cantilevers were studied, and the models of piezoelectric microsensors and microactuators with bimorph and unimorph structures were discussed. The elliptical movement of serial piezoelectric bimorph (serial bending arm) was analyzed and verified by experiments. The track of elliptical movement was observed using oscillograph so that the characterizaton of displacement amplification was verified. The structure of serial bending arms for piezoelectric micromotors was designed, while the driving mechanism was analyzed. Two types of prototypes with different scales and different piezoelectric serial bending arms were fabricated using precise micromachining techniques. The characteristics of the micromotors were measured, and the relationship between velocity without load, torque and driving voltage amplitude, driving frequency were tested and analyzed. The influence of pre-load and abrasion on the capability of piezoelectric micromotor was analyzed. The capability of the piezoelectric micromotors was improved, compared with other piezoelectric micromotors in the same scales. The micromotors with serial bending arms 5 mm in diameter can reach its maximumrotational velocity of 325 rpm without load, and maximum torque of 36.5μNm.
    2. The microfabrication techniques for piezoelectric unimorph cantilevers were investigated. The approach to deposite PZT films was studied, while various thickness of PZT films were prepared by sol-gel method on the substrate of Pt/Ti/SiO2/Si. The reason of bubbles on PZT films was analyzed and overcomed using modified annealing process. The characteristics of structure, resistance, and ferroelectrics were tested and analyzed. The results revealed that the prepared PZT films are preferentially oriented along the <111> direction, and the films have high resistance and good ferroelectricity. The patterning method of PZT films with dry etching and wet etching was conducted. The undercut was decreased using a modified wet etching process. A new ICP dry etching method, with good surface quality and satisfied etching rate, was developed. The mcirofabrication process for piezoelectric silicon microcantilevers was studied, resulting in a new modified fabrication process. Three types of of silicon-based PZT microcantilevers were fabricated successfully with this modified fabrication technique. The key techniques in the cantilever fabrication rpocess were invetigated.3. The application of the Si-based PZT piezoelectric microcantilevers to micro force measurement was studied. The dynamic model of Si-based PZT piezoelectric microcantilevers was analyzed with numerical simulation, in which the dynamic characteristics of microcantilevers were obtained. The response to microforce, applied at the free end of cantilevers, and reporise to voltage, applied on the electrodes of PZT films, were imulated with CoventorWare. The modal frequencies of the microcantilevers were extracted with modal analysis. The results of numerical caculation and FEA were in a good agreement, while the coherence and errors were studied as well. The application of the Si-based PZT piezoelectric microcantilever to micro force measurement was also studied. A piezoelectric micro force sensor, with a piezoelectric bimorph microcantilever, was investigated for the first time. The working principle of the micro force sensor was discussed. A calibration method was designed for practical applications of micro force sensors to micro robots and micromanipulation systems.
引文
[1] Fujita H. A decade of MEMS and its future. IEEE. Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya, 1997, 1-7.
    [2] 王立鼎,罗怡.中国MEMS的研究与开发进程.仪表技术与传感器,2003,1:1-3.
    [3] Senturia S.D., Azuru N., White J., Simulating the behavior of MEMS devices: computational methods and needs. IEEE Computational Science and Engineering, 1997, 4(1): 30-43.
    [4] Baborowski J., Muralt P., Ledermann N., etc. PZT coated membrane structures for micromachined ultrasonic transducers. IEEE International Symposium on Applications of Ferroelectrics, 2002, 483-486.
    [5] Birer h., Ghohestani M., Cathignol D.. Development of a compact selffocusing piezoelectric generator using electrical pre-strain piezocomposite material. Ultrasonics Sonochemistry, 2004, 11(3-4): 155-160.
    [6] Preumont A., Francois A., De Man P., etc. Distributed sensors with piezoelectric films in design of spatial filters for structural control. Journal of Sound and Vibration, 2005, 282(3-5): 701-712.
    [7] Brandolini A., Gandelli A., Ottoboni R.. Multi-purpose interface for both capacitive and piezoelectric sensors. IEEE Region 10 International Conference on Microelectronics and VLSI, 1995.
    [8] 王保华.生物医学测量及控制技术新进展.中国医疗器械杂志,2003,27(2):78-84.
    [9] Schweyer M.G., Hilton J.A., Munson J.E, etc. A novel monolithic piezoelectric sensor. IEEE International Symposium on Frequency Control, Orlando,1997.
    [10] Homma T., Ino S., Kuroki H., etc. Development of a piezoelectric actuator for presentation of various tactile stimulation patterns to fingerpad skin. 26th Annual International Conference of the Engineering in Medicine and Biology Society, 2004.
    [11] 杨志欣,孙宝元,董维杰.一种新型惯性式压电执行器研究.大连理工大学学报,2005,45(1):45-49.
    [12] 董维杰,崔玉国,张小军等.压电执行器位移自感知方法研究.大连理工大学学报,2004,44(6):815-818.
    [13] 高世桥,曲大成.微机电系统(MEMS)技术的研究和应用.科技导报,2004,4:17-21.
    [14] 王立鼎,吴一辉.抓住机遇,推动我国微型机械的快速发展.中国机械工程,1999,10(2):121-122,206.
    [15] Zhang J.H., Wang, C.H., Pang, A.J, etc. A low cost bumping method for flip chip assembly and MEMS integration. IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, 2004.
    [16] 王立鼎,刘冲.微机电系统科学与技术发展趋势.大连理工大学学报,2000,40(5):505-508
    [17] 李志坚.微电子机械系统(MEMS)发展展望.电子商务,1997,1:2-9.
    [18] 张威,张大成,王阳元.MEMS概况和发展趋势.微纳米电子技术,2002(1):22-27.
    [19] 崔天宏.周兆英.王晓浩.硅微热致动泵设计及其加工工艺的研究.仪表技术与传感器,1998,8:10-13.
    [20] Kaigham J. Gabriel. Microelectromechanical Systems (MEMS) Tutorial. International Proceedings Test Conference, Washington, DC, 1998.
    [21] 褚祥诚,李龙土.压电陶瓷超声波马达.物理,2002,31(4):229-234.
    [22] 崔天宏,王立鼎,吕琼莹等.微电子机械系统中的薄膜微马达.光学精密工程,1995,3(4):1-6.
    [23] Fujita, H. A decade of MEMS and its future. IEEE Proceedings Micro Electro Mechanical Systems, Nagoya, 1997.
    [24] 丁衡高.面向21世纪的军民两用技术微米/纳米技术.中国惯性技术学报,1995,3(2):1-7.
    [25] 何政,陈文,孙华君等.块体压电材料制备工艺的研究进展.现代技术陶瓷,2002,3:19-23.
    [26] 张福学,王丽坤.现代压电学(中册).北京:科学出版社,2002.
    [27] B.贾菲等著..林声和译..压电陶瓷.北京:科学出版社,1979.
    [28] 孙慷,张福学.压电学(上册).国防工业出版社,1984.
    [29] Lipeng Wang. Microelectromechanicalsystems(MEMS) sensors based on lead zirconate titanate(PZT) films: [dissertation]. Pennsylvania: Pennsylvania state University, 2001.
    [30] Furukawa T. Piezoelectricity and pyroelectricity in polymers. IEEE Transactions on Electrical Insulation 1989, 24(3):375-394.
    [31] Timothy Michael Sullivan. Development of a Novel Method for Measuring the Transverse Piezoelectric Coefficients of Thin Piezoelectric Films: [dissertation]. Washington: Washington State University, 2004.
    [32] 陈艾.敏感材料与传感器.北京:化学工业出版社,2004.
    [33] 张福学,王丽坤.现代压电学(下册).北京:科学出版社,2002.
    [34] 吕志清.哥氏振动陀螺.压电与声光,2004,26(2):98-102.
    [35] http://www.tjian.com.cn/pd3.htm.
    [36] 董高庆.压电加速度计的原理、结构及其使用.测试技术学报,1997,11(4):52-62.
    [37] http://design.stanford.edu/Courses/me220/.
    [38] 刘献强.线性加速度计的现状和发展动向.测控技术,1995,4(3):6-10.
    [39] http://isnmag.com/.
    [40] 张福学,现代压电学(中册).北京:科学出版社,2002.
    [41] http://design.stanford.edu/Courses/me220/lectures/lect02/"lect_2.html.
    [42] 张宇波.熊定全.孙宝元.智能轴承在钻削加工中的应用.轴承1998,11:4-6,42.
    [43] David B. Newell, John A. Kramar, Jon R. Pratt, etc. The NIST Microforce Realization and Measurement Project. IEEE Transaction on Ultrasonic, Ferroelectrics, and Frequency Control. 2003,52(2): 508-511.
    [44] Wenlin Jin, C. D. Mote, Jr. On the Calibration of Multicomponent Microforce Sensors. Journal of Microelectromechanial Systems, 1998,7(2): 156-163.
    [45] Wenlin Jin, C. D. Mote, Jr. Development and Calibration of a Submillimeter Three-component Force Sensor. Sensors and Actuators A, 1998,65:89-94.
    [46] Yu Sun, Steven N. Fry, D. P. Potasek, etc. Characterizing Fruit Fly Flight Behavior Using a Microforce Sensor With a New Comb-Drive Configuration. Journal of Microelectromechanial Systems, 2005,14(1):4-11.
    [47] Yu Sun, D. P. Potasek, D. J. Bell, etc. Flight Force Measurements Using a MEMS Micro Force Sensor. Proceedings of the 26th Annual International Conference of the IEEE. CA: San Francisco, 2004.
    [48] Yu Sun, Michael A., Greminger Bradley, etc. Investigating Protein Structure with a Microrobotic System. Proceeding of the ZOM. IEEE international Conhnnce on Robotiu 6 Autornllon, IA: New Orleans, 2004.
    [49] Jan Peirs, Joeri Clijnen, Dominiek Reynaerts, etc. A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sensors and Actuators A, 2004, 115:447-455.
    [50] C. Gehin, C. Barthod, Y. Teisseyre. Design and characterisation of a new force resonant sensor. Sensors and Actuators, 2000,84:65-69.
    [51] 任天令,刘理天,李志坚.铁电—硅集成微麦克风和扬声器研究.清华大学学报(自然科学版),1999,39(S1):74-76.
    [52] Lin-Tao ZHANG, Tian-Ling REN, Jian-She LIU, etc. Fabrication of a Cantilever Structure for Piezoelectric Microphone. Jpn. J. Appl. Phys, 2002,41:7158-7159.
    [53] Peng-sheng Huang, Tian-Ling Ren, Qi-Wei Lou, etc. Design of a Triaxial Piezoelectric Accelerometer. Integrated Ferroelectrics, 2003, 56: 1115-1122.
    [54] Chengkuo Lee, Toshihiro Itoh, Tadatomo Suga. Micromachined Piezoelectric Force Sensors Based on PZT Thin Films. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1996,43(4): 553-559.
    [55] C. Lee, T. Itoh, G. Sasahi. Sol-gel derived PZT force sensor for scanning force microscopy. Materials Chemistry and Physics, 1996, 44:25-29.
    [56] Chengkuo Lee, Toshihiro Itoh, Tadatomo Suga. Piezoelectric force sensor for scanning force microscopy, Sensors Actuators A, 1994, 43: 305-310.
    [57] 孔德义,虞承端,梅涛等.电化学腐蚀技术在制作硅谐振式微力传感器中的应用.世界电子元器件,2001,2:50-52.
    [58] 杨宏亮,鲍剑斌,王志勇等.一种用于MEMS样品测试的六轴微力传感器.现代机械,2004,1:15-16.
    [59] 黎海文,吴一辉,李也凡等.用于微摩擦测试的微力传感器及其制作.微细加工技术,2004,3:65-69.
    [60] Huixing Zhou, Brian Henson, Andrew Bell. Linear piezo-actuator and its applications.第五届海内外青年设计与制造科学会议,大连,2002.
    [61] 董维杰,崔玉国,张小军.压电执行器位移自感知方法研究 大连理工大学学报,2004,44(6):815-818.
    [62] 林书玉.超声换能器的原理及设计.北京:科学出版社,2003.
    [63] 张文超.超声马达步进特性和定位控制技术研究与应用.生命科学仪器,2005,3(1):38-43.
    [64] 崔天宏,王立鼎.超声微电机传动机理的研究.机械工程学报,1995,31(2):71-76.
    [65] 刘世清.超声波马达原理及其应用.渭南师范学院学报,2004,19(5):13-16.
    [66] 郑伟智.辛洪兵.压电马达的发展及其技术特点.北京工商大学学报(自然科学版),2003,20(1):45-48.
    [67] 蔡明祺,萧仕伟,谢旻甫.颠覆傅统的无声马達超音波马达.科学发展,2003,367:42-47.
    [68] Takeshi Morita, Minoru Kuribayashi Kurosawa, Toshiro Higuchi. A Cylindrical Micro Ultrasonic Motor Using PZT Thin Film Deposited by Single Process Hydrothermal Method (φ2.4mm, L=10mm Stator Transducer) IEEE Transaction on Ultrasonic, Ferroelectrics, and Frequency Control. 1998,45(5): 1178-1187.
    [69] Kanda, T., Makino, A., Suzumori, K., etc. A cylindrical micro ultrasonic motor using a micro-machined bulk piezoelectric transducer. 2004 IEEE Ultrasonics Symposium, 2004, 2,: 1298-1301.
    [70] M. Bexell, S. Johansson. Fabrication and evaluation of a piezoelectric miniature motor. Sensors and Actuators, 1999, 75:8-16.
    [71] M. Bexell, S. Johansson. Characteristics of a piezoelectric miniature motor. Sensors and Actuators, 1999, 75:118-130.
    [72] Y. Suzuki, K. Tani, T. Sakuhara. Development of a new type piezoelectric micromotor. Sensors and Actuators, 2000, 83: 244-248.
    [73] Koc, B., Bouchilloux, P., Uchino, K.. Piezoelectric micromotor using a metal-ceramic composite structure. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2000, 47(4): 836-843.
    [74] 陈在礼,褚祥诚,陈维山等.超声波马达的发展——国内最新动态.应用声学,1999,2:1-5,31.
    [75] YamayoshiY, HiroseS. Ultrasonicmotor not using mechanical friction force. International Journal of Applied Electromag-neticsin Materials, 1992, (3):179-182.
    [76] 刘景全,杨志刚,吴博达等.圆筒型非接触超声马达的实验研究.压电与声光,1998,20(3):199-202.
    [77] 崔天宏,王立鼎,吕琼莹.压电微马达的动力学原理及实验研究.仪器仪表学报,1996,17(1):330-333.
    [78] 崔天宏,王立鼎,吕琼莹.压电微马达的动力学仿真及实验研究.光学精密工程,1996,4(4):34-39.
    [79] 马建旭,刘翔,李成发等.压电微电机优化理论的计算机仿真.光学精密工程,1998,6(1):58-64.
    [80] 邵培革,王立鼎.重力-弹力耦合驱动压电微电机研究.光学精密工程,1999,7(4):65-70.
    [81] Jianhua Tong, Tianhong Cui, Peige Shao. Piezoelectric micromotor based on the structure of serial bending arms. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2003,50(9):1100-1104.
    [82] Carotenuto, R., Lamberti, N., Iula, A, etc. A new low voltage piezoelectric micromotor based on stator precessional motion. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1998,45(5):1427-1435.
    [83] Tani, K., Suzuki, M., Furuta, K.,etc. Development of a new type piezoelectric micromotor. The Eleventh Annual International Workshop on Micro Electro Mechanical Systems (MEMS), Heidelberg, 1998.
    [84] Riccardo Carotenuto, Nicola Lamberti, Antonio Iula, etc. A New Low Voltage Piezoelectric Micromotor Based on Stator Precessional Motion. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1998,45(5):1427-1435.
    [85] P. Muralt, M. Kohli, T. Maeder, etc. Fabrication and characterization of PZT thin-film vibrators for micromotors. Sensors and Actuators A, 1995, 48: 157-165.
    [86] Paul Muralt. PZT Thin Films for Microsensors and Actuators: Where Do We Stand? IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control. 2000, 47(4): 903-913.
    [87] 路德明.水声换能器原理.青岛:青岛海洋大学出版社,2001.
    [88] 牟国洪.杨世源.张福平.pzt压电陶瓷粉体合成的研究进展.中国陶瓷,2003,39(4):10-13.
    [89] 刘宝棠,江俊勤,何宝鹏.压电陶瓷及其应用.大学物理,1995,14(8):35-38.
    [90] 王矜奉,姜祖桐,石瑞大.压电振动.北京:科学出版社,1989.
    [91] Jan G. Smits, Arthur Ballato. Dynamic admittance matrix of piezoelectric cantilever bimorphs. Journal of microelectromechanical systems, 1994, 3(3): 105-112.
    [92] Jan G. Smits, Wai-Shing Choi. The Constituent Equations of Piezoelectric Heterogeneous Bimorphs. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control. 1991, 38(3):256-270.
    [93] 上羽贞行,富川义郎著.杨志刚,郑学伦译.超声波马达理论与应用.上海:上海科学技术出版社,1997.
    [94] Behrouz Abedian, Michael Cundari, Resonant frequency of a polyvinylidene fluoride piezoelectric bimorph: the effect of surrounding fluid, SPIE Proceedings Yol. 1916.
    [95] 梁克平,邵培革,杨敬涵等.串联臂压电微电机的机理及驱动电路研究.仪器仪表学报,2001,22(5)::510-511.
    [96] 梁克平.串联臂压电微电机及其驱动系统的研究:(硕士学位论文).大连:大连理工大学,2001.
    [97] 佟建华,邵培革,王立鼎.串联弯曲臂压电微电机机理初步研究.光学精密工程,2002,10:471-475.
    [98] 佟建华,邵培革,王立鼎,刘冲.串联弯曲臂压电微电机驱动机理分析及实验研究.中国机械工程,2003,14:1600-1602.
    [99] Tong JH, Cui TH, Shao PG, Wang LD. Piezoelectric micromotor based on the structure of serial bending arms. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2003,50(9):1100-1104.
    [100] 胡正军.王莉.徐东.pzt压电薄膜在MEMS中的应用.微细加工技术,2001,4:44-49
    [101] 佟建华.刘梦伟.崔岩等.硅基pzt薄膜微型悬臂的特性及其在微型传感器执行器上的应用.仪器仪表学报,2004,25(4):194-196.
    [102] S Zurn, M Hsieh, G Smith, etc. Fabrication and structural characterization of a resonant frequency PZT microcantilever. Smart materials and structures, 2001,10:252-263
    [103] Chengkuo Lee, Toshibiro Itoh, Tadatomo Suga. Micromachined Piezoelectric force sensors based on PZT thin films. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control. 1996, 43(4): 553-558.
    [104] 叶勤,TAWEE TUNKASIRI.陶瓷粉末靶与陶瓷块状靶溅射制备pzt薄膜的性能比较.真空科学与技术学报,2001,21(6):481-484.
    [105] 邱成军,孟丽娜,刘红梅.溅射pzt薄膜微驱动器的工艺研究.传感器技术,2004,23(9):26-28
    [106] 刘红梅,邱成军,曹茂盛.PZT薄膜在MEMS器件中的研究进展.材料工程,2004,6:37-40.
    [107] 任天令,刘理天,李志坚等.铁电-硅集成微麦克风和扬声器研究.清华大学学报,1999,39(S1):71-76.
    [108] Zheng, X. J., Yang, Z. Y., Zhou, Y. C. Residual stresses in Pb(Zr_(0.52)Ti_(0.48))O_3 thin films deposited by metal organic decomposition. Scripta Materialia, 2003,49(1): 71-76.
    [109] Ma, J. H., Meng, X. J., Sun, J. L.. Effect of excess Pb on crystallinity and ferroelectric properties of PZT(40/60) films on LaNiO_3 coated Si substrates by MOD technique. Applied Surface Science, 2005,20(1-4): 275-279.
    [110] 刘梦伟,佟建华,王兢,董维杰,崔天宏,王立鼎.改进的溶胶-凝胶法制备不同厚度的PZT薄膜.功能材料,2004,13:3224-3227.
    [111] WU Qing-ren, WEN Zi-yun. An Investigation Into the Thermophysical Properties and Phase Transitions of New Ferroeleetrie Ceramic Material PZT华南理工大学学报(自然科学版),2000 Vol.28 No.12 P.584-58.
    [112] Material properties library of Coventor Ware. Coventor co. 1td. 2003.
    [113] 张林涛,任天令,张武全.硅基PZT铁电薄膜的制备与性能研究.半导体技术,2001,26(1):49-52.
    [114] http://design.stanford.edu/Courses/me220/lectures/lect02/"lect_2.html.
    [115] Mengwei Liu, Weijie Dong, Jianhua Tong, etc. Measurement of longitudinal piezoelectric coefficients (d33) of Pb(Zr, Ti)O3 thin films with atomic force microscopy. ISIST Conference, Xi' An, 2004, Vol3:352-356.
    [116] Tong Jianhua, Liu Mengwei, Wang Jing, etc. Fabrication and Characterization of Si-based PZT Cantilever Micro-force Sensor. International 3rd International Symposium on Instrumentation Science and Technology, Xi' An, 2004, Vol3:271-276.
    [117] S. Marks, J.P. Almerico. Profile and etch characterization of high wafer temperature etched Y1/Pt stacks. International Symposium on integrated ferroelectrics, Sweden. 2004.
    [118] 佟建华,刘梦伟,崔岩,王兢,崔天宏,王立鼎.基于MEMS的硅基PZT薄膜微力传感芯片设计及制作.压电与声光,已录用.
    [119] 邵淑英,范正修,范瑞瑛等.ZrO_2薄膜残余应力实验研究.光学学报,2004,24(4):437-441.
    [120] Sigrun Hirsekorn. Flexural vibration behavior of piezoelectric heterogeneous bimorph beams. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49(7): 959-971.
    [121] Tao Wu, Paul I Ro. Dynamic peak amplitude analysis and bonding layer effects of piezoelectric bimorph cantilever. Smart Mater. Struct, 2004,13:203-210.
    [122] Hung-Ming Cheng, Michael T S Ewe, Georage T-C Chiu, etc. Modelling and control of piezoelectric cantilever beam micro-mirror and micro-laser arrays to reduce image banding in electrophotographic process. J. Micromech. Microeng.,2001,11: 487-498.
    [123] Michel Brissaud, Sarah Ledren, P Gonnard. Modelling of a cantilever non-symmetric piezoelectric bimorph. J. Micromech. Microeng., 2003, 13:832-844.
    [124] Ph. Luginbuhl, G.A. Racine, Ph. Lerch, etc. Piezoelectric Cantilever Beams Actuated by PZT Sol-Gel Thin Film. The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors Ⅸ. Stockholm, Sweden, June 25-29,1995.413-416.
    [125] Nadim Maluf. An Introduction to Microelectromechanical Systems Engineering. 2000.
    [126] 戴一帆,吕海宝,杨华勇.军用微型机器人及其关键技术.国防科技,2001,2:58-59.
    [127] Miura Hirofumi, Yasuda Takashi, Shimoyama Isao. Insect-model based microrobot. Robotics and Autonomous Systems, 1997, 21(3): 317-322.
    [128] Fatikow Sergej, Benz Mirk. A microrobot-based automated micromanipulation station for assembly of Microsystems. Computers in Industry, 1998,36(1-2): 155-162.
    [129] 彭冬亮,吴铁军.微型机器人的模型及研究方向.科技通报,2003,19(1):6-15.
    [130] Chicarro A., Scoon G., Putz P.. Scientific applications of robotic systems on planetary missions. Robotics and Autonomous Systems, 1998, 23(1-2): 65-71.
    [131] Aslam Dean M., Dangi Girish D.. Design, fabrication and testing of a smart robotic foot. Robotics and Autonomous Systems, 2005,51(2-3):207-214.
    [132] 何斌,陈鹰,周银生.医用微型机器人的姿态可控性研究.自动化学报,2004,30(5):707-715.
    [133] Greitmann G., Buser, R. A.. Tactile microgripper for automated handling of microparts. Sensors and Actuators A: Physical, 1996, 53(1-3): 410-415.
    [134] Kladitis Paul E., Bright Victor M.. Prototype microrobots for micropositioning and micro-unmanned vehicles Sensors and Actuators A: 2000, (80): 132-137.
    [135] 王波,殷学纲,黄尚廉.一种新型自感知作动器及其应用.压电与声光,2003,25(2):122-126.
    [136] 董维杰,孙宝元,崔玉国.自感知执行器——传感器、执行器集成新概念.压电与声光,2001,23(2):120-123.
    [137] 庄乾霞,孙宝元,董维杰.自感知压电微夹钳研究.大连理工大学学报,2004,44(6):819-823.
    [138] 王英翘,徐征,刘冲.一种基于操纵杆控制微操作系统三维运动的方法.光学精密工程,2001,9(6):553-556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700