埋入混凝土中压电陶瓷换能器声辐射特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,大型化、复杂化的土木工程结构特别是混凝土结构越来越多,人们也越来越关注这些结构在服役期间的健康状态,逐渐将新材料技术、计算机技术和通信技术等高新技术应用到结构的健康监测中,以保证生命财产安全。传统的混凝土结构检测方法往往只是对在服役期间的混凝土结构健康状态进行定时和关键部位的抽查。智能材料结构在混凝土结构健康检测中的应用为结构健康监测开辟了一个广阔的空间,它兼具传统复合材料和功能材料的双重特性,可实现混凝土结构的实时在线检测。
     在课题前期提出了一种基于压电埋入式混凝土敏感模块的超声检测方法,在该方法中超声波信号作为混凝土结构内部信息的载体,需要有良好的特性,因此本文开展了埋入混凝土中压电陶瓷换能器声辐射特性研究。
     (1)讨论了声波在介质中声场指向性形成原理;将压电陶瓷换能器声辐射面等效成具有相同振幅的单一点声源的叠加,对其进行了声场指向性理论推导,得到了随着对压电陶瓷换能器激励频率的增加,其辐射超声波声场指向性越集中的结论;分析了超声检测中影响超声波声能的原因。
     (2)推导了埋入混凝土中压电陶瓷换能器机械振动数学模型,并根据等效原理,得到了其机械振动等效电路图,等效模型直接反应了压电陶瓷换能器在振动过程中电能-机械能间相互转换的动态过程;分析了埋入状态下混凝土夹持力对压电陶瓷换能器声辐射的影响。
     (3)通过Ansys有限元模态分析,得到了埋入混凝土中压电陶瓷换能器一阶到四阶振动模态及其固有频率;并进行了在预应力下压电陶瓷换能器Ansys模态分析,分析表明可将埋入混凝土中压电陶瓷换能器振动模态看成是在自由状态下的振动模态;进行了基于压电埋入式混凝土敏感模块的声场指向性和声能实验,结合Ansys仿真和实验,分析得到了如下结论:在声场指向性理论推导中,忽略不同频率下埋入混凝土中压电陶瓷换能器声辐射面振动模态不同,会使得压电陶瓷换能器辐射超声波声场指向性随频率变化规律偏离实际较大,而在相同频率下声场指向性理论结果比实验结果发散;在各阶固有频率下,压电陶瓷换能器的声场指向性集中,但在一阶固有频率下声能最高,因此更适用于超声检测。
     (4)系统总结了传统的混凝土结构超声检测中利用接收波信号时域和频域特性进行超声检测的手段和原理,为基于压电埋入式混凝土敏感模块的超声检测提供了理论依据和技术支持。
     (5)进行了埋入混凝土中压电陶瓷换能器辐射超声波在通过混凝土不同测试距离下接收波信号分析实验,将获取到的接收波信号从时域(声速、波幅、首波相位、波形和包络线)和频域(幅度谱、功率谱)两方面分析了测试距离对其信号特性的影响。
With the rapid pace of society, large-scale and complex civil engineering structure, especially concrete structures are more and more. People are also growing concerns about the structure health status during service, and applying the new materials technology, computer technology, communication technology and other high technology to the structural health monitoring, which can ensure the safety of life and property. The concrete structure of traditional detection methods are only concentrate on the key parts concrete structures or sampling. The applications of smart materials and structures provide a wide space for the concrete structure health monitoring. It features double features of traditional materials and composite materials. It can achieve Real-time online detection of concrete structure.
     In the previous study, a ultrasonic detection method was proposed which bases on the PZT smart concrete module. In this method, ultrasonic wave need excellent features, as being the vector of concrete internal information. So in this paper the acoustic characteristics of PZT transducer embedded in concrete is researched.
     (1) The formation principle of acoustic field directivity is analyzed. The acoustic field directivity theory of PZT transducer is derived, when it's acoustic radiating surface is seen as the superposition of equal amplitude single point source. The result displays that the acoustic field directivity is more and more concentrate with the frequency increasing. The reasons are analyzed that influences acoustic energy in ultrasonic detection.
     (2) The equivalent vibration mode is derived, and according to the equivalence principle, obtain the equivalent circuit of mechanical vibration. The equivalent vibration mode reflects the dynamic converting process of the electric energy– mechanical energy. The influence is analyzed of the concrete clamping force to PZT transducer radiating acoustic energy in buried state.
     (3) By the Ansys modal analysis of PZT transducer embedded concrete, the first to fourth order modal and their nature frequencies are obtained. The modal analysis and acoustic field directivity and acoustic energy experiment basing on smart concrete module shows vibration mode stimulated by frequency affecting acoustic directivity and energy; the acoustic source seen as superposition of equal multitude single point source the acoustic directivity deviate from the actual in each mode frequency and becomes divergent at a frequency; and the first natural frequency is more suitable for ultrasonic testing considering the acoustic directivity and energy.
     (4) By the time domain and frequency domain of signal, the traditional methods of concrete ultrasonic detection are analyzed, including acoustic speed, amplitude, the first wave phase, waveform and envelope in domain, Amplitude spectrum, phase spectrum and power spectrum in frequency domain. The internal defects and performances parameters of concrete can be detected with those signal feathers. The detection methods are theoretical basis and technical supports for the ultrasonic detection of basing on smart PZT concrete module.
     (5) The experimental is developed that PZT transducer embedded concrete radiating ultrasonic signal after ultrasonic propagating the concrete different testing distance. Analyze the signal feathers after ultrasonic propagating the different testing distance in concrete from time domain (acoustic speed, amplitude, the first wave phase, waveform and envelope) and frequency domain(Amplitude spectrum and power spectrum).
引文
[1]杨智春,于哲峰.结构健康监测中的损伤检测技术研究进展[J].力学进展. 2004, 34(2): 215-223.
    [2] Shkarayev, S., Krashanitsa, R., Tessler, A, An inverse interpolation method utilizing in-flight strain measurements for determining loads and structural reponse of aerospace vehicles, Proceeding of the 3rd inter. Workshop on Structural Health Monitoring, Stanford: CRC Press, 2001:336-343.
    [3] Housner, G. W., et al, Structural control: past, present, and future, ASCE, Joural of Engineering Mechanics, 1997, 123(9): 897-971.
    [4] Charles, R. F., Sohn, H. Condition/damage monitoring methodologies. Invited Talk, The Consortium of Organizations for Strong Motion Observation Systems Worksh, Emeryville, CA, 2001, LA-UR-01-6573.
    [5]陈雨.混凝土压电陶瓷敏感模块特性研究[D].重庆大学. 2006.4.
    [6]王晓东.浅析结构健康监测的现状与进展[J].无损检测. 2003, 5(6): 7-8.
    [7] Iwaki, H., et al, Structural health monitoring system using FBG-based sensor for a damage tolerant building, Smart Structures and Materials, San Diego, 2002, 4649-09.
    [8]黄尚廉等.智能结构系统-减灾防灾的研究前沿[J].土木工程学报. 2000, 33(4): 1-5.
    [9]杨大智.智能材料与智能系统[M].天津:天津大学出版社. 2000.1.
    [10] Joseph M L. Smart skins-a Development Roadmap. SPIE Fiber Optic Smart Structures and SkinsⅡ, 1989,1170:19-47.
    [11] Saunder W R, Robertshaw H H, and Rogers C A. Structural Acoustic Control of a Shape Memory Alloy Composite Beam. J. of Intell. Mater. And Structural, 1991, 2(4):508-527.
    [12]田卉.混凝土压电机敏模块性能及应用研究[D].重庆大学. 2007.4.
    [13] Oshida I, Kurose H, Fuhui, S etal. Parameter identification on active control of a structural model. Smart Materials and Structures. 1995,4.
    [14] Toshinori Takagi. The concept of smart materials and its activities in Japan, In Proc. Of First European Conference of Smart Structures and Materials. Glasgow, 1992.
    [15]王健,沈亚鹏.智能材料结构在结构降噪中的应用[J].南京航空航天大学学报. 2000. 21(4): 298-305.
    [16]朱永,符欲梅,陈伟民等.大佛寺长江大桥健康监测系统[J].土木工程学报. 2005, 10(38): 66-71.
    [17]姜德生.智能材料器件结构与应用[M].武汉工业大学出版社. 2000.3.
    [18]张福学,王丽坤.现代压电学(上册) [M].北京.科学出版社. 2001.3-6.
    [19]王华祥,张淑英.传感器原理及应用[M].天津大学出版社. 1988.9.
    [20]石立华,陶宝祺.埋入压电元件的自诊断智能结构的理论分析与实验研究[J].实验力学. 1998, 13(3): 370-376.
    [21]栾桂冬.压电换能器和换能器阵(上册) [M].北京:北京大学出版社. 1990.7: 51-83.
    [22] Boyd, J G.., Lagoudas, D. C., Thermomechanical response of shape memory composites[J]. Journal of Intelligent Material Systems and Structures, 1994, 5(3):333-346.
    [23]唐守峰,熊克,梁大开,李东升.用于结构健康监测的智能夹层研究进展[J].实验力学. 2005, 20(2): 226-234.
    [24]黄永杰.非晶态磁性物理与材料[M].电子科技大学出版社. 1991.
    [25]黄晓华,姜德生.中国材料研究学会新功能材料论文集[M].化学工业出版社. 1995.
    [26]姚康德,许美萱等.智能材料[M].天津大学出版社. 1996.
    [27]徐惠彬,仲伟虹,田莳.智能复合材料的发展现状及应用前景[Z].第九届全国复合材料学术会议.北京: 1996.
    [28]姜德生,张圣佩.光纤灵巧复合材料研究综述[J].武汉工业大学学报. 1993, 15(1): 51-57.
    [29] Chen, Z., Ansari, F. Embedded fiber optic sensor for detection of acoustic emissions in structures[J]. Acta Optica Sinica. 2000, 20(8): 1060-1064.
    [30] Waki H., Yamakawa., Shiba K., et al. Structural health monitoring system using FBG-Based sensors for a damage tolerant building. Smart Strictures and materials. San Diego. 2002: 4694.
    [31]李为杜.混凝土无损检测技术[M].上海:同济大学出版社. 1989.9
    [32]吴新璇.混凝土无损检测技术手册[M].北京:人民交通出版社. 2003.3.
    [33]武剑.混凝土无损检测方法述评[J].无损检测. 1998, 7(9):23-24.
    [34]吴新璇.结构混凝土无损检测技术发展综述[J].建筑技术通讯. 1991(3): 27-31.
    [35]建恺.超声检测原理和方法[M].北京:中国科学技术大学出版社, 1993: 55-63.
    [36]李红.回弹法检测混凝土抗压强度的方法探讨[J].山西建筑. 2010(4):66-68.
    [37]周文委.结构混凝土压电机敏监测技术的基础研究[D].重庆大学,2003.6.
    [38]张斌.后装拔出法检测混凝土强度的对比研究[J].山西建筑. 2006(6):78-81.
    [39]晏露超.混凝土结构裂缝的超声波平测法研究[J].工程地球物理学报. 2009(3): 88-90.
    [40]张建纲,水中和,余小华.冲击回波法评价混凝土损伤程度的研究[J].无损检测. 2008(4):101-103.
    [41] Lee, C. K. Theory of laminated piezoelectric plates for the design of distributed sensor/actuators, Part1: Governing equation and reciprocal relationships[J]. J. Acoustic Society. America. 1990, 87(3): 1144-1158.
    [42] M. Saafi, T. Sayyah. Health monitoring of concrete structures strengthened with advanced composite materials using piezoelectric transducers[J]. Composites Part B (Engineering) vol.32B, No.4:333-343, 2007.
    [43] Gu H, Song G, Dhonde H, Mo YL, Yan S. Early age strength monitoring of concrete structures using embedded smart piezoelectric transducers-art. no. 61790H. Advanced sensor technologies for nondestructive evaluation and structural health monitoringⅡ6179:H1790-H1790, 2006.
    [44] Wen, Y., Li, P., Huang, S., Study on the read out of piezoelectric distributed sensing network embedded in concrete. SPIE. 1998. 330: 642-671.
    [45]陈雨,文玉梅,李平,田卉.压电埋入式混凝土应力及温度传感器[J].微纳电子技术, 2007.7(8)203-207
    [46] Chen, Y., Wen, Y., Li, P., Characterization of concrete stress by measuring dissipation factors of embedded piezoelectric ceramic disc[C]. Proceedings of SPIE: Sensors and Smart Structures Technologies for Civil, Mechanical and Aerospace Systems, Santiago, U.S, March, 2005, 5765:30-41.
    [47]陈雨,文玉梅,李平,郭浩.压电换能器耗散因子的等效电路参数表示[J].传感技术学报. 2005, 19(4):88-91.
    [48] Wen, Y., Chen, Y., Li, P, Characterization of dissipation factors in terms of piezoelectric equivalent circuit parameters, IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency Control, 2006.865:38-43.
    [49] Chen, Y., Wen, Y., Li, P., Characterization of concrete stress by measuring dissipation factors of embedded piezoelectric ceramic disc, Proceedings of SPIE: Sensors and Smart Structures Technologies for Civil, Mechanical and Aerospace Systems, Santiago, U.S, March, 2005, 5765:37-41.
    [50]陈雨,文玉梅,李平,埋入混凝土中压电陶瓷应力及温度特性研究[J].应用力学学报. 2006.7(8): 56-59.
    [51] Wen, Y., Chen, Y., Li, P., Characterization of PZT Ceramic Transducer Embedded in Concrete[J]. Sensors & Actuators: A. Physical. 2006. 128(1): 116-124.
    [52]陈雨,文玉梅,李平.利用埋入式压电陶瓷进行混凝土结构应力监测的实验研究[Z].第九届全国敏感元件与传感器学术会议,西安,北京:国防工业出版社, 2005:623-627.
    [53]安占营.基于压电埋入式模块的混凝土声检测研究[D].重庆大学, 2010.
    [54] B. A.奥尔特,著.孙承平,译.固体中的声场和波[M].北京.科学出版社. 1982.12.
    [55]陈华艳,徐银芳,熊学忠.超声波检测在钢纤维混凝土中的应用[J].商品混凝土. 2005(2): 66-68.
    [56]张文静小波多尺度分析方法识别储层裂缝[D]中国石油大学. 2009.4.
    [57]周克印建筑工程结构无损检测技术[M].北京.化学工业出版社. 2006.2.
    [58]怡晓玲压电声波器件的压电-结构-声场多场耦合Ansys建模与仿真[D],兰州大学. 2009.5.
    [59]应崇福超声学[M].北京.科学出版社. 1990.12.
    [60]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社. 2001.8. 88-98.
    [61]罗骐先.水工建筑物混凝土的超声检测[M].北京.水利电力出版社. 1986.9.
    [62]许煜寰.铁电与压电材料[M].北京.科技出版社. 1978.2.
    [63]张沛霖,张仲渊.压电测量[M].北京.国防工业出版社. 1983.6.
    [64]孙慷,张福学.压电学(上册).北京.国防工业出版社. 1984.6.
    [65]王锐.压电陶瓷对混凝土梁疲劳累积损伤主动监测的实验研究[J].无损检测. 2005, (6): 78-80.
    [66]谢可迪.压电智能结构振动反馈控制有限元系统及其在硬盘驱动臂中的应用[J].实验力学. 2009, 9(9): 79-81.
    [67]张福学.现代压电学[M].北京:科学出版社. 2003.5.
    [68] Desai, C. S., Abel, J. F., Introduction to the Finite Element Method, Van Nostrand Reinhold Co., 1972
    [69] Owen, D. R. J., Hinton, E., Finite Elements in Plasticity, Theory and Practice, Pineridge Press Limited, 1980
    [70] Washizu, K., Variational Methods in Elasticity and Plasticity (Third Edition), Pergamon Press, 1982
    [71]朱伯芳,有限单元法原理和应用[M].北京:水利电力出版社. 1979
    [72]段进,倪栋,王国业. Ansys10.0结构分析从入门到精通[M].北京.兵器工业出版社. 1990.7.
    [73]任重. Ansys实用分析教程.北京.北京大学出版社. 2003.3.
    [74]尚晓江,邱峰,赵海峰等. Ansys结构有限元高级分析方法与范例应用[M].北京.中国水利水电出版社. 2006.1.
    [75]陈雨,文玉梅,李平.混凝土中压电陶瓷在变载荷作用下的特性研究[J].压电与声光. 2005, 27(6): 100-103
    [76]吴庆曾.论声参量波幅的应用[J].岩土工程界. 2000.8(3): 32-35.
    [77]沙玲,向芳.双参数判别法在钻孔灌注桩质量检测中的应用[J].浙江建筑. 2007.2(24): 20-22.
    [78]程朝霞,徐银芳,王毅翔.超声波法检测混凝土强度的发展[J].华中科技大学学报. 2003.12(4), 20: 96-98.
    [79]蔡中民等.混凝土结构试验与检测技术[M].北京.机械工业出版社. 2005.8
    [80]庞超明,秦鸿根,季珪.试验设计与混凝土无损检测技术[M].北京.中国建筑工业出版社. 2006.3.
    [81]童寿兴,张晓燕,金元.超声波首波相位反转法检测混凝土裂缝深度[J].建筑材料学报. 1998.9, 1(3): 288-230.
    [82]刘镇清,陈广.超声无损检测中的谱分析技术[J].无损检测. 2001.2, 23(2): 85-87.
    [83]郑君里.信号与系统[M].北京.高等教育出版社. 2000.2
    [84] Liu ZQ, Wei MA. The application of autoregressive spectrum analysis to the ultrasonic nondestructive evaluation of concrete [A]. 7thAPCNDT[C]. Shanghai China:1993.
    [85]李珑.由回波相位信息提取振幅信息的方法[J].信号处理. 1999.12, 15(4): 303-305.
    [86]赵国文.基于相位谱延时估计的波速估算方法[J].无损检测. 2005.2, 6(27): 303-305.
    [87]应怀樵.波形和频谱分析与随机数据处理[M].北京.中国铁道出版社. 1983.5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700