王庄油田特超稠油油藏渗流机理与开发技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
王庄油田属于典型的特、超稠油油藏。常规开发和直井注蒸汽开发非常困难。国内外也没有成功开发经验可以借鉴。本论文通过室内试验、物理模拟和数值模拟等方法、开展了特超稠油油藏开发配套技术的研究。取得了以下研究成果和认识:
     王庄油田原油属特、超稠油,其渗流特征不符合达西定律。室内原油流变性实验研究表明,特、超稠油表现出非牛顿流体的特征,随着温度的升高,最后转变为牛顿流体。
     王庄油田特、超稠油单相渗流室内实验研究表明,特、超稠油的渗流存在初始启动压力梯度,其渗流受原油粘度和地层温度影响较大。特、超稠油的原油粘度对温度非常敏感,随温度升高粘度大幅度降低。
     本文建立了王庄油田高温高压二维比例物理模型,研究了不同开发阶段水平井蒸汽驱油机理。研究表明蒸汽驱整个过程分为三个阶段:存水回采期、汽驱受效期、蒸汽突破期。水平井蒸汽驱井底干度、注汽强度对水平井蒸汽驱的效果影响较大。
     本文建立了王庄油田一注一采的水平井井组概念模型,模拟研究了不同油性储层、不同渗透率时水平井蒸汽驱的开发效果。研究认为,影响水平井蒸汽驱开发效果的关键地质因素主要有:储层渗透率、原油饱和度和地层倾角。研究表明,储层渗透率、原油饱和度越高,蒸汽驱开发效果越好;地层倾角越大,蒸汽驱时开发效果越差,当地层倾角大于5°时,不利于水平井蒸汽驱开发。
     通过数值模拟,对水平井蒸汽驱的合理井网形式、合理井距、油层厚度、原油粘度、井底蒸汽干度、注汽速度等开发技术政策进行了研究。水平井蒸汽驱的合理井网形式是先采用反九点再转反五点法;随油层厚度增大,合理井距越小,原油粘度越大,合理井距越小,不同油藏类型的合理井距也不同,原油越稠合理井距越小,特、超稠油合理井距最小;原油越稠,布井厚度越大;井底蒸汽干度、注汽速度越大,水平井蒸汽驱开发效果越好,蒸汽驱的井底蒸汽干度应不低于0.4。
     本文开展了王庄油田不同油藏条件HDCS开发技术界限优化研究,通过对极限厚度、合理井距、纵向位置、水平段长度、注入参数等一系列技术界限优化研究,建立了王庄油田HDCS技术油藏筛选原则。编制了郑411块水平井蒸汽驱开发先导试验区方案,预测了各项开发指标,采用水平井蒸汽驱的HDCS技术可以提高采收率20.46%。
Wang Zhuang oilfield is a typical super heavy oil reservoir. It is very difficult for thegeneral development and vertical well steam injection development. There is no successfuldevelopment experiences in China and abroad. In this paper, physical simulation andnumerical simulation method have been carried out for the research of super heavy oilreservoir development technology through the indoor experiment and obtained the followingresearch results and understanding:
     The crude oil of Wang Zhuang oilfield is super heavy oil and the seepage characteristicdoes not conform to Darcy's law. The super heavy oil shows the characteristics of nonNewton fluid through the study on crude oil rheology experiment laboratory. But whenincrease of temperature, It will fall finally into a Newton fluid.
     The indoor experimental study on single-phase flow for Wang Zhuang oil field superheavy oil shows that the seepage of super heavy oil, the existence of starting pressuregradient initial. The seepage by crude oil viscosity and formation temperature. The crude oilviscosity of super heavy oil is very sensitive to temperature, viscosity reduce with theincrease of temperature.
     Established the Wang Zhuang oilfield dimensional scaled physical model under highpressure and high temperature, and studied the different development stages of horizontalwell steam flooding mechanism. Research shows that steam flooding the entire process isdivided into three stages: water extraction stage, steam drive, steam breakthrough period.Horizontal wells bottomhole dryness steam flooding, steam injection strength have a greateffect for the horizontal well steam flooding.
     Establish the concept of horizontal well group model of one-injection-well andone-production-well in Wang Zhuang oil, simulation of different oil reservoirs with differentpermeability, the horizontal well steam flooding development effect. Research thinks, keygeological factors of horizontal well steam flooding is mainly has: the reservoir permeability,oil saturation and formation dip. Research shows that, the reservoir permeability, oilsaturation is higher, the steam flooding development effect is better; dip angle is more big,steam flooding development effect is more poor, the local layer angle greater than5degrees,is not conducive to horizontal well steam flooding.
     Through the numerical simulation, the development technical policy of the reasonablewell spacing, reservoir thickness, oil viscosity, bottom hole steam, steam injection rate is been researched. Reasonable well pattern of horizontal well steam flooding is the nine pointto five point method; with the thickness increasing, the reasonable well spacing is small; theviscosity of crude oil is more big, the reasonable well spacing is small. The reasonable wellspacing is different in different reservoir types. The more viscous crude well spacing is small,super heavy oil well is the smallest; crude oil more thick, reservoir thickness is bigger;bottom hole steam, steam injection velocity, horizontal well steam flooding developmenteffect is better, should not be less than0.4of the dry bottom hole steam steam flooding.
     Research on Wang Zhuang oilfield in different reservoir conditions HDCS developmenttechnology limit optimization.
     Through the limit thickness, reasonable well distance, vertical position, horizontalsection length, injection parameters and a series of technical limit optimization research,established the Wang Zhuang oilfield reservoir selection principle of HDCS technology.Maded the horizontal well steam flooding test plan of Zheng411block in Wang Zhuangoilfield, Forecasted the development indexes. The horizontal well steam flooding technologycan improve the recovery rate of20.46%by HDCS technology.
引文
[1]刘文章.我国稠油分类.热采筛选标准及储量分类[M].北京:石油工业出版社,1989
    [2]刘文章.稠油注蒸汽热采工程[M].北京:石油工业出版社,1997
    [3]张义堂.热力采油提高采收率技术.北京:石油工业出版社,2006:2-3
    [4] Classification standard of heavy oil and tar sands recommended by UNITAR, the2ndUNITARConference on heavy oil and tar sands, Venezuela,Feb.1982
    [5]贾承造.中国陆上稠油勘探开发现状.北京:首届世界重油大会官方手册(特刊),2006
    [6]刘文章.热采稠油油藏开发模式.北京:石油工业出版社,1998
    [7]牛嘉玉.稠油资源地质与开发利用.北京:科学出版社,2002
    [8] Siu A L. Modelling steam-assisted gravity drainage process in the UTF. SPE22895
    [9]吴光焕,孙建芳,邱国清,等.胜利稠油渗流特征及应用研究.稠油、超稠油开发技术研讨会论文汇编,2005年
    [10]张锐编著.稠油热采技术.北京:石油工业出版社,1999
    [11] K C Hong著,岳清山等译.蒸汽驱油藏管理.北京:石油工业出版社,1996
    [12]刘慧卿.热力采油技术原理与方法.东营:石油大学出版社,2000
    [13]孟巍,贾东,谢锦男,等.超稠油油藏中直井与水平井组合SAGD技术优化地质设计.大庆石油学院学报,2006,30(2):44-47
    [14]杜锋,乔忠明,张利轩,等.杜84-平46井钻井工艺在SAGD技术中的应用.钻采工艺,2004,27(2):11-14
    [15]张小波.辽河油区稠油采油工艺技术发展方向.特种油气藏,2005,12(5):9-13
    [16] SERHATA, SUATB. A laboratory study of single-well steam-assisted gravity drainageprocess. Journal of Petroleum Science and Engineering,2001.
    [17]刘学利.单井蒸汽辅助重力驱启动过程动态预测模型.西南石油学院学报,2004,26(4):34-47
    [18] Elliott K T and Kovscek A R. Simulation of early-time response of single-well steam assistedgravity drainage (SW-SAGD). SPE54618,1999
    [19] Singhal A K,Das S K,Leggitt S M. Screening of reservoir for exploitation by application ofsteam assisted gravity drainage/vapex process. SPE37144,1996
    [20] Roger Butler,张荣斌.日臻完善的SAGD采油技术.国外油田工程,1999,15(11):15-17
    [21] Sarathi P.S. and Roak D.Light Oil Stramflooding. A Laboratory Study. SPE17447
    [22] Butler,R.M. Steam-Assisted Gravity Drainage. Concept,Development,Performance andFuture:44-55
    [23] C.W.Shen and B.T Willman et al.Laboratory Studies of Oil Recovery by SteamInjection.JPT.Jury1967.
    [24] C.W.Volek,J,A.Pryor,Steam Distillation Drive-Brea Field,California.JPT,1972.8
    [25] Earouq Ail S.M.and Meldau R.F.Current Steamflood Technology,JPT,OCT.1979
    [26]石在虹.蒸汽辅助重力驱生产井井筒举升工况分析.石油学报,1999,20(6):82-86
    [27]王选茹.蒸汽辅助重力泄油对油藏及流体适应性研究.西南石油学院学报,2006,28(3):57-60
    [28]刘尚奇,包连纯,马德胜.辽河油田超稠油油藏开发方式研究.石油勘探与开发,1999,26(4):80-81
    [29]郭建国.水平井开发杜84块馆陶超稠油藏方案优化及应用.钻采工艺,2005,28(3):43-46
    [30]席长丰,马德胜,李秀峦.双水平井超稠油SAGD循环预热启动优化研究[J].西南石油大学学报,2010,32(4):103-108
    [31]岳宗杰,李勇,于海军:辽河油田杜84块超稠油油藏水平井钻井技术,石油钻探技术,2005,6(33):78-79
    [32] Bezaire,G.E,Markiw I,A,. Esso Resources Horizontal Hole Project at Cold Lake,PaperNo.79-30-10Presented at the30th Annual Technical Meeting of the Petroleum Socity of theCIM,Banff,May8-11,1979
    [33] Marx,J. W. and Langenheim,R. H.: Reservoir heating by hot fluid injection Trans.AIME,1959,216,312-314.
    [34] B.T.Willman et al.”Laboratory Studies of Oil Recover by Steam Injection” JPT,July1961.66-68
    [35] Sandra L.Waisley, Opening Address, presented at the7t' UNITAR International,Beijing,oct.27-30,1998
    [36] Guihua Yang,Butler R M. Effects of reservoir heterogeneities on heavy oil recovery bysteam-assisted gravity drainage. JCPT,1992
    [37]李卉,李春兰,赵启双,等.影响水平井蒸汽驱效果地质因素分析.特种油气藏,2010,17(2):75-77
    [38]吴向红,叶继根,马远乐.水平井蒸汽辅助重力驱油油藏模拟方法.计算物,2002,19(6):549-552
    [39] Roger M. Butler.重质油和沥青的热力开采工艺.北京:石油工业出版社,1994
    [40]岳清山,等.稠油油藏注蒸汽开发技术[M].北京:石油工业出版社,1998
    [41]张方礼,赵洪岩,等.辽河油田稠油注蒸汽开发技术[M].北京:石油工业出版社,2007
    [42]张广台.高干度注汽技术在SAGD开发中的应用.特种油气藏[J],盘锦,2010,17(B12):166-167.
    [43]韩大匡,陈钦雷,阎存章编著.油藏数值模拟基础.北京:石油工业出版社,1993
    [44]杜殿发,郭青,侯加根.特超稠油油藏蒸汽吞吐筛选标准的探讨.新疆石油地质,2010,31(4):440-443
    [45]李辉,李伟忠,周瑞松,等.王庄油田郑411块特超稠油开采机理与评价方法.石油地质与工程,2009,23(2):64-65
    [46]马新仿,王卓飞,徐明强,等.特超稠油油藏蒸汽吞吐数值模拟.新疆石油地质,2006,27(4):459-462
    [47] Hans de Pater, Johan de Koning, Shawn Maxwell, et, al. Geomechanics for InterpretingSAGD Monitoring Using Micro-Seismicity and Surface Tiltmeters[R]. SPE117688-MS, Calgary,Canada,2008.
    [48] H.P. Clark, F.A. Ascanio, C. Van Kruijsdijk. Method to Improve Thermal EOR PerformanceUsing Intelligent Well Technology: Orion SAGD Field Trial[R]. SPE137133-MS, Calgary,Canada,2010.
    [49] Joel Shaw, Mark Bedry. Using a New Intelligent Well Technology Completions Strategy toIncrease Thermal EOR Recoveries--SAGD Field Trial[R]. SPE147543-MS. Calgary, Canada,2011.
    [50] C. Zimmer, J. Person, D. Richter, et, al. Drilling a Better Pair: New Technologies in SAGDDirectional Drilling[R].SPE137137-MS, Calgary, Canada,2010.
    [51] B. Vandal, T. Grills, G. Wilson. A Comprehensive Comparison Between the MagneticGuidance Tool and the Rotating Magnet Ranging Service[R].PETSOC2004-176, Calgary, Canada,2004.
    [52] M. Koolman, N. Huber, D. Diehl,et, al. Electromagnetic Heating Method To Improve SteamAssisted Gravity Drainage[R]. SPE117481-MS, Calgary, Canada,2008.
    [53] S. Bagci, S. Dogay, Y. Pamukcu, et, al. Investigation of Surfactant-SAGD Process inFractured Carbonate Reservoirs[R].PETSOC2004-87, Calgary, Canada,2004.
    [54] Y. Ito, M. Ichikawa, T. Hirata. The Effect of Gas Injection on Oil Recovery During SAGDProjects[R].PETSOC01-01-03, Calgary, Canada,2001.
    [55] S. Javad P. Oskouei, R.G. Moore, B. Maini, et, al. Feasibility of In-Situ Combustion in theSAGD Chamber[R].SPE137832-PA, Calgary, Canada,2011.
    [56] M. NUKHAEV, V. PIMENOV, A. SHANDRYGIN AND V. TERTYCHNYI. Near-wellboreFormation Evaluation via Distributed Temperature Data[R].CIPC2006-029, Calgary, Canada,2006.
    [57] Weiqiang Li, Daulat D. Mamora. Experimental Investigation of Solvent Co-Injection inVapor and Liquid Phase To Enhance SAGD Performance[R].SPE133277-MS, Florence,Italy,2010.
    [58] Amin Badamchizadeh, Bruce F. Kohse, Anjani Kumar. Modeling of Asphaltene PrecipitationDue to Steam and n-alkane Co-injection in the ES-SAGD Process[R].SPE149411-MS, Calgary,Canada,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700