二氧化碳驱替煤层瓦斯机理与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是煤炭工业大国,煤层瓦斯资源极为丰富,但由于煤层瓦斯储层普遍属于低渗透储层,有别于美国的煤层地质条件,不能完全按照美国的煤层瓦斯开采方式进行开采。而传统的煤层气开采方法采收率低,采气时间长,经济效益差。煤层瓦斯抽采率低的直接后果是煤矿瓦斯灾害频发、采煤效率低、环境污染等。对于我国绝大多数煤层渗透率较低的特点和煤矿瓦斯抽采率低的现状,建议采用CO2驱替煤层瓦斯,以提高煤层气产气速度和采收率。二氧化碳置换驱替煤层具有CO2煤层地质储存及CH4清洁能源开采的双赢效益,被认为是有较好前景的煤层气开采技术。
     本文在煤体结构特征与瓦斯赋存机理研究基础上,在实验室对CH4和CO2在煤体的渗透率及二氧化碳驱替煤体瓦斯进行了试验研究。通过煤层气的储层特征及赋存、运移与产出机理。煤样CO2吸附量大于对CH4的吸附量,分析了二氧化碳驱替煤层瓦斯的机理与适用性。
     渗透实验结果表明:CH4在煤体中渗透率与体积应力呈负指数规律变化;煤体对二氧化碳的渗透率高于对CH4气体的渗透率2个数量级以上,在瓦斯浓度一定的情况下增加了混合气体流量,二氧化碳驱替煤层气技术可以大幅提高煤层瓦斯采收速率。采用大煤样试件进行的二氧化碳置换驱替煤层瓦斯试验,比较真实地模拟了煤层孔隙和裂隙中储存二氧化碳及其驱替煤层瓦斯的过程。置换驱替试验结果表明:随体积应力及渗透驱替压力的不同,单位体积煤体可储存17.47至28.0体积二氧化碳,CO2/CH4置换体积比高达7.03~13.91;在恒定体积应力及渗透压力条件下,二氧化碳注入、置换、产出能够平稳进行;两种不同煤层瓦斯含量条件与驱替置换方式下,产出气体初期CH4含量高达20~50%,随时间延续产出气体中瓦斯含量有所下降,但仍持续保持在10~16%之间;在二氧化碳注入煤体进行置换吸附期间,受竞争吸附及外界温度的影响,煤体孔裂隙内气体反复发生吸附解吸,引起煤体基质发生膨胀收缩;当温度变化幅度较大时,由温度升高导致的气体解吸及膨胀效应远远大于气体解吸煤体基质的收缩效应。研究结构表明,注入CO2置换驱替煤体瓦斯的主要机理为:
     (1) CH4与CO2的竞争吸附,由于煤体对CO2的吸附性远高于对CH4的吸附性,使得注入的CO2能够滞留,且置换出大量CH4。
     (2) CO2注入过程中,由于气体的渗流运移,减小了吸附CH4分压,从而使得其持续解吸;提高CH4产量。本研究对CO2在不可采煤层中地质储存及置换驱替煤层瓦斯均具有重要的理论意义与应用价值。
China is a big coal industry country with very rich coal-bed methane resources, however ,coal-bed methane reservoirs are three low-permeability reservoir, which is different from the U.S coal-bed geological conditions, coal-bed methane exploitation can not fully follow the U.S. approach. The traditional coalbed methane exploitation methods are lower productivity、longer recovering period and poor economic results.The direct consequences of low recovery ratio of coal-bed methane are gas disaster-prone,inefficient mining , resources waste and environmental pollution.based on low permeability characteistic of most coal-bed and corrent ststus of low recovery ratio of coal-bed methane in china ,the corbon dioxide enhanced coal-bed methane technology has been suggested for the purpose of enhancing coal-bed mehtane recovery ratio. carbon dioxide displacement coal-bed methane is considered a better prospect coal-bed methaneexploitation technology.
     In this paper, mainly based on existing technologies of carbon dioxide sequestration in coal-bed and enhanced coal-bed methane production by gas injection,according to the theories of coal-bed methane geology,rock mechanics、solid mechanics、porous medium、flow mechanics in porous medium,coal-bed methane and carbon dioxide laboratory permeability tests and carbon dioxide displacement coal-bed methane tests.doing the following work: Through the understanding of coal structure,the characteistic of coal-bed methane reservoir and the mechanisms of storage、migration and production of coal-bed methane were introduced.carbon dioxide adsorption quantity is higher than coal-bed methane,analysis the mechanism and applicability of carbon dioxide displacement coal-bed methane.under the coal-bed methane and carbon dioxide permeability tests.
     the results show that: In the experiment, permeability of the coal specimen was measured firstly and it is found that the permeability of the specimen is different for the two gases. The permeability for carbon dioxide is larger than that for methane two magnitudes at least under the tested condition. There exists a negative exponent relationship between the permeability and applied body stress on the specimen.Improving the coal-bed methane concntration and flow rate ,the technology of carbon dioxide enhanced coal-bed methane can substantially increase the methane recovery and mining efficiency. we present our experimental study results of carbon dioxide sequestration and methane displacement by carbon dioxide in coal specimens of large size, which factually simulated the process of the green house gas sequestration and methane displacement by it in coal bed. In the experiment, permeability of the coal specimen was measured firstly and it is found that the permeability of the specimen is different for the two gases. The permeability for carbon dioxide is larger than that for methane two magnitudes at least under the tested condition. There exists a negative exponent relationship between the permeability and applied body stress on the specimen. Under the simulated stress condition in the experiment,17.47 to 28.0 units of carbon dioxide can be stored in per unit of the specimen, and the displacement ratio of carbon dioxide to methane is as large as 7.03 to 13.91. The process of injection, adsorption and desorption, displacement, and output of gases can be proceed smoothly under the given pressures, the percentage of methane in the production gas can be amounted to 20 to 50% at the early stage and still be maintained at the level of 10 to 16% even at the last stage during the experiment process. It is concluded that the production amount and the percentage of methane are determined by complex factors including contained methane and the development of pores and fissures in the coal bed, the displacement style and applied stress during the project implementation,et al. During the process of carbon dioxide injection and gas displacement,coal body swelling can happen with comprehensive effects of gas adsorption and desorption, and the deformation of coal framework. In the experiment,it is concluded that gas desorption effect resulted from temperature increase played much role on the specimen swelling than shrink effect of the coal framework.
     the results showed that the main mechanism of carbon dioxide displacement of coal-bed methane:
     (1)At the time of coal-bed methane and carbon dioxide in the competitive adsorption, due to the adsorption of carbon dioxide is much higher than on the adsorption of coal-bed methane,ingected carbon dioxide can retention in coal, and replacement of large number of coal-bed methane;
     (2) The process of carbon dioxide injection, because of gas seepage and migration, reduces the partial pressure of adsorption methane, allowing its continued desorption; increased methane production. This study on non-coal layer carbon dioxide geological storage and the replacement drive for coal seam gas are of great theoretical significance and application value.
引文
[1]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [2]鲜学福.我国煤层气开采利用现状及其产业化展望[ J ].重庆大学学报, 2000, 23 ( 4) : 23-26.
    [3]叶建平,秦勇,林大扬.中国煤层气资源[M ].徐州:中国矿业大学出版社, 1999.
    [4]朱志敏,沈冰,蒋刚.煤层气开发利用现状与发展方向.矿产综合利用2006,6:40-43.
    [5]王兆丰.我国煤矿瓦斯抽放存在的问题及对策探讨.焦作工学院学报,2003,22(4):241-246.
    [6]胡光龙,杨思敬.煤层气开发技术和前景.煤矿安全,2003,34:64-67.
    [7]郑奎.北龙凤地面钻孔水力压裂预排本煤层瓦斯.煤矿安全, 1990,9:5-10.
    [8]于洪,陆庭侃.高压水射流割缝提高瓦斯抽放效率的研究.煤炭科学技术,2009,37(3):44-46.
    [9]王佰顺,戴广龙,童云飞,周心权.深孔松动爆破提高瓦斯抽放率的应用研究.煤矿安全,2002,33(11):5-7.
    [10]蔡成功,周革忠.自动变径大直径钻孔抽放煤层瓦斯试验.煤炭科学技术,2004,32(12):39-41.
    [11]胡光龙,杨思敬.煤层气开发技术和前景.煤矿安全,2003,34:64-67.
    [12]郑奎.北龙凤地面钻孔水力压裂预排本煤层瓦斯.煤矿安全, 1990,9.5-10.
    [13]冯增朝等.割缝与钻孔排放煤层气的大煤样试验研究.天然气工业,2005 ;25 (3) :127-129.
    [14]瞿涛宝.试论水力割缝技术处理煤层瓦斯的效果.西部勘探,1999,8(23):51-53.
    [15]王兆丰,田富超,赵彬等.羽状千米长钻孔抽采效果考察试验.煤炭学报,2010,35(7):76-79.
    [16]张福东,吴晓东.煤层气羽状水平井的开采优化.开发工程,2010,30(2):69-72.
    [17]张洪涛,文冬光,李义连等.中国CO2地质埋存条件分析及有关建议[J].地质通报,2005,24(12):1107-1110.
    [18] Schreurs H C E.荷兰煤层气开发应用CO2注入技术的可行性-—潜力与经济性评价[A].见:2002年第三届国际煤层气论坛论文集[C].徐州:中国矿业大学出版社,2002.79–87.
    [19]艾鲁尼著.煤矿瓦斯动力现象的预测和预防[M].唐修义,宋德淑,王荣龙译.北京:煤炭工业出版社,1992.
    [20]唐书恒.晋城地区煤储层特征及多元气体吸附解吸特性[D].北京:中国矿业大学(北京校区),博士学位论文.2001.
    [21]唐书恒,汤达祯,扬起.二元气体等温吸附-解吸中气分的变化规律[J].中国矿业大学学报,2004,33(4):448-452.
    [22] Harpalani S and Pariti U M.Study of coal sorption isotherm using a mu[ticomponent gas mixture[A].1993 International Coalbed Methane Symposium[C].
    [23] Arri L E,Yee D,Morgan W D,and Jeansonne M W.Modeling eoalbed methane production with binary gas sorption[A].SPE paper 24363,SPE Rocky Mountain Regional Meeting[c],Casper, Wyoming,1992.
    [24] Deo M D,Whitney E M and Bodily D M.A muhicomponent model for combed gas drainage.Proceedings of the 1993 International Coalbed Methane Symposium.
    [25] Harpalani S and Pariti U M.Study of coal sorption isotherm using a mu[ticomponent gas mixture[A].1993 International Coalbed Methane Symposium[C].
    [26] Greaves K H,Owen L B,MeLenman J D et a1.Multi—component gas adsorption desorption behavoir of coal[A].Proceedings of the 1993 International Coalbed Methane Symposium[C].
    [27] Yee D,Arri L E and Morgan W D.Binary gas sorption on coal and its influence on produced gas composition.Geological Society of America,Annual Meeting,Octomber.
    [28] Bergen F Van,Pagnier H.J.M,et a1.Inventory of the potential for enhanced coalbed methane production with carbon dioxide disposal in the Netherlands.Proceedings of the 2001 international coalbed methane symposium.
    [29] Stevens S H.CO2 injection for enhanced coal bed methane recovery:project screening and design[A].In:Proc.of the 1999 Int.CBMSymp.[C].Tuscaloosa,Alabama:[s.n.],1999.
    [30] Reeves S R.The Coal-seq project:key results from field,laboratory,and modeling studies[A].In:Proc.of the 7th InternationalConference on Greenhouse Gas Control Technologies(GHGT–7)[C].Oxford,UK:Elsevier Science,2004.544–548.
    [31]叶建平,秦勇,林大扬.中国煤层气资源[M].徐州:中国矿业大学出版社,1998.(Ye Jianping,Qin Yong,Lin Dayang.CoalbedMethane Resources in China[M].Xuzhou:China University ofMining and Technology Press,1998.(in Chinese)
    [32] ARI.Enhanced coalbed methane recovery with CO2 sequestration[A].In:Prepared for International Energy Agency Greenhouse Gas Research and Development Programme(PH3/3)[C].Arlington:Advanced Recourses International,1998.8–8.
    [33]林刚,陈莉纯.温室气体CO2的收集、存储与再利用[J].低温与特气,1999,2:14-19.
    [34] Gentzis T.Subsurface sequestration of carbon dioxide- an overview from an Alberta (Canada) perspective[J] .International Journal of Coal Geology,2000,43(1-4): 287-305.
    [35]刘洪林,王红岩,李景明.利用碳封存技术开发我国深部煤层气资源的思考[J].特种油气藏,2006,13(4):6-9.
    [36]吴世跃,赵文.含吸附煤层气煤的有效应力分析[J] .岩石力学与工程学报,2005,24(10):1674-1678
    [37]陈昌国,鲜学福.煤结构研究及发展.煤炭转化,1998,21 (4) :7-13.
    [38]张代钧鲜学福,煤大分子结构研究的进展.重庆大学学报,1993,16(2):58-63.
    [39]唐书恒,韩德馨.煤对多元气体的吸附一解吸试验.煤炭科学技术,2002,30(1):58-61.
    [40]唐书恒.晋城地区煤储层特征及多元气体吸附解吸特性[D].北京:中国矿业大学(北京校区),博士学位论文.2001.
    [41] Chabaek Joseph J,Morgan Don,and Yee Dan.Sorption irreversibities and mixture compositional behavior during enhanced coal bed methane recovery processes[A].SPE 35622.Gas technologyconference[C].Calgary,Alberta,Canada.
    [42]崔永君,杨锡禄.多组分等温吸附测试中的体积校正方法探讨.煤田地质与勘探.2001,29(5):25-27.
    [43] Shigeru Saito,Masami Yamaguchi and Hiroshi Nambo.Methane gas power generation and CO2 sequestration at closed coal mines.2001年日本洁净能源会议资料.
    [44] Yukuo Katayama.Study of Coalbed Methane in Japan.Proceedings of United Nations international conference on coalbed methane development and utilization .1995.
    [45] Stevens Scott H.Schoeling Lanny,Pekot Larry.CO2 injection for enhanced coalbed methane recovery:project screening and design.Proceedings of the 1993 International Coal-bed Methane Symposium.
    [46]高远文,姚艳斌,郭广山.注气提高煤层气采收率研究进展[J].资源与矿产,2007,9(6):105-108.
    [47] Wolf K—H A A,Hijman R,BarzandjiO Het a1.Laborary experiments and simulations on the environmentally friendly improvement of coalbed methane production by carbon dioxide injection.Proceedings of the 1993 International Coal-bed Methane Symposium.
    [48] Basanta Kumar Prusty.Sorption of methane and CO2 for enhanced coalbed methane recovery and carbon dioxide sequestration[J] . India . Journal of Natural Gas Chemistry.2008,17(1):29-38.
    [49]吴世跃,郭永义.注气开采煤层气增产机制的研究[J].煤炭学报,2001,26(2):199-203.
    [50]吴世跃,赵文.自然降压开采和注气开采煤层气的效果评价[J].中国矿业,2004,13(10):76-79.
    [51] Mastalerz M,Gluskoter H,Rupp J.International Journal of Coal geology[N].2004,60(1):43.
    [52] Busch A , Gensterblum Y , Krooss B M . International Journal of Coal Geology[N].2003,55(2-4):205.
    [53]陈明和.中国能源开发进入新阶段[J].中国煤层气,1999,(l):13-14.
    [54]谢克昌.煤的结构与反应性,北京:科学出版社,2002年;
    [55]赵阳升,冯增朝,文再明.煤体瓦斯愈渗机理与研究方法,煤炭学报,2004,29(3):293-297.
    [56]钟玲文,张慧,员争荣等.煤的比表面积、孔体积及其对煤吸附能力的影响.煤田地质与勘探,2002,30(3):26-29.
    [57]崔永君,张群,张泓,张庆玲.不同煤级对CH4,N2和CO2单组分气体的吸附.天然气工业,地质与勘探,25(1):
    [58]张代钧,鲜学福.煤中大分子结构的射线衍射研究,高等学校化学学报,1990,11(2):9-12.
    [59]戴金星,戚厚发等著.我国煤系的气油地球化学特征、煤成气藏形成条件及资源评价[M].北京:石油工业出版社,2001.
    [60]杜云贵,任震.煤的各向异电性与其大分子间结构间的关系,煤炭转化,1995(9).
    [61]张慧.煤孔隙的成因类型及其研究.煤炭学报,2001,26(1):40-44
    [62]李前贵,康毅力,徐兴华等.煤岩孔隙结构特征及其对储层损害的影响.西南石油学院学报,2002,24(3):1-4.
    [63]隆清明,赵旭生,牟景珊.孔隙气压对煤层气体渗透性影响的实验研究.矿业安全与环保,2008,35(1):10-12.
    [64]周世宁.瓦斯在煤层中的流动机理.煤炭学报,1990,15(1):15-58.
    [65]杨起,汤达祯.华北煤变质作用对煤含气量和渗透率的影响[ J ] .地球科学—中国地质大学学报,2000,25 (3) :273 -277.
    [66]叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[ J ].煤炭学报,1999,24 ( 2) :118 - 122.
    [67] Enever J R E , Henning A. The relationship between permeability andeffective stress for Australian coal and its implications with respect to coalbed methane exploration and reservoir modelling[ A ] . Proceedingsof the 1997 International Coalbed Methane Symposium[ C] .1997 ,13 -22.
    [68]钱凯,赵庆波等.煤层甲烷气勘探开发理论与实验测试技术[J] .北京:石油工业出版社,1996,171-175.
    [69] Kristian Jessen, Guo-Qing Tang, Anthony R.Kovscek. Laboratory and Simulation Investigation of Enhanced Coalbed Methane Recovery by Gas Injection. Transport in Porous Media, 2008, 73: 141-159.
    [70]赵阳升,胡耀青,杨栋等.三维应力下吸附作用对煤岩体气体渗流规律影响的试验研究.岩石力学与工程学报,1999,18(6):651–653.
    [71] Durucan S , Edwards J S. The effect s of stress and fracturing on permeability of coal[J ] .Mining Sciences and Technology ,1986 ,3 (3) :205-216.
    [72] Mc Kee C R ,Bumb A C , Koenig R A. Stress2Dependent Permeability and Porosity of Coal [ C ]/ / Proceeding of CoalbedMet hane Symposium , Tuscaloosa ,Alabama ,1987 :183.
    [73]傅雪海,秦勇,李贵中等.山西沁水盆地中南部煤储层渗透率影响因素[ J ] .地质力学学报,2001,7 (1) :45 - 52.
    [74]汪伟英,汪亚蓉,邹来方等.煤层气储层渗透率特征研究.石油天然气学报,2009,31(6),127-130.
    [75]傅雪海,秦勇,姜波等.山西沁水盆地中—南部煤储层渗透率物理模拟与数值模拟[ J ].地质科学,2003,38 ( 2) :221 - 229.
    [76]周维垣.高等岩石力学[M ].北京:水利电力出版社,1990,158- 214.
    [77]叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J ] .煤炭学报,1999,24 (2) :118– 122.
    [78]薛强,梁冰,刘晓丽.填埋气体运移非稳定耦合渗流数学模型[J].岩土力学,2002,23(2):191–195.
    [79]唐书恒,马彩霞,叶建平等.注二氧化碳提高煤层甲烷采收率的实验模拟.中国矿业大学学报,2006,35(5):607-611.
    [80]董元彦,李宝华,路福绥.物理化学[M].北京:科学出版社,2001
    [81]辜敏,陈昌国,鲜学福.混合气体的吸附特征[J].天然气工业,2001, 21(4):91?95.
    [82]陈昌国,显晓红,张代钧,鲜学福.温度对煤和炭吸附甲烷的影响,煤炭转化,1995,18(3):88-92.
    [83]于洪观,范维唐,孙茂远等.高压下煤对CH4 /CO2二元气体吸附等温线的研究,煤炭转化,2005,28(1),43-47.
    [84]张庆玲等.煤对多组分气体吸附特征研究.天然气工业, 2005; 25 (1) : 57~60
    [85]唐书恒,杨起,汤达祯,二元混合气体等温吸附实验结果与扩展Langmuir方程预测值的比较,地质科技情报,2003,22(2),68-70,
    [86]于洪观,范维唐,孙茂远等,煤对CH4 /CO2二元气体等温吸附特性及其预测,煤炭学报,2005,30(5),618-622
    [87]聂百胜,段三明.煤吸附瓦斯的本质.太原理工大学学报,1998, 29(4):417-421.
    [88]牛国庆,颜爱华,刘明举.瓦斯吸附和解吸过程中温度变化实验研究.辽宁工程技术大学学报,2003,22(2):155-157.
    [89] Stanton, R., Flores, R.,Warwick,P.D.,Gluskoter, H., Stricker, G. D..Coal Bed Squestration of Carbon Dioxide.Paper presented on the first national conference on carbon squestration, 2001.
    [90]张晓东,秦勇,桑树勋等.不同粒度的煤样等温吸附研究[J].中国矿业大学学报,2005,34(4):427-432
    [91] Gray,I.Reservior engineering in coal seams:part2-Observations of gas movement in coal seams.SPE Reservior Engineering,Feb.1987:35-40.
    [92]降文萍,崔永君,张群.煤表面与CH4、CO2相互作用的量子化学研究[J].煤炭学报,2006,31(2):237?240.
    [93]张行周,郭勇义,吴世跃.注气驱替煤层气技术的探讨[J].太原理工大学学报,2000,31(3):251~253.
    [94]李保山.基础化学[M].北京:科学出版社,2003,
    [95]梁冰,章梦涛,潘一山等.瓦斯对煤的力学性质及力学响应影响的试验研究.岩土工程学报,1995,17(5):12-18.(LIANG Bing, ZHANG Mengtao, PAN Yishan. The experimental research on the effect of gas on mechanical properties and mechanical response of coal. Chinese Journal of Geotechnical Engineering,1995,17(5):12-18.
    [96]傅雪海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率耦合关系分析.高校地质学报,2003,9(3):373-377.(FU Xuehai,QIN Yong, ZHANG Wanhong. Coupling correlation between high-rank coal matrix mechanic effect and coal reservoir permeability. Geological Journal of China Universities, 2003,9(3):373-377.)
    [97]张力,何学秋,王恩元等.煤吸附特性的研究.太原理工大学学报,2001,32 (4): 449-451.(ZHANG Li,HE Xueqiu,WANG Enyuan.Study on the adsorption propertyof coal,Journal of Taiyuan University of Technology,2001,32(4):449-451.)
    [98] V.Goetz, O.Pupier, A.Guillot.Carbon dioxide-methane mixture adsorption on activated carbon. Adsorption, 2006,12:55-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700