丙炔苯丙胺对MPP~+诱导的帕金森病PC12细胞模型的保护机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的本部分研究旨在帕金森病(Parkinson’s disease, PD)的PC12细胞模型中证实丙炔苯丙胺的神经保护作用,并对其保护机制进行初步探索。
     方法应用1-甲基-4-苯基吡啶离子(MPP+)处理PC12细胞制备PD的细胞模型。采用四甲基偶氮唑盐比色法(MTT法)、细胞乳酸脱氢酶(LDH)释放量检测、活性氧蔟(ROS)含量检测、四唑氮蓝/甘氨酸盐法行醌结合蛋白检测、Western Blots等方法检测丙炔苯丙胺对MPP+所致PC12细胞损伤的保护作用,初步探索丙炔苯丙胺是否通过间接的抗氧化作用发挥细胞保护效应。
     结果MTT法和LDH释放量检测均显示,不同浓度丙炔苯丙胺预处理可以显著减轻MPP+导致的PC12细胞损伤。ROS含量测定以及四唑氮蓝/甘氨酸盐法醌蛋白浓度检测的结果显示,不同浓度丙炔苯丙胺预处理明显地逆转了MPP+导致的氧化应激标志物增高。Western blots检测细胞内辅酶Ⅰ醌类氧化还原酶1(NQO1)蛋白表达及二氯靛酚反应法测定NQO1活性的结果显示,不同浓度的丙炔苯丙胺可以导致该抗氧化蛋白的表达量和酶活性均呈现出剂量依赖式的增高。另外,LDH释放量检测结果显示,双香豆素抑制NQO1后,丙炔苯丙胺对细胞的保护作用被逆转了。
     结论丙炔苯丙胺可以通过上调抗氧化蛋白NQO1的表达和活性,减少氧化应激损伤标志物的生成,发挥对MPP+所致的PC12细胞损伤的保护作用。
     目的验证丙炔苯丙胺是否通过促进核因子红系2相关因子2(Nrf2)核转位介导PC12细胞抗氧化蛋白NQO1表达和酶活性增高。
     方法应用细胞核蛋白与细胞浆蛋白抽提试剂盒分别提取PC12细胞的胞浆胞核蛋白,再采用Western blots技术检测胞浆胞核中Nrf2的蛋白含量变化;采用Nrf2小分子干扰RNA(SiRNA)转染技术,进一步验证Nrf2在丙炔苯丙胺诱导NQO1酶活性上调过程中的作用。
     结果Western blots结果表明,在MPP+的单独处理下,PC12细胞胞浆和胞核的Nrf2含量都出现了减少。而丙炔苯丙胺预处理可以有效地减少胞浆内的Nrf2含量,增加核内Nrf2的含量,且其胞浆内Nrf2的相对表达水平比MPP+单独处理时还要低,差异均有统计学意义。在转染了Nrf2 SiRNA的PC12细胞中,NQO1的活性出现了明显降低。另外,在Nrf2基因被沉默后,丙炔苯丙胺所导致的NQO1酶活性上调也消失了。
     结论丙炔苯丙胺所导致的抗氧化蛋白NQO1酶活性增强是通过促进Nrf2核转位,从而驱动NQO1转录增强这一途径完成的。
     目的本部分研究旨在探索丙炔苯丙胺促进Nrf2核转位的上游激酶调控通路,并观察丙炔苯丙胺对B型单胺氧化酶(MAOB)的抑制作用是否也参与了Nrf2的激活过程。
     方法应用Western Blots方法检测PC12细胞中Akt和细胞外信号调节激酶(Erk)等激酶的磷酸化水平变化,并应用各种激酶抑制剂处理PC12细胞观察各个激酶对Nrf2和NQO1的调控作用。另外,我们应用MAOB和Nrf2 SiRNA转染,来分析丙炔苯丙胺对MAOB抑制作用是否影响了Nrf2介导的抗氧化反应。
     结果经过Western blots法检测,我们发现,丙炔苯丙胺处理PC12细胞可以诱导Akt和Erk的磷酸化水平呈时间依赖性增高。另外,丙炔苯丙胺介导的Nrf2核转位和NQO1表达增高被可以被PD98059部分阻断,而PI3K的抑制剂LY294002几乎完全地取消了丙炔苯丙胺导致的Nrf2核转位和NQO1表达增高。对SiRNA转染的PC12细胞的ROS测定表明,MAOB基因沉默可以使ROS含量出现少量的下降,但并不影响丙炔苯丙胺的抗氧化活性。而且,无论MAOB基因沉默与否,Nrf2 SiRNA转染的PC12细胞清除ROS的能力都受到了显著损伤。
     结论丙炔苯丙胺可以通过激活PI3K/Akt和Erk两条激酶通路,促进Nrf2核转位发挥抗氧化效应,实现对MPP+导致PC12细胞损伤的保护作用。这种机制与丙炔苯丙胺对MAOB的抑制作用是并行的。
OBJECTIVE
     This part of the study was to investigate that whether deprenyl can exert neuroprotective effect against 1-methyl-4-phenylpyridinium ion (MPP+)-induced injury in PC12 cell modes of Parkinson's disease (PD) and what the mechanism underling is.
     METHODS
     PC12 cells treated with MPP+ were used to build the cell model of PD. For investigating the neuroprotective mechanism of deprenyl against the cell damage induced by MPP+, several methods including MTT assay, lactate dehydrogenase (LDH) release analysis, reactive oxygen species (ROS) assay, nitroblue tetrazolium (NBT)/glycinate assay, and western blot were used.
     RESULTS
     The results of MTT and LDH release analysis suggested that, the deprenyl pretreatment significantly reduced MPP+-induced PC12 cell damage in a wide range of concentration. The results of determination of ROS and NBT/glycinate assay demonstrated that deprenyl pretreatment significantly reversed the MPP+-induced enhancement of biomarkers representing oxidative stress injury. The western blotting assay for NQO1 protein suggested that, deprenyl can lead a increasing of NQO1 expression in a dose-dependent manner. As we expected, the enzymatic activity assay also showed similar result. Further, when PC12 cells were co-treated by the NQO1 inhibitor dicoumarol, the deprenyl’s cyto-protective effect was reversed as shown in LDH release analysis results.
     CONCLUSIONS
     Deprenyl can reduce the products of biomarkers representing oxidative stress injury, then exert a protective effect against MPP+-induced PC12 cell injury via up-regulating the expression of the antioxidant protein NQO1.
    
     OBJECTIVE
     The objective of this part was to verify that whether deprenyl can increase the expression and enzymatic activity of anti-oxidative protein NQO1 through promoting the nuclear translocation of nuclear factor erythroid 2 related factor 2 (Nrf2) in PC12 cells against MPP+-induced cell injury.
     METHODS
     The nuclear protein and cytoplasmic protein extraction kit was used to extract the cytoplasmic and nuclear protein from PC12 cells, respectively. Then the Nrf2 content in nuclear or cytoplasm was detected by Western blots to observe the dynamic changes among different groups. Transfection with Nrf2 SiRNA was then applied to further verify the involvement of Nrf2 nuclear translocation in deprenyl-mediated enhancement of NQO1 activity.
     RESULTS
     Results of western blots showed that, when MPP+ was added in the culture alone, both the Nrf2 level in cytoplasm and nucleus were decreased. When the PC12 cells were pretreated with deprenyl, it is found that Nrf2 in cytoplasm was decreased and the Nrf2 in nucleus was increased significantly. Further, the level of Nrf2 in cytoplasm from PC12 cells co-treated by deprenyl and MPP+ was even lower than that in cells treated by MPP+ alone. In the PC12 cells transfected withNrf2 SiRNA, the NQO1 enzymatic activity appeared significantly reduced. In addition, when Nrf2 gene was silenced, the up-regulation of NQO1 activity in deprenyl-treated PC12 cells had disappeared.
     CONCLUSIONS Deprenyl can increase the expression and enzymatic activity of anti-oxidative protein NQO1 through promoting the nuclear translocation of Nrf2 in PC12 cells, and then exert a cyto-protective effect against MPP+-induced cell injury.
    
     OBJECTIVE
     We want to explore the upstream kinase pathway for regulating the nuclear translocation of Nrf2 in PC12 cells treated by deprenyl, and to verify that whether deprenyl’s inhibitory effect to monoamine oxidase type B (MAOB) was involved in the regulation mechanisms of Nrf2 nuclear translocation.
     METHODS
     Western blot was used for detecting the phosphorylation level of Akt and extracellular signal-regulated kinase (Erk) in PC12 cells treated by MPP+ and /or deprenyl. In order to analyze the effect of various kinases on the regulation of Nrf2 and NQO1, inhibitors of different kinases were added into the culture. Furthermore, the MAOB and Nrf2 SiRNA were transfected into PC12 cells to analyze weather deprenyl’s inhibition to the MAOB was involved in its anti-oxidative effect mediated by nuclear translocation of Nrf2.
     RESULTS
     Based on the results of western blots in PC12 cells, we found that deprenyl treatment can induce an enhancement in the phosphorylation level of Akt with a time-dependent manner. In addition, the Nrf2 nuclear translocation and increasing expression of NQO1 mediated by deprenyl could be partially blocked by PD98059, while it was almost completely abolished by PI3K inhibitor LY294002. The results of ROS determination in PC12 cells transfect with MAOB and/or Nrf2 showed that, MAOB gene silencing can make a small amount of decline in ROS levels, but does not affect the anti-oxidative activity of deprenyl. And, regardless of MAOB gene silencing or not, the Nrf2 SiRNA transfection could hurt the ability to remove ROS significantly in PC12 cells.
     CONCLUSIONS
     Deprenyl can activate both PI3K/Akt and Erk kinase pathways, and promote nuclear translocation of Nrf2, then play an anti-oxidative effect against injury in PC12 cells treated with MPP+. And this mechanism of deprenyl is parallel with its inhibition to MAOB.
引文
[1] Zhang Z X, Roman G C, Hong Z, et al. Parkinson's disease in China: prevalence inBeijing, Xian, and Shanghai. Lancet, 2005, 365(9459):595-597.
    [2] Hauser R A. Early pharmacologic treatment in Parkinson's disease. Am J Manag Care, 2010, 16 Suppl Implications:S100-S107.
    [3] Grosset D G, Schapira A H. Timing the initiation of treatment in Parkinson's disease. J Neurol Neurosurg Psychiatry, 2008, 79(6):615.
    [4] Haycox A, Armand C, Murteira S, et al. Cost effectiveness of rasagiline and pramipexole as treatment strategies in early Parkinson's disease in the UK setting: an economic Markov model evaluation. Drugs Aging, 2009, 26(9):791-801.
    [5] Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson's disease. N Engl J Med, 2004, 351(24):2498-2508.
    [6] Whone A L, Watts R L, Stoessl A J, et al. Slower progression of Parkinson's disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol, 2003, 54(1):93-101.
    [7] Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA, 2002, 287(13):1653-1661.
    [8] Lees A J, Katzenschlager R, Head J, et al. Ten-year follow-up of three different initial treatments in de-novo PD: a randomized trial. Neurology, 2001, 57(9):1687-1694.
    [9] Ives N J, Stowe R L, Marro J, et al. Monoamine oxidase type B inhibitors in early Parkinson's disease: meta-analysis of 17 randomised trials involving 3525 patients. BMJ, 2004, 329(7466):593.
    [10] Macleod A D, Counsell C E, Ives N, et al. Monoamine oxidase B inhibitors for early Parkinson's disease. Cochrane Database Syst Rev, 2005(3):D4898.
    [11] Palhagen S, Heinonen E H, Hagglund J, et al. Selegiline delays the onset of disability in de novo parkinsonian patients. Swedish Parkinson Study Group. Neurology, 1998, 51(2):520-525.
    [12] Palhagen S, Heinonen E, Hagglund J, et al. Selegiline slows the progression of the symptoms of Parkinson disease. Neurology, 2006, 66(8):1200-1206.
    [13] Przuntek H, Conrad B, Dichgans J, et al. SELEDO: a 5-year long-term trial on the effect of selegiline in early Parkinsonian patients treated with levodopa. Eur J Neurol, 1999, 6(2):141-150.
    [14] Larsen J P, Boas J, Erdal J E. Does selegiline modify the progression of early Parkinson's disease? Results from a five-year study. The Norwegian-Danish Study Group. Eur J Neurol, 1999, 6(5):539-547.
    [15] D'Agostino R S. The delayed-start study design. N Engl J Med, 2009, 361(13):1304-1306.
    [16] Hauser R A, Lew M F, Hurtig H I, et al. Long-term outcome of early versus delayed rasagiline treatment in early Parkinson's disease. Mov Disord, 2009, 24(4):564-573.
    [17] Olanow C W, Rascol O, Hauser R, et al. A double-blind, delayed-start trial of rasagiline in Parkinson's disease. N Engl J Med, 2009, 361(13):1268-1278.
    [18] Onyango I G. Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Neurochem Res, 2008, 33(3):589-597.
    [19] Miller R L, James-Kracke M, Sun G Y, et al. Oxidative and inflammatory pathways in Parkinson's disease. Neurochem Res, 2009, 34(1):55-65.
    [20] Offen D, Ziv I, Gorodin S, et al. Dopamine-induced programmed cell death in mouse thymocytes. Biochim Biophys Acta, 1995, 1268(2):171-177.
    [21] Burke W J, Li S W, Chung H D, et al. Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. Neurotoxicology, 2004, 25(1-2):101-115.
    [22] Rabinovic A D, Lewis D A, Hastings T G. Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience, 2000, 101(1):67-76.
    [23] Perez R G, Waymire J C, Lin E, et al. A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci, 2002, 22(8):3090-3099.
    [24] Sherer T B, Kim J H, Betarbet R, et al. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol, 2003, 179(1):9-16.
    [25]曹旭,孙圣刚,曹学兵,等.过氧化氢对多巴胺神经元的选择性损伤作用.卒中与神经疾病,2006,13(4).
    [26] Surendran S, Rajasankar S. Parkinson's disease: oxidative stress and therapeuticapproaches. Neurol Sci, 2010, 31(5):531-540.
    [27] Yang Y, Li Q, Shuaib A. Neuroprotection by 2-h postischemia administration of two free radical scavengers, alpha-phenyl-n-tert-butyl-nitrone (PBN) and N-tert-butyl-(2-sulfophenyl)-nitrone (S-PBN), in rats subjected to focal embolic cerebral ischemia. Exp Neurol, 2000, 163(1):39-45.
    [28] Nguyen T, Nioi P, Pickett C B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem, 2009, 284(20):13291-13295.
    [29] Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A, 1994, 91(21):9926-9930.
    [30] Motohashi H, Shavit J A, Igarashi K, et al. The world according to Maf. Nucleic Acids Res, 1997, 25(15):2953-2959.
    [31] Narhi L O, Fulco A J. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem, 1986, 261(16):7160-7169.
    [32] Zhang D D, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol, 2003, 23(22):8137-8151.
    [33] Corbett M, Bogers W M, Heeney J L, et al. Aerosol immunization with NYVAC and MVA vectored vaccines is safe, simple, and immunogenic. Proc Natl Acad Sci U S A, 2008, 105(6):2046-2051.
    [34] Sherratt P J, Huang H C, Nguyen T, et al. Role of protein phosphorylation in the regulation of NF-E2-related factor 2 activity. Methods Enzymol, 2004, 378:286-301.
    [35] Cao X, Xiao H, Zhang Y, et al. 1, 5-Dicaffeoylquinic acid-mediated glutathione synthesis through activation of Nrf2 protects against OGD/reperfusion-induced oxidative stress in astrocytes. Brain Res, 2010, 1347:142-148.
    [36] Jaiswal A K. Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med, 2000, 29(3-4):254-262.
    [37] Wruck C J, Claussen M, Fuhrmann G, et al. Luteolin protects rat PC12 and C6 cellsagainst MPP+ induced toxicity via an ERK dependent Keap1-Nrf2-ARE pathway. J Neural Transm Suppl, 2007(72):57-67.
    [38] Burton N C, Kensler T W, Guilarte T R. In vivo modulation of the Parkinsonian phenotype by Nrf2. Neurotoxicology, 2006, 27(6):1094-1100.
    [39] Jakel R J, Townsend J A, Kraft A D, et al. Nrf2-mediated protection against 6-hydroxydopamine. Brain Res, 2007, 1144:192-201.
    [1] Zhang Z X, Roman G C, Hong Z, et al. Parkinson's disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet, 2005, 365(9459):595-597.
    [2] Greene L A, Tischler A S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A,1976, 73(7):2424-2428.
    [3] Salinas M, Diaz R, Abraham N G, et al. Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem, 2003, 278(16):13898-13904.
    [4] Sun X, Huang L, Zhang M, et al. Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta. Toxicology, 2010, 271(1-2):5-12.
    [5] Hauser R A, Lew M F, Hurtig H I, et al. Long-term outcome of early versus delayed rasagiline treatment in early Parkinson's disease. Mov Disord, 2009, 24(4):564-573.
    [6] Larsen J P, Boas J, Erdal J E. Does selegiline modify the progression of early Parkinson's disease? Results from a five-year study. The Norwegian-Danish Study Group. Eur J Neurol, 1999, 6(5):539-547.
    [7] Nakaso K, Nakamura C, Sato H, et al. Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins. Biochem Biophys Res Commun, 2006, 339(3):915-922.
    [8] Olanow C W, Rascol O, Hauser R, et al. A double-blind, delayed-start trial of rasagiline in Parkinson's disease. N Engl J Med, 2009, 361(13):1268-1278.
    [9] Palhagen S, Heinonen E H, Hagglund J, et al. Selegiline delays the onset of disability in de novo parkinsonian patients. Swedish Parkinson Study Group. Neurology, 1998, 51(2):520-525.
    [10] Palhagen S, Heinonen E, Hagglund J, et al. Selegiline slows the progression of the symptoms of Parkinson disease. Neurology, 2006, 66(8):1200-1206.
    [11] Przuntek H, Conrad B, Dichgans J, et al. SELEDO: a 5-year long-term trial on the effect of selegiline in early Parkinsonian patients treated with levodopa. Eur J Neurol, 1999, 6(2):141-150.
    [12] Sagi Y, Mandel S, Amit T, et al. Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis, 2007, 25(1):35-44.
    [13] Goldberg M P, Weiss J H, Pham P C, et al. N-methyl-D-aspartate receptors mediate hypoxic neuronal injury in cortical culture. J Pharmacol Exp Ther, 1987, 243(2):784-791.
    [14] Paz M A, Fluckiger R, Boak A, et al. Specific detection of quinoproteins by redox-cycling staining. J Biol Chem, 1991, 266(2):689-692.
    [15] Benson A M, Hunkeler M J, Talalay P. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A, 1980, 77(9):5216-5220.
    [16] Hastings T G, Zigmond M J. Identification of catechol-protein conjugates in neostriatal slices incubated with [3H]dopamine: impact of ascorbic acid and glutathione. J Neurochem, 1994, 63(3):1126-1132.
    [17] Choi H J, Kim S W, Lee S Y, et al. Dopamine-dependent cytotoxicity of tetrahydrobiopterin: a possible mechanism for selective neurodegeneration in Parkinson's disease. J Neurochem, 2003, 86(1):143-152.
    [1] Talalay P, Dinkova-Kostova A T. Role of nicotinamide quinone oxidoreductase 1 (NQO1) in protection against toxicity of electrophiles and reactive oxygen intermediates. Methods Enzymol, 2004, 382:355-364.
    [2] van Muiswinkel F L, de Vos R A, Bol J G, et al. Expression of NAD(P)H:quinone oxidoreductase in the normal and Parkinsonian substantia nigra. Neurobiol Aging, 2004, 25(9):1253-1262.
    [3] Fong C S, Wu R M, Shieh J C, et al. Pesticide exposure on southwestern Taiwanese with MnSOD and NQO1 polymorphisms is associated with increased risk of Parkinson's disease. Clin Chim Acta, 2007, 378(1-2):136-141.
    [4] Okada S, Farin F M, Stapleton P, et al. No associations between Parkinson's disease and polymorphisms of the quinone oxidoreductase (NQO1, NQO2) genes. Neurosci Lett, 2005, 375(3):178-180.
    [5] Zafar K S, Inayat-Hussain S H, Siegel D, et al. Overexpression of NQO1 protects humanSK-N-MC neuroblastoma cells against dopamine-induced cell death. Toxicol Lett, 2006, 166(3):261-267.
    [6] Yang Y, Li Q, Shuaib A. Neuroprotection by 2-h postischemia administration of two free radical scavengers, alpha-phenyl-n-tert-butyl-nitrone (PBN) and N-tert-butyl-(2-sulfophenyl)-nitrone (S-PBN), in rats subjected to focal embolic cerebral ischemia. Exp Neurol, 2000, 163(1):39-45.
    [7] Nguyen T, Nioi P, Pickett C B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem, 2009, 284(20):13291-13295.
    [8] Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A, 1994, 91(21):9926-9930.
    [9] Motohashi H, Shavit J A, Igarashi K, et al. The world according to Maf. Nucleic Acids Res, 1997, 25(15):2953-2959.
    [10] Narhi L O, Fulco A J. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem, 1986, 261(16):7160-7169.
    [11] Zhang D D, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol, 2003, 23(22):8137-8151.
    [12] Corbett M, Bogers W M, Heeney J L, et al. Aerosol immunization with NYVAC and MVA vectored vaccines is safe, simple, and immunogenic. Proc Natl Acad Sci U S A, 2008, 105(6):2046-2051.
    [13] Sherratt P J, Huang H C, Nguyen T, et al. Role of protein phosphorylation in the regulation of NF-E2-related factor 2 activity. Methods Enzymol, 2004, 378:286-301.
    [14] Cao X, Xiao H, Zhang Y, et al. 1, 5-Dicaffeoylquinic acid-mediated glutathione synthesis through activation of Nrf2 protects against OGD/reperfusion-induced oxidative stress in astrocytes. Brain Res, 2010, 1347:142-148.
    [15] Jaiswal A K. Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med, 2000, 29(3-4):254-262.
    [16] Chen Z H, Yoshida Y, Saito Y, et al. Induction of adaptive response and enhancement of PC12 cell tolerance by 7-hydroxycholesterol and 15-deoxy-delta(12,14)-prostaglandin J2 through up-regulation of cellular glutathione via different mechanisms. J Biol Chem, 2006, 281(20):14440-14445.
    [17] Usami H, Kusano Y, Kumagai T, et al. Selective induction of the tumor marker glutathione S-transferase P1 by proteasome inhibitors. J Biol Chem, 2005, 280(26):25267-25276.
    [18]扈启宽,李美育,徐方.利用RNA干扰技术抑制单胺氧化酶B基因的表达.宁夏医科大学学报,2009,31(2):154-157.
    [19] Benson A M, Hunkeler M J, Talalay P. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A, 1980, 77(9):5216-5220.
    [20] Winston W M, Molodowitch C, Hunter C P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science, 2002, 295(5564):2456-2459.
    [21] Kawasaki H, Taira K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res, 2003, 31(2):700-707.
    [22] Caplen N J, Fleenor J, Fire A, et al. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene, 2000, 252(1-2):95-105.
    [23] Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836):494-498.
    [24] Harborth J, Elbashir S M, Bechert K, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci, 2001, 114(Pt 24):4557-4565.
    [25] Nagy P, Arndt-Jovin D J, Jovin T M. Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells. Exp Cell Res, 2003, 285(1):39-49.
    [1] Nakaso K, Yano H, Fukuhara Y, et al. PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Lett, 2003, 546(2-3):181-184.
    [2] Umemura K, Itoh T, Hamada N, et al. Preconditioning by sesquiterpene lactone enhances H2O2-induced Nrf2/ARE activation. Biochem Biophys Res Commun, 2008, 368(4):948-954.
    [3] Nguyen T, Yang C S, Pickett C B. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic Biol Med, 2004, 37(4):433-441.
    [4] Rojo A I, Sagarra M R, Cuadrado A. GSK-3beta down-regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J Neurochem, 2008, 105(1):192-202.
    [5] Rojo A I, Rada P, Egea J, et al. Functional interference between glycogen synthase kinase-3 beta and the transcription factor Nrf2 in protection against kainate-induced hippocampal cell death. Mol Cell Neurosci, 2008, 39(1):125-132.
    [6] Salazar M, Rojo A I, Velasco D, et al. Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem, 2006, 281(21):14841-14851.
    [7] Jain A K, Jaiswal A K. GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem, 2007, 282(22):16502-16510.
    [8] Salinas M, Diaz R, Abraham N G, et al. Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem, 2003, 278(16):13898-13904.
    [9] Wu Y, Shang Y, Sun S, et al. Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3beta/caspase-3 mediated signaling pathway. Apoptosis, 2007, 12(8):1365-1375.
    [10] Sagi Y, Mandel S, Amit T, et al. Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis, 2007, 25(1):35-44.
    [11] Nakaso K, Nakamura C, Sato H, et al. Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins. Biochem Biophys Res Commun, 2006, 339(3):915-922.
    [12] Chen Z H, Yoshida Y, Saito Y, et al. Induction of adaptive response and enhancement of PC12 cell tolerance by 7-hydroxycholesterol and 15-deoxy-delta(12,14)-prostaglandin J2 through up-regulation of cellular glutathione via different mechanisms. J Biol Chem, 2006, 281(20):14440-14445.
    [13] Usami H, Kusano Y, Kumagai T, et al. Selective induction of the tumor marker glutathione S-transferase P1 by proteasome inhibitors. J Biol Chem, 2005, 280(26):25267-25276.
    [14]扈启宽,李美育,徐方.利用RNA干扰技术抑制单胺氧化酶B基因的表达.宁夏医科大学学报,2009,31(2):154-157.
    [15] Mccubrey J A, Lahair M M, Franklin R A. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal, 2006, 8(9-10):1775-1789.
    [16] Ahmad S, Ahmad A, White C W. Purinergic signaling and kinase activation for survival in pulmonary oxidative stress and disease. Free Radic Biol Med, 2006, 41(1):29-40.
    [17] Martin D, Rojo A I, Salinas M, et al. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem, 2004, 279(10):8919-8929.
    [18] Haskew-Layton R E, Payappilly J B, Smirnova N A, et al. Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway. Proc Natl Acad Sci U S A, 2010, 107(40):17385-17390.
    [19] Spina M B, Cohen G. Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci U S A, 1989, 86(4):1398-1400.
    [20] Grunblatt E, Mandel S, Youdim M B. Neuroprotective strategies in Parkinson's disease using the models of 6-hydroxydopamine and MPTP. Ann N Y Acad Sci, 2000, 899:262-273.
    [21] Schapira A H, Olanow C W. Neuroprotection in Parkinson disease: mysteries, myths, and misconceptions. JAMA, 2004, 291(3):358-364.
    [22] Nicotra A, Parvez S H. Cell death induced by MPTP, a substrate for monoamine oxidase B. Toxicology, 2000, 153(1-3):157-166.
    [23] Choi H J, Kim S W, Lee S Y, et al. Dopamine-dependent cytotoxicity of tetrahydrobiopterin: a possible mechanism for selective neurodegeneration in Parkinson's disease. J Neurochem, 2003, 86(1):143-152.
    [24] Asanuma M, Miyazaki I, Ogawa N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease. Neurotox Res, 2003, 5(3):165-176.
    [25] Chae S W, Bang Y J, Kim K M, et al. Role of cyclooxygenase-2 in tetrahydrobiopterin-induced dopamine oxidation. Biochem Biophys Res Commun, 2007, 359(3):735-741.
    [26] Vasiliou V, Ross D, Nebert D W. Update of the NAD(P)H:quinone oxidoreductase (NQO) gene family. Hum Genomics, 2006, 2(5):329-335.
    [27] Siegel D, Bolton E M, Burr J A, et al. The reduction of alpha-tocopherolquinone by human NAD(P)H: quinone oxidoreductase: the role of alpha-tocopherolhydroquinone as a cellular antioxidant. Mol Pharmacol, 1997, 52(2):300-305.
    [28] Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A, 1994, 91(21):9926-9930.
    [29] Copple I M, Goldring C E, Kitteringham N R, et al. The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity. Toxicology, 2008, 246(1):24-33.
    [30] Giasson B I, Duda J E, Murray I V, et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 2000, 290(5493):985-989.
    [1] Moore D J, West A B, Dawson V L, et al. Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci, 2005, 28:57-87.
    [2] Jenner P. Oxidative stress and Parkinson's disease. Handb Clin Neurol, 2007, 83:507-520.
    [3] Cuadrado A, Rojo A I. Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des, 2008, 14(5):429-442.
    [4] Zeevalk G D, Razmpour R, Bernard L P. Glutathione and Parkinson's disease: is this the elephant in the room? Biomed Pharmacother, 2008, 62(4):236-249.
    [5] Haas R H, Nasirian F, Nakano K, et al. Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease. Ann Neurol, 1995, 37(6):714-722.
    [6] Langston J W, Ballard P, Tetrud J W, et al. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 1983, 219(4587):979-980.
    [7] Rojo A I, Montero C, Salazar M, et al. Persistent penetration of MPTP through the nasal route induces Parkinson's disease in mice. Eur J Neurosci, 2006, 24(7):1874-1884.
    [8] Betarbet R, Greenamyre J T. Parkinson's disease: animal models. Handb Clin Neurol, 2007, 83:265-287.
    [9] Kushnareva Y, Murphy A N, Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J, 2002, 368(Pt 2):545-553.
    [10] Sherer T B, Betarbet R, Stout A K, et al. An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci, 2002, 22(16):7006-7015.
    [11] Fasano M, Bergamasco B, Lopiano L. Modifications of the iron-neuromelanin system in Parkinson's disease. J Neurochem, 2006, 96(4):909-916.
    [12] Smith P F. Inflammation in Parkinson's disease: an update. Curr Opin Investig Drugs,2008, 9(5):478-484.
    [13] Gerhard A, Pavese N, Hotton G, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol Dis, 2006, 21(2):404-412.
    [14] Chen H, Zhang S M, Hernan M A, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol, 2003, 60(8):1059-1064.
    [15] Chen H, Jacobs E, Schwarzschild M A, et al. Nonsteroidal antiinflammatory drug use and the risk for Parkinson's disease. Ann Neurol, 2005, 58(6):963-967.
    [16] Colebrooke R E, Humby T, Lynch P J, et al. Age-related decline in striatal dopamine content and motor performance occurs in the absence of nigral cell loss in a genetic mouse model of Parkinson's disease. Eur J Neurosci, 2006, 24(9):2622-2630.
    [17] Caudle W M, Richardson J R, Wang M Z, et al. Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci, 2007, 27(30):8138-8148.
    [18] Chen L, Ding Y, Cagniard B, et al. Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci, 2008, 28(2):425-433.
    [19] Eisenhofer G, Kopin I J, Goldstein D S. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev, 2004, 56(3):331-349.
    [20] Sulzer D, Zecca L. Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res, 2000, 1(3):181-195.
    [21] Conway K A, Rochet J C, Bieganski R M, et al. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science, 2001, 294(5545):1346-1349.
    [22] Kuhn D M, Arthur R J, Thomas D M, et al. Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson's disease. J Neurochem, 1999, 73(3):1309-1317.
    [23] Lavoie M J, Ostaszewski B L, Weihofen A, et al. Dopamine covalently modifies and functionally inactivates parkin. Nat Med, 2005, 11(11):1214-1221.
    [24] Tessari I, Bisaglia M, Valle F, et al. The reaction of alpha-synuclein with tyrosinase: possible implications for Parkinson disease. J Biol Chem, 2008, 283(24):16808-16817.
    [25] Whitehead R E, Ferrer J V, Javitch J A, et al. Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J Neurochem, 2001, 76(4):1242-1251.
    [26] Xu Y, Stokes A H, Roskoski R J, et al. Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J Neurosci Res, 1998, 54(5):691-697.
    [27] Bedford L, Hay D, Devoy A, et al. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci, 2008, 28(33):8189-8198.
    [28] Spencer J P, Jenner P, Daniel S E, et al. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem, 1998, 71(5):2112-2122.
    [29] Lee J M, Calkins M J, Chan K, et al. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem, 2003, 278(14):12029-12038.
    [30] Lee J M, Shih A Y, Murphy T H, et al. NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem, 2003, 278(39):37948-37956.
    [31] Thimmulappa R K, Mai K H, Srisuma S, et al. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res, 2002, 62(18):5196-5203.
    [32] Innamorato N G, Rojo A I, Garcia-Yague A J, et al. The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol, 2008, 181(1):680-689.
    [33] Kraft A D, Johnson D A, Johnson J A. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci, 2004, 24(5):1101-1112.
    [34] Shih A Y, Johnson D A, Wong G, et al. Coordinate regulation of glutathionebiosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci, 2003, 23(8):3394-3406.
    [35] Cullinan S B, Gordan J D, Jin J, et al. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol, 2004, 24(19):8477-8486.
    [36] Furukawa M, Xiong Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol, 2005, 25(1):162-171.
    [37] Kobayashi A, Kang M I, Okawa H, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol, 2004, 24(16):7130-7139.
    [38] Zhang D D, Lo S C, Cross J V, et al. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol, 2004, 24(24):10941-10953.
    [39] Mcmahon M, Thomas N, Itoh K, et al. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J Biol Chem, 2006, 281(34):24756-24768.
    [40] Tong K I, Katoh Y, Kusunoki H, et al. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol, 2006, 26(8):2887-2900.
    [41] Tong K I, Padmanabhan B, Kobayashi A, et al. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol Cell Biol, 2007, 27(21):7511-7521.
    [42] Padmanabhan B, Tong K I, Ohta T, et al. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell, 2006, 21(5):689-700.
    [43] Yamamoto T, Suzuki T, Kobayashi A, et al. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol, 2008, 28(8):2758-2770.
    [44] Dinkova-Kostova A T, Holtzclaw W D, Cole R N, et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect againstcarcinogens and oxidants. Proc Natl Acad Sci U S A, 2002, 99(18):11908-11913.
    [45] Eggler A L, Luo Y, van Breemen R B, et al. Identification of the highly reactive cysteine 151 in the chemopreventive agent-sensor Keap1 protein is method-dependent. Chem Res Toxicol, 2007, 20(12):1878-1884.
    [46] Luo Y, Eggler A L, Liu D, et al. Sites of alkylation of human Keap1 by natural chemoprevention agents. J Am Soc Mass Spectrom, 2007, 18(12):2226-2232.
    [47] Wakabayashi N, Dinkova-Kostova A T, Holtzclaw W D, et al. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A, 2004, 101(7):2040-2045.
    [48] Zhang D D, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol, 2003, 23(22):8137-8151.
    [49] Clark J, Simon D K. Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease. Antioxid Redox Signal, 2009, 11(3):509-528.
    [50] Rojo A I, Rada P, Egea J, et al. Functional interference between glycogen synthase kinase-3 beta and the transcription factor Nrf2 in protection against kainate-induced hippocampal cell death. Mol Cell Neurosci, 2008, 39(1):125-132.
    [51] Rojo A I, Sagarra M R, Cuadrado A. GSK-3beta down-regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J Neurochem, 2008, 105(1):192-202.
    [52] Salazar M, Rojo A I, Velasco D, et al. Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem, 2006, 281(21):14841-14851.
    [53] Jain A K, Jaiswal A K. GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem, 2007, 282(22):16502-16510.
    [54] Apopa P L, He X, Ma Q. Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells. J Biochem Mol Toxicol, 2008, 22(1):63-76.
    [55] Clements C M, Mcnally R S, Conti B J, et al. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci U S A, 2006, 103(41):15091-15096.
    [56] Malhotra D, Thimmulappa R, Navas-Acien A, et al. Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med, 2008, 178(6):592-604.
    [57] Lim J H, Kim K M, Kim S W, et al. Bromocriptine activates NQO1 via Nrf2-PI3K/Akt signaling: novel cytoprotective mechanism against oxidative damage. Pharmacol Res, 2008, 57(5):325-331.
    [58] Martin D, Rojo A I, Salinas M, et al. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem, 2004, 279(10):8919-8929.
    [59] Ikeyama S, Kokkonen G, Shack S, et al. Loss in oxidative stress tolerance with aging linked to reduced extracellular signal-regulated kinase and Akt kinase activities. FASEB J, 2002, 16(1):114-116.
    [60] Kwok J B, Hallupp M, Loy C T, et al. GSK3B polymorphisms alter transcription and splicing in Parkinson's disease. Ann Neurol, 2005, 58(6):829-839.
    [61] Ramsey C P, Glass C A, Montgomery M B, et al. Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol, 2007, 66(1):75-85.
    [62] Burton N C, Kensler T W, Guilarte T R. In vivo modulation of the Parkinsonian phenotype by Nrf2. Neurotoxicology, 2006, 27(6):1094-1100.
    [63] Jakel R J, Townsend J A, Kraft A D, et al. Nrf2-mediated protection against 6-hydroxydopamine. Brain Res, 2007, 1144:192-201.
    [64] Abraham N G, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev, 2008, 60(1):79-127.
    [65] Schipper H M. Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med, 2004, 37(12):1995-2011.
    [66] Youdim M B, Stephenson G, Ben S D. Ironing iron out in Parkinson's disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and ironchelators, desferal and VK-28. Ann N Y Acad Sci, 2004, 1012:306-325.
    [67] Yang W, Tiffany-Castiglioni E. The bipyridyl herbicide paraquat produces oxidative stress-mediated toxicity in human neuroblastoma SH-SY5Y cells: relevance to the dopaminergic pathogenesis. J Toxicol Environ Health A, 2005, 68(22):1939-1961.
    [68] Kim D K, Kim J S, Kim J E, et al. Heme oxygenase-1 induction by dieldrin in dopaminergic cells. Neuroreport, 2005, 16(5):509-512.
    [69] Salinas M, Diaz R, Abraham N G, et al. Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem, 2003, 278(16):13898-13904.
    [70] Perry T L, Godin D V, Hansen S. Parkinson's disease: a disorder due to nigral glutathione deficiency? Neurosci Lett, 1982, 33(3):305-310.
    [71] Pearce R K, Owen A, Daniel S, et al. Alterations in the distribution of glutathione in the substantia nigra in Parkinson's disease. J Neural Transm, 1997, 104(6-7):661-677.
    [72] Sian J, Dexter D T, Lees A J, et al. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol, 1994, 36(3):348-355.
    [73] Sofic E, Lange K W, Jellinger K, et al. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease. Neurosci Lett, 1992, 142(2):128-130.
    [74] Talalay P, Dinkova-Kostova A T. Role of nicotinamide quinone oxidoreductase 1 (NQO1) in protection against toxicity of electrophiles and reactive oxygen intermediates. Methods Enzymol, 2004, 382:355-364.
    [75] van Muiswinkel F L, de Vos R A, Bol J G, et al. Expression of NAD(P)H:quinone oxidoreductase in the normal and Parkinsonian substantia nigra. Neurobiol Aging, 2004, 25(9):1253-1262.
    [76] Fong C S, Wu R M, Shieh J C, et al. Pesticide exposure on southwestern Taiwanese with MnSOD and NQO1 polymorphisms is associated with increased risk of Parkinson's disease. Clin Chim Acta, 2007, 378(1-2):136-141.
    [77] Okada S, Farin F M, Stapleton P, et al. No associations between Parkinson's disease andpolymorphisms of the quinone oxidoreductase (NQO1, NQO2) genes. Neurosci Lett, 2005, 375(3):178-180.
    [78] Zafar K S, Inayat-Hussain S H, Siegel D, et al. Overexpression of NQO1 protects human SK-N-MC neuroblastoma cells against dopamine-induced cell death. Toxicol Lett, 2006, 166(3):261-267.
    [79] Satoh T, Lipton S A. Redox regulation of neuronal survival mediated by electrophilic compounds. Trends Neurosci, 2007, 30(1):37-45.
    [80] Dinkova-Kostova A T, Fahey J W, Talalay P. Chemical structures of inducers of nicotinamide quinone oxidoreductase 1 (NQO1). Methods Enzymol, 2004, 382:423-448.
    [81] Cao T T, Ma L, Kandpal G, et al. Increased nuclear factor-erythroid 2 p45-related factor 2 activity protects SH-SY5Y cells against oxidative damage. J Neurochem, 2005, 95(2):406-417.
    [82] Trinh K, Moore K, Wes P D, et al. Induction of the phase II detoxification pathway suppresses neuron loss in Drosophila models of Parkinson's disease. J Neurosci, 2008, 28(2):465-472.
    [83] Han J M, Lee Y J, Lee S Y, et al. Protective effect of sulforaphane against dopaminergic cell death. J Pharmacol Exp Ther, 2007, 321(1):249-256.
    [84] Jagatha B, Mythri R B, Vali S, et al. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson's disease explained via in silico studies. Free Radic Biol Med, 2008, 44(5):907-917.
    [85] Jin F, Wu Q, Lu Y F, et al. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats. Eur J Pharmacol, 2008, 600(1-3):78-82.
    [86] Bensasson R V, Zoete V, Dinkova-Kostova A T, et al. Two-step mechanism of induction of the gene expression of a prototypic cancer-protective enzyme by diphenols. Chem Res Toxicol, 2008, 21(4):805-812.
    [87] Guzman-Beltran S, Espada S, Orozco-Ibarra M, et al. Nordihydroguaiaretic acid activates the antioxidant pathway Nrf2/HO-1 and protects cerebellar granule neurons against oxidative stress. Neurosci Lett, 2008, 447(2-3):167-171.
    [88] Kweon M H, Adhami V M, Lee J S, et al. Constitutive overexpression ofNrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J Biol Chem, 2006, 281(44):33761-33772.
    [89] Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett, 2008, 269(2):315-325.
    [90] Satoh T, Kosaka K, Itoh K, et al. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J Neurochem, 2008, 104(4):1116-1131.
    [91] Mattson M P, Cheng A. Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci, 2006, 29(11):632-639.
    [92] Tirmenstein M A, Hu C X, Scicchitano M S, et al. Effects of 6-hydroxydopamine on mitochondrial function and glutathione status in SH-SY5Y human neuroblastoma cells. Toxicol In Vitro, 2005, 19(4):471-479.
    [93] Fahn S. A new look at levodopa based on the ELLDOPA study. J Neural Transm Suppl, 2006(70):419-426.
    [94] Holloway R G, Shoulson I, Fahn S, et al. Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch Neurol, 2004, 61(7):1044-1053.
    [95] Whone A L, Watts R L, Stoessl A J, et al. Slower progression of Parkinson's disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol, 2003, 54(1):93-101.
    [96] Kyriazis M. Neuroprotective, anti-apoptotic effects of apomorphine. J Anti Aging Med, 2003, 6(1):21-28.
    [97] Picada J N, Roesler R, Henriques J A. Genotoxic, neurotoxic and neuroprotective activities of apomorphine and its oxidized derivative 8-oxo-apomorphine. Braz J Med Biol Res, 2005, 38(4):477-486.
    [98] Hara H, Ohta M, Adachi T. Apomorphine protects against 6-hydroxydopamine-induced neuronal cell death through activation of the Nrf2-ARE pathway. J Neurosci Res, 2006, 84(4):860-866.
    [99] Kim S J, Kim J S, Cho H S, et al. Carnosol, a component of rosemary (Rosmarinus officinalis L.) protects nigral dopaminergic neuronal cells. Neuroreport, 2006,17(16):1729-1733.
    [100] Park J A, Kim S, Lee S Y, et al. Beneficial effects of carnosic acid on dieldrin-induced dopaminergic neuronal cell death. Neuroreport, 2008, 19(13):1301-1304.
    [101] Ives N J, Stowe R L, Marro J, et al. Monoamine oxidase type B inhibitors in early Parkinson's disease: meta-analysis of 17 randomised trials involving 3525 patients. BMJ, 2004, 329(7466):593.
    [102] Macleod A D, Counsell C E, Ives N, et al. Monoamine oxidase B inhibitors for early Parkinson's disease. Cochrane Database Syst Rev, 2005(3):D4898.
    [103] Palhagen S, Heinonen E H, Hagglund J, et al. Selegiline delays the onset of disability in de novo parkinsonian patients. Swedish Parkinson Study Group. Neurology, 1998, 51(2):520-525.
    [104] Palhagen S, Heinonen E, Hagglund J, et al. Selegiline slows the progression of the symptoms of Parkinson disease. Neurology, 2006, 66(8):1200-1206.
    [105] Przuntek H, Conrad B, Dichgans J, et al. SELEDO: a 5-year long-term trial on the effect of selegiline in early Parkinsonian patients treated with levodopa. Eur J Neurol, 1999, 6(2):141-150.
    [106] Larsen J P, Boas J, Erdal J E. Does selegiline modify the progression of early Parkinson's disease? Results from a five-year study. The Norwegian-Danish Study Group. Eur J Neurol, 1999, 6(5):539-547.
    [107] D'Agostino R S. The delayed-start study design. N Engl J Med, 2009, 361(13):1304-1306.
    [108] Hauser R A, Lew M F, Hurtig H I, et al. Long-term outcome of early versus delayed rasagiline treatment in early Parkinson's disease. Mov Disord, 2009, 24(4):564-573.
    [109] Olanow C W, Rascol O, Hauser R, et al. A double-blind, delayed-start trial of rasagiline in Parkinson's disease. N Engl J Med, 2009, 361(13):1268-1278.
    [110] Sagi Y, Mandel S, Amit T, et al. Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis, 2007, 25(1):35-44.
    [111] Nakaso K, Nakamura C, Sato H, et al. Novel cytoprotective mechanism ofanti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins. Biochem Biophys Res Commun, 2006, 339(3):915-922.
    [112] Takashima A. GSK-3 is essential in the pathogenesis of Alzheimer's disease. J Alzheimers Dis, 2006, 9(3 Suppl):309-317.
    [113] Suh J H, Shenvi S V, Dixon B M, et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci U S A, 2004, 101(10):3381-3386.
    [114] Wu Y, Shang Y, Sun S, et al. Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3beta/caspase-3 mediated signaling pathway. Apoptosis, 2007, 12(8):1365-1375.
    [115] Wang W, Yang Y, Ying C, et al. Inhibition of glycogen synthase kinase-3beta protects dopaminergic neurons from MPTP toxicity. Neuropharmacology, 2007, 52(8):1678-1684.
    [116] Kozikowski A P, Gaisina I N, Petukhov P A, et al. Highly potent and specific GSK-3beta inhibitors that block tau phosphorylation and decrease alpha-synuclein protein expression in a cellular model of Parkinson's disease. ChemMedChem, 2006, 1(2):256-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700