两亲分子自组装体系及其耐盐机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂是一类分子中同时含有亲水部分和疏水部分的物质。由于表面活性剂这种双亲(亲油和亲水)特性,使得这类化合物具有与其它有机化合物所不同的独特性能,即表现在溶液表(界)面的吸附以及溶液中有序组合体的形成。界面吸附性质使表面活性剂能够改变界面张力,提高毛细管数以及改变表面的润湿性等,而溶液中分子有序组合体的形成使表面活性剂溶液能够成为具有实际意义的功能体系。近些年来,由于表面活性剂体系的研究发展迅猛,在工业领域的诸多方面都有着广泛的应用。
     其中,表面活性剂作为驱油剂在三次采油中占有重要的地位。随着油田的不断开发,油藏的温度和矿化度愈来愈高,给强化原油采收率技术的推广带来了严重影响。驱油过程中常用的阴离子表面活性剂,如硫酸盐、羧酸盐、磷酸酯盐,磺酸盐(包括重烷基苯磺酸盐、石油磺酸盐等)在高矿化度下,均易与地表水中的二价离子Ca2+和Mg2+等高价阳离子形成沉淀使其失去界面活性,而非离子表面活性剂则由于浊点现象也往往会在高温条件下沉淀析出。油藏条件的不断变化对驱油用表面活性剂提出了更高的要求:不但要就有较高的降低油/水界面张力的能力和低的吸附损失,而且要耐盐。为了适应当前的油藏状况,有关表面活性剂耐盐性的研究一直是备受重视的课题。
     尽管目前已经有很多先进的实验方法用于表面活性剂溶液的研究,但主要集中于盐对表面活性剂溶液宏观性质的影响,例如其临界胶束浓度、表面活性剂聚集体、流变性质等,这些研究主要通过体系物理化学性质的变化来推测无机盐与表面活性剂分子之间相互作用的机理,从微观角度来说缺乏确切的说明。因此开展相关的理论研究,从分子水平上研究表面活性剂与无机离子之间的相互作用机理,对于指导适合于不同应用表面活性剂的分子设计,尤其对于筛选高矿化度油藏强化采油技术用的驱油体系具有重要的理论意义和实用价值。
     本论文围绕几种常用驱油表面活性剂开展一系列的理论研究工作。一方面通过量子力学方法研究了表面活性剂单分子性质,探讨其微观电子结构对其本身物理化学性质的影响。另一方面应用密度泛函方法研究了表面活性剂和二价阳离子的相互作用,通过对比它们之间的结合能以及对表面活性剂分子电荷分布的影响,提出表面活性剂与无机阳离子之间的结合模型。再一方面,针对不同阴离子表面活性剂构建自组装体系,应用分子动力学方法研究聚集体内部的微环境,以及离子对表面活性剂聚集体系结构的影响。重点讨论了二价阳离子影响表面活性剂极性头水合结构,通过计算表面活性剂的极性头基和阳离子之间的均力势,反映不同表面活性剂与离子结合能力的强弱,进而讨论不同表面活性剂耐盐性差异的本质,为驱油表面活性剂的筛选及分子设计提供理论依据。本论文主要创新成果如下:
     1.用分子动力学模拟方法研究了荧光分子芘分子在十二烷基硫酸钠胶束中的增溶作用,在分子水平上直观地给出了单个芘分子在胶束中的增溶位点。通过改变荧光分子的浓度,模拟得到了实验中的激发态二聚物的结构。同时对两个芘分子之间的取向性以及距离关系进行了探讨,给出了其π-π共轭结构信息。研究发现激发态二聚物的形成对于荧光分子在胶束中的增溶位置有很大的影响。单个芘分子增溶在胶束的内核区域,而激发态二聚物则增溶在胶束的栅栏层区域。这些研究可以提供实验上难以获取的微观信息,进而为更好地了解及利用两亲分子有序组合体提供一定的帮助。
     2.采用量子力学和分子动力学方法对十二烷基苯磺酸钠的单分子性质,以及从溶液相到气液界面组合体的动力学过程进行了研究。通过探讨SDBS单分子的结构性质以及其极性头水合层的电荷分布信息,加深了人们对表面活性剂电子结构等微观性质决定其聚集体结构和其物理性质的认识。
     在量子化学计算单分子性质的基础上,选择了合适的力场与计算模型,对十二烷基苯磺酸钠在溶液相及气液界面上的行为进行了分子动力学模拟。通过空间分布函数展现了十二烷基苯磺酸钠极性头的水合层结构。从表面活性剂极性头和离子的之间的均力势分析得知,离子如果与极性头相互作用,必须要克服极性头周围水层的能垒,才能穿过极性头水合层或者破坏极性头周围的氢键结构与极性头发生作用。由于表面活性剂烷烃链的疏水作用,十二烷基苯磺酸钠分子能够自发地从溶液相迁移到气液界面形成聚集体。由表面活性剂在气液界面上分子链的取向性函数发现,十二烷基苯磺酸钠分子在界面上倾向于有序排列。
     3.研究了驱油用表面活性剂的耐盐性机理,揭示了表面活性剂与离子的相互作用机制,解释了不同表面活性剂之间耐盐性能的差异。
     (1)研究了两性表面活性剂磺基甜菜碱与阳、阴离子之间的相互作用,揭示了两性表面活性剂和阴阳离子的结合方式,即磺酸根中的两个氧原子与阳离子发生稳定结合;而正电荷中心与阴离子之间采用侧面结合方式形成稳定结构。通过计算甜菜碱和阴阳离子作用后分子上的电荷分布,发现桥联亚甲基和α-亚甲基带有较大的电荷,可以看作是正、负电荷中心的一部分,体现在表面活性剂极性头扩大。同时烷烃链带有了部分弱电荷,使胶束内部带有了部分极性,此种极性介于烷烃相和水相的极性之间。
     (2)采用分子动力学方法研究了十二烷基硫酸钠和十二烷基磺酸钠在CaCl2、MgCl2溶液中的聚集行为。重点讨论钙、镁离子存在情况下,聚集体水合结构的变化,以及极性头和阳离子之间的相互作用。结果表明表面活性剂与二价离子的结合能力是由两者之间均力势之间的溶剂分离最小点决定的。其中,阻隔极性头和离子相互作用主要是由于离子进入极性头水合层,导致水合层氢键结构变化引起的。当离子进入极性头的水合层后,通过径向分布函数和空间分布函数展现了极性头水合层结构的变化。
     通过考察离子和极性头之间的均力势,发现Ca2+和Mg2+与十二烷基磺酸钠的之间的势垒要高于十二烷基硫酸钠体系,说明钙、镁离子更容易与十二烷基硫酸钠发生结合,这意味着十二烷基磺酸钠的耐钙镁离子的能力要强于十二烷基硫酸钠。所以磺酸基表面活性剂在高盐油藏中的驱油中的效率要高于硫酸盐表面活性剂。
     (3)采用分子动力学方法研究了十二烷基磺酸钠和十二烷基羧酸钠在盐溶液界面上的聚集行为。发现二价盐离子能够影响表面活性剂在气液界面的聚集,二价离子和表面活性剂分子之间形成的盐桥结构是导致表面活性剂聚集体结构更加紧密的原因。同样地,根据离子和表面活性剂之间的均力势能够定性地反映不同表面活性剂的耐盐性差异。
Surfactants are amphiphilic substances which have their hydrophilic and hydrophobic structural parts. Thus, surfactants exhibit many unusual physical properties compared with other compounds. That is, surfactants can be adsorbed as an orientated monolayer at air/vapor or oil/water interfaces and self-assemble aggregate in the solution. Therefore, surfactants reduce the surface/interfacial tension, change the wetting of the surface by adsorbing at the interface, and can also assemble in the bulk solution into a variety of aggregates. The property of these aggregates is essential in many biological processes and is used in many industrial and domestic applications.
     Surfactants play an important role in enhanced oil recovery (EOR). Recently, with the continuous development of the oil fields, the temperature and the salinity rise which reduces the efficiency of the EOR. The most widely used ionic surfactants such as sulfonate, sulfate, carboxylate and organic phosphate may bind with Ca2+, Mg2+ and the salt-out occurred with ions in the solution. Thus, the surfactants loose their surface activity. The non-ionic surfactants are also precipitated under high temperature conditions. Thus, it is meaningful to investigate the salt tolerance and temperature resistance of EOR surfactants.
     There are already many investigations on the solution of surfactants using many advanced experimental methods. However, these investigations are mostly focused on the macroscopic properties, such as critical micelle concentration, aggregation number, rheological properties et al. These studies usually inter the mechanism of the interaction between salt and surfactants by observing the changes of the physic-chemical properties of the surfactants. Thus, the precise description of the mechanism from the microscopic view is scare. Therefore, it is of great meaningful to investigate the salt-tolerant mechanism between surfactants and salts at molecular level.
     In this dissertation, a series of theoretical studies have been carried out for several EOR surfactants. On the one hand, by performing quantum mechanism calculations, we investigated the properties of the single molecule which decided the physic-chemical characteristics of the surfactants. On the other hand, we investigated the interaction between the surfactant and the divalent ions by performing density functional theory (DFT) calculations. By comparing the difference between the bind energies between surfactants and ions, we proposed the binding model between cations and surfactants. Then, we performed molecular dynamics on the surfactants aggregates to investigate the interior micro-environment of the aggregates. We focused on the influence of cations on the hydration shell of the surfactants. By calculating the potential of mean force between surfactants and ions, the binding energy between them are shown. It can reflect the difference of the salt tolerant among the EOR surfactants. The important and valuable results in this dissertation can be summarized as follows:
     1. We performed molecular dynamics to study the solubilization of pyrene in the SDS micelle. The distribution of the single pyrene can be observed at molecular level. By changing the concentration of pyrene, the structure of the excimer was obtained by the simulation. Meanwhile, the orientation and the distance between the pyrene in the excimer were investigated and theπ-πconjugation structure was confirmed. Our simulation showed that free pyrene can be solubilized into the micelle spontaneously and prefers to be located in the hydrophobic core region, while two pyrene molecules are found to be distributed mainly in the palisade layer. These results are helpful and meaningful to utilize the surfactant aggregates better.
     2. Quantum mechanics (QM) method was used to calculate molecular properties of sodium dodecylbenzenesulfonate (SDBS) in vcuum and in solution. Moreover, molecular dynamics (MD) simulations have been performed to determine the dynamic behavior of SDBS moving from the bulk solution to the air/water interface.
     QM calculations suggest that two headgroup oxygen atoms on each surfactant molecule interact with a Na+ ion, despite the availability of three oxygen atoms in the headgroup. MD simulations showed that the Na+ ion must overcome the energy barrier between two solvent layers around the headgroup to form stable ion pair in solution, which is consistent with experimental results. In the simulation, in moving from the bulk to the interface, SDBS can aggregate in a short time, and the adsorption adopts a preferred orientation. The results indicate that formation of favorable hydrophobic interactions of the surfactant alkyl chains is the origin of interfacial adsorption of SDBS.
     3. The mechanics of the salt tolerance of EOR surfactants was investigated by QM and MM methods. These results reveal the interaction mechanism between surfactants and ions.
     (1) The structure of zwitterionic surfactant sulfobetaine, i.e. N-Dodecyl-N, N-dimethyl-3-ammonio-l-propanesulfonate, was optimized using density functional theory (DFT) and the interactions between the surfactant and Ca2+ or Cl- ions were studied at the molecular level. The results showed that:ⅰ) a 2:1 type pair between zwitterionic negative center (-SO3-) and Ca2+ was formed,ⅱ) the positive center (-N+(CH3)2-) bound with one Cl- through two methyl groups and one methylene which connect to N atom. Since there are some weak charges on the methylene nearest to the polar groups, the negative and positive centers in the polar group of surfactant should be re-divided. The calculation also showed that the tail chain has a weak charge resulting in the core of the micelle having polarity. This core polarity of the micelle is somewhere between the oil phase polarity and the water phase polarity, which favors surfactant aggregation in solution.
     (2) Molecular dynamics studies were performed to study surfactant sodium dodecyl sulfate (SDS) and sodium dodecyl sulfonate (SDSn) in the solution with Ca2+ and Mg2+. We focused on the on the influence of cations on the hydration shell of the surfactants. Our results showed that the combination between the headgroup of surfactant and Ca2+ or Mg2+ is prevented not by the hydrate shells, but by a deep stabilizing minimum formed in the potential of mean force between the interacting ion pair. They can disturb the original H-bonding structure of water around the headgroup, leading to the decrease of the H-bonding number.
     The potential of mean force showed that the energy barriers of ion pair between the headgroup and Ca2+ and Mg2+ in SDSn system are more than those in SDS system, and the water coordinate numbers for Ca2+ or Mg2+ in SDS solution are the lowest. It indicates that SDS surfactant easily combines the ions compared with the SDSn surfactant, and it has strong effect on the original hydration structure. These results can be explained the reason that sulfonate surfactant (such as SDSn) has better efficient in salt solution with Ca2+ and Mg2+ in enhanced oil recovery (EOR) experiment.
     (3) The effect of Ca2+ ions on the hydration shell of sodium dodecyl carboxylate (SDC) and sodium dodecyl sulfonate (SDSn) monolayer at vapor/liquid interfaces was studied using molecular dynamics simulations. The simulations indicate that the adsorption structure of both surfactants not only depends on the surfactant surface coverage, but also on the Ca2+ ions circumstances. The PMFs show that the energy barrier of ion-pairs between the SDSn headgroup and Ca2+ is higher than that in SDC systems, which means sulfonate surfactants are more efficient in saline circumstance in EOR experiments.
引文
[1]赵国玺,朱步瑶.表面活性剂作用原理.中国轻工业出版社,2003.
    [2]Hamley, I. W. Introduction to Soft Matter (rev. ed.); J. Wiley:Chichester,2007.
    [3]Wennerstrom, H.; Lindman, B. Micelles. Physical chemistry of surfactant ociation Phys. Rep.1979,52,1-86.
    [4]Laughlin, R. G. The Aqueous Phase Behavior of Surfactants; Academic Press: New York,1994.
    [5]Gruner, S. M. Stability of lyotropic phases with curved interfaces. J. Phys. Chem. 1989,93,7562-7570.
    [6]Tschopp, J.; Mullereberhard, H. J.; Podack, E. R. Formation of transmembrane tubules by spontaneous polymerization of the hydrophilic complement protein C9. Nature 1982,298,534-538.
    [7]Kekicheff, P. Phase diagram of sodium dodecyl sulfate-water system:2. Complementary isoplethal and isothermal phase studies. J. Colloid Interface Sci. 1989,131,133-152.
    [8]Leigh, I. D.; McDonald, M. P.; Wood, R. M.; Tiddy, G. J. T.; Trevethan, M. A. journal of the chemical society, faraday transactions 1:physical chemistry in condensed phases. J. Chem. Soc., Faraday Trans.1981,77,2867-2876.
    [9]Pileni, M. P. Zinc-porphyrin sensitized reduction of simple and functional quinones in vesicle systems. Chem. Phys. Lett.1980,71,317-321.
    [10]Bandyopadhyay, S.; Shelley, J. C.; Tarek, M.; Moore, P. B.; Klein, M. L. Surfactant aggregation at a hydrophobic surface. J. Phys. Chem. B 1998,102, 6318-6322.
    [11]Jokela, P.; Jonsson, B.; Khan, A. Phase equilibria of catanionic surfactant-water systems. J. Phys. Chem.1987,91,3291-3298.
    [12]张为灿;李干佐.十六烷基三甲基溴化铵蠕虫状胶束的形成及其性质.科学通报,2000,45,1138-1140.
    [13]Massiera, G.; Ramos, L.; Ligoure, C. Hairy Wormlike Micelles:Structure and Interactions. Langmuir 2002,18,5687-5694.
    [14]Dalhaimer, P.; Engler, A.J.; Parthasarthy, R.; Discher, D.E. Targeted worm micelles. Biomacromolecules,2004,5,1714-1719.
    [15]Geng, Y.; Discher, D. E. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. J. Am. Chem. Soc.2005,127, 12780-12781.
    [16]van Vlimmeren, B. A. C.; Maurits, N. M.; Zvelindovsky, A. V.; Sevink, G. J. A.; Fraaije, J. G. E. M. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)13(propylene oxide)3o(ethylene oxide)13 and (propylene oxide)19(ethylene oxide)33(propylene oxide)19. application of dynamic mean-field density functional theor. Macromolecules.1999,32,646-656.
    [17]Yanagisawa T.; Shmozu T.; Kuroda K. The preparation of alkylatinetly-anmoninm-kanemie complexes and their conversion to microporous materials. Bull Chem SocJpn 1990,63,988-992.
    [18]Petit, C.; Jain, T. K.; Billoudet, F.; Pileni, M. P. Oil in water micellar solution used to synthesize CdS particles:structural study and photoelectron transfer Reaction. Langmuir 1994,10,4446-4450.
    [19]Fendler, J. Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev.1987,87,877-899.
    [20]Lisiecki, I.; Pileni, M. P. Synthesis of copper metallic clusters using reverse micelles as microreactors. J. Am. Chem. Soc.1993,115,3887-3896.
    [21]Fendler J.H.; Membrane Mimetic Chem. New Youk; Wiley Interscience,1980
    [22]Jain M.k.; Wanger, R. C. Introduction to biological membrances, New Youk: Wiley Interscience,1980.
    [23]Kossi, C. N.; Leblane, R. M. Rhodopsin in a new model bilayer membrane. J. Colloids Interface Sci,1980,80,426.
    [24]Yoneyama, M.; Fujii, A.; Maeda, S. Yoneyama, M.; Fujii, A.; Maeda, S. Wavelength-doubled spiral fragments in photosensitive monolayers. J. Am. Chem. Soc.1995,117,8188-8191.
    [25]Koyano, H.; Bissel, P.; Yoshihara, K.; Ariga, K.; Kunitake, T. Syntheses and interfacial hydrogen-bonded network of hexaalkyl tris(melamine) amphiphiles. Langmuir 1997,13,5426-5432.
    [26]Kawai, T.; Kamio, H.; Kondo, T.; Kon-No, K. Effects of concentration and temperature on SDS monolayers at the air-solution interface studied by infrared external reflection spectroscopy. J. Phys. Chem. B 2005,109,4497-4500.
    [27]Islam, M. N.; Ren, Y.; Kato, T. Polarization modulation infrared reflection absorption spectroscopy of gibbs monolayer at the air/water interface. Langmuir 2002,18,9422-9428.
    [28]Kjaer, K. Some simple ideas on x-ray reflection and grazing-incidence diffraction from thin surfactant films. Phys. B 1994,198,100-109.
    [29]Bain, C. D.; Davies, P. B.; Ward, R. N. In-situ sum-frequency spectroscopy of sodium dodecyl sulfate and dodecanol coadsorbed at a hydrophobic surface. Langmuir 1994,10,2060-2063.
    [30]Kawai, T.; Umemura, J.; Takenaka, T. Kinetic energy release distribution and the mechanism for evaporation of one and two CsI molecules from sputtered Cs(CsI)n+ clusters. Chem. Phys. Lett.1989,162,243-249.
    [31]Honig, D.; Mobius, D. Direct visualization of monolayers at the air-water interface by Brewster angle microscopy. J. Phys. Chem.1991,95,4590-4592.
    [32]Hedin, N.; Furo, I.; Eriksson, P. O. Fast diffusion of the Cl-Ion in the headgroup tegion of an oppositely charged micelle. a 35Cl NMR spin relaxation study. J. Phys. Chem. B.2000,104,8544-8547.
    [33]Moren, A. K.; Nyden, M.; Soederman, O.; Khan, A. Microstructure of protein-surfactant complexes in gel and solution an NMR relaxation study. Langmuir 1999,15,5480-5488.
    [34]Fremgen, D. E.; Smotkin, E. S.; Gerald, R. E.; Klinger, R. J.; Rathke, J. W. Microemulsions of water in supercritical carbon dioxide:an in-situ NMR investigation of micelle formation and structure. J. Supercrit. Fluids 2001,19, 287-298.
    [35]Cerichelli, G.; Mancini, G. Curr. Opin. NMR techniques applied to micellar systems. Colloid Interface Sci.1997,2,641-648.
    [36]Van Gorkom, L. C.; Jensen, A. Molecular spectroscopy of anionic surfactants Ⅱ Nuclear magnetic resonance spectroscopy. Surfactant Sci. Ser.1998,73,169-208.
    [37]Loss, G. L.; Forbes, M. D. E.; Norris, J. R. Microemulsions of water in supercritical carbon dioxide:an in-situ NMR investigation of micelle formation and structure. J. Phys. Chem.1987,91,3592-3599.
    [38]Ottaviani, M. F.; Daddi, R.; Brustolon, M.; Turro, N. J.; Tomalia, D. A. Interaction between starburst dendrimers and SDS micelles studied by continuous-wave and pulsed electron spin resonances Appl. Magn. Reson. 1997,13,347-369.
    [39]Glover, R. E..; Smith, R; Jones, M. V.; Jackson, S. K.and Rowlands, C. C. An EPR investigation of surfactant action on bacterial membranes. FEMS Microbiol. Lett.1999,177,57-62.
    [40]Arnshaw, J. C.; McCoo, E. Surface light-scattering studies of surfactant solutions. Langmuir 1995,11,7155-7164.
    [41]Kim, D. H.; Oh, S.G.; Cho, C. G. Effects of Cs and Na ions on the interfacial properties of dodecyl sulfate solutions. Colloid Polym. Sci.2001,279,39-45.
    [42]Purcell, I. P.; Thomas, R. K.; Penfold, J.; Howe, A. M. Adsorption of SDS and PVP at the air/water interface. Colloids Surf. A 1995,94,125-129.
    [43]Lu, J. R.; Purcell, I. P.; Lee, E.M.; Simister, E. A.; Thomas, R. K.; Rennie, A. R.; Penfold, J. The composition and structure of sodium dodecyl sulfate-dodecanol mixtures adsorbed at the air-water interface:a neutron reflection study. J. Colloid Interface Sci.1995,174,441-455.
    [44]Lin, Y.; Han, X.; Cheng, X.; Huang, L.; Liang, D.; Yu, C. pH-Regulated molecular self-assemblies in a cationic-anionic surfactant system:from a "1-2" surfactant pair to a "1-1" surfactant pair. Langmuir,2008,24,13918-13924.
    [45]Shelley, J. C.; Shelley, M. Y. Computer simulation of surfactant solutions. Curr. Opin. Colloid Interface Sci.2000,5,101-110.
    [46]Aniansson, E. A. G.; Wall, S. N.; AlmSren, M. Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. J. Phys. Chem.1976,80,905-922.
    [47]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法.北京:科学出版社,1985.
    [48]Pople,J.A.分子轨道近似方法理论.北京:科学出版社1978.
    [49]封继康.基础量子化学理论.北京:科学出版社1987.
    [50]Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988,38,3098-3100.
    [51]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and Surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992,46,6671-6687.
    [52]Perdew, J. P.; Burke, K.; Wang, Y.Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1993,48, 16533-16539.
    [53]Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988,37, 785-789.
    [54]Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy densiy functionals of becke and lee, yang and parr. Chem. Phys. Lett.1989,157,200-206.
    [55]Alexander, P.; James, R. K.; Pavan, K. Importance of micellar kinetics in relation to technological processes. J Colloid Interface Sci 2002,245, 1-15.
    [56]Leach, A. R. Molecular Modeling:Principl e and Appl ication. London:Addison Wesley Longman Limited,1996.
    [57]俞庆森;朱龙观.分子设计导论.北京:高等教育出版社2000.
    [58]Gadre, S. R.; Pingale, S. S. An electrostatic investigation:how polar are the surfactant hydrocarbon tails? Chem. Commun.1996,5,595-596.
    [59]Yan, P.; Xie, J. X. Polymer-surfactant interaction:differences between alkyl sulfate and alkyl sulfonate. Colloid Surf. A 2004,244,39-47.
    [60]Guo, Z. X. Effect of charge distribution along surfactant molecules on physico-chemical properties of surfactant systems. Colloids and Surfaces A: Physicochem. Eng. Aspects 2008,327,122-126.
    [61]Ryszard, Z.; Henryk, S. Structure of stable double-ionic model water clusters of quaternary Alkyl ammonium surfactants with some monovalent counterions as derived by the DFT method. Int J Quant Chem 2004,99,724-734.
    [62]颜肖慈,罗明道,曾晖.不同疏水基表面活性剂溶剂化的电子结构特征.化学学报,2004,62,1948-1950.
    [63]陈美玲;于正武;王海军;张革新;陶福明.量子化学方法研究表面活性剂在气液界面上的吸附.科学通报,2007,52,521-524.
    [64]Fernando, B; Artacho, E. Electronic structure computations of Newton Black Films J. Mater. Chem.,2010,20,10351-10358.
    [65]Jonsson, B.; Edholm, O.; Teleman, O. Molecular dynamics simulations of a sodium octanoate micelle in aqueous solution. J. Chem. Phys.1986,85, 2259-2261.
    [66]Watanabe, K.; Ferrerio, M.; Klein, M. L. Molecular dynamics study of a sodium octanoate micelle in aqueous solution. J. Phys. Chem.1988,92,819-821.
    [67]Shelley, J.; Watanabe, K.; Klein, M. L. Simulation of a sodium dodecylsulfate micelle in aqueous solution. Int. J. Quantum Chem.1990,17,103-117.
    [68]Woods, M. C.; Haile, J. M.; O'Connell, J. P. T. Internal structure of a model micelle via computer simulation.2. Spherically confined aggregates with mobile head groups. J. Phys. Chem 1986,90,1875-1885.
    [69]Bandyopadhyay, S.; Tarek, M.; Lynch, M. L.; Klein, M. L. Molecular dynamics study of the poly(oxyethylene) surfactant C 12 E 2 and water. Langmuir 2000,16, 942-946.
    [70]Kuhn, H.; Rehage, H. Molecular Dynamics Computer Simulations of Surfactant Monolayers:Monododecyl Pentaethylene Glycol at the Surface between Air and Water. J. Phys. Chem. B.1999,103,8493-8501.
    [71]Maillet, J.; Lachet, V.; Coveney, V. Large scale molecular dynamics simulation of self-assembly processes in short and long chain cationic surfactants. Phys. Chem. Chem. Phys.1999,1,5277-5290.
    [72]Bandyopadhyay, S.; Shelley, J. C.; Tarek, M.; Moore, P. B.; Klein, M. L. Surfactant aggregation at a hydrophobic surface. J. Phys. Chem. B.1998,102, 6318-6322.
    [73]Vayenas, C. G.; Yentekakis, I. V..; Bebelis, S. I.; Neophytides, S. G. In situ controlled promotion of catalyst surfaces via solid electrolytes:the NEMCA effect. Phys. Chem.1995,99,1393-1401.
    [74]Adolf, D. B.; Tildesley, D. J.; Pinches, M. R. S.; Kingdon, J. B.;Madden, T.; Clark, A. Molecular dynamics simulations of dioctadecyldimethy lammonium chloride monolayers. Langmuir 1995,11,237-246.
    [75]Kuhn, H. B.; Breitzke, H.; Rehage, P. The phenomenon of water penetration into sodium octanoate micelles studied by molecular dynamics computer simulation. Colloid Polym. Sci.1998,276,824-832.
    [76]Salaniwal, S.; Cui, S. T.; Cummings, P. T.; Cochran, H. D. Self-assembly of reverse micelles in water/surfactant/carbon dioxide systems by molecular simulation. Langmuir 1999,15,5188-5192.
    [77]Shelley, M. Y.; Sprik M.; Shelley, J. C. Pattern formation in a self-assembled soap monolayer on the surface of water:a computer simulation study. Langmuir 2000,16,626-630.
    [78]Alaimo, M. H.; Kumosinski, T. F. Investigation of hydrophobic interactions in colloidal and biological systems by molecular dynamics simulations and NMR spectroscopy. Langmuir 1997,13,2007-2018.
    [79]Liu, S.; Rajesh, T. N.; Alberto, S. C12E6 and SDS surfactants simulated at the vacuum-water interface. Langmuir 2010,26,5462-5474.
    [80]Bourov, G. K.; Bhattacharya, A. Brownian dynamics of mixed surfactant micelles. J. Chem. Phys.2005,123,204712-204716.
    [81]Bocker, J.; Brickmann, J.; Bopp, P. Molecular dynamics simulation study of an n-decyltrimethylammonium chloride micelle in water. J Phys Chem.1994,98, 712-717.
    [82]Tobias, D. J.; Klein, M. L. Molecular dynamics simulations of a calcium carbonate/calcium sulfonate reverse micelle. J. Phys. Chem.1996,100, 6637-6648.
    [83]Griffiths, J. A.; Heyes, D. M Atomistic simulation of overbased detergent inverse micelles. Langmuir 1996,12,2418-2424.
    [84]Faeder, J.; Ladanyi, B. M. Molecular dynamics simulations of the interior of aqueous reverse micelles. J. Phys. Chem. B 2000,104,1033-1046.
    [85]Bandyopadhyay, S.; Klein, M. L.; Martyna, G. J.; Tarek, Molecular dynamics studies of the hexagonal mesophase of sodium dodecylsulphate in aqueous solution. Mol. Phys.1998,95,377-384.
    [86]Shelley, J. C.; Sprik, M.; Klein, M.; Prog, L. Structure and electrostatics of the surfactant-water interface. Colloid Polym. Sci.1997,103,146-154.
    [87]Urbina-Villalba, G.; Landrove, R. M.; Guaregua, J. A. Molecular dynamics simulation of the interfacial behavior of a heptane/water system in the presence of nonylphenol tryethoxylated surfactants.1. Surface energy, surface entropy, and interaction energies as a function of temperature and surfactant concen-tration. Langmuir 1997,13,1644-1652.
    [88]Kong, Y. C.; Tildesley, D.J.; Alejandre, J. The molecular dynamics simulation of boundary-layer lubrication. Mol. Phys 1997,92,7-18.
    [89]Schweighofer, K. J.; Essmann U.; Berkowitz, M. Simulation of sodium dodecyl sulfate at the water-vapor and water-carbon tetrachloride interfaces at low surface coverage. J. Phys. Chem. B 1997,101,3793-3799.
    [90]Schweighofer, K. J.; Essmann U.; Berkowitz, M. Structure and dynamics of water in the presence of charged surfactant monolayers at the water-CC14 interface. a molecular dynamics study. J. Phys. Chem. B 1997,101, 10775-10780.
    [91]Rog, T.; Murzyn, K.; Milhaud, J.; Karttunen, M.; Pasenkiewicz-Gierula, M. Water isotope effect on the phosphatidylcholine bilayer properties:a molecular dynamics simulation study. J Phys Chem B.2009,113,2378-2387.
    [92]Yu, H.; Rosen, M. K.; Saccomano, N. A.; Phillips, D. Sequential assignment and structure determination of spider toxin. omega.-Aga-IVB. Biochemistry 1993, 32,13123-13129.
    [93]John, C.; Shelley, M.; Shelley, Y. Computer simulation of surfactant solutions. Curr Opin. Colloid Interface Sci 2000,5,101-110.
    [94]Larson, R.G. Simulations of self-assembly. Curr Opin Colloid Interface Sci 1997, 2,361-364.
    [95]Tarek, M.; Bandyopadhyay, S.; Klein, M. L. Molecular dynamics studies of aqueous surfactant systems. J. Mol Liq 1998,78,1-6.
    [96]Bandyopadhyay, S.; Tarek, M.; Klein, M. L. Computer simulation studies of amphiphilic interfaces. Curr Opin Colloid Interface Sci 1998,3,242-246.
    [97]Schmid, F. Computational methods in surface and colloid science. Surfactant Science Series 2000,89,631-683.
    [98]Kariborni, S.; Smit, B. Computer simulations of surfactant structures. Curr Opin Coll Interface Sci 1996,1,411-415.
    [99]Chikako, H.; Hiroko, K.; Ken-ichiro M.; Kazutoyo E. Studies on bovine serum albumin-sodium dodecyl sulfate complexes using pyrene fluorescence probe and 5-doxylstearic acid spin probe. J. Colloid Interface Sci.2004,278,310-317.
    [100]Wang, C.; Du, X. Z.; Ding, N. Location of solubilization of 2'-ethylhexyl salicylate in micelles. Acta Physico-Chimica Sinica 2007,23,1337-1341.
    [101]Esselink, K.; Hilbers, P. A. J.; van Os, N.; Smit, B.; Karaborni, S. Molecular dynamics simulations of model oil/water/surfactant systems. Colloids Surf. A 1994,91,155.-167.
    [102]梁慧敏;罗时荣;王治华;左浩毅;王宏波;赵晓燕;杨经国.SDS增溶DCM水溶液的荧光特性研究.光谱学与光谱分析2007,27,332-334.
    [103]Hubert, K.; Burkhard, B.; Heinz, R. A molecular modeling study of pentanol solubilized in a sodium octanoate micelle. J. Colloid Interface Sci.2002,249, 152-161.
    [104]Binks, D. A.; Spencer N; Wilkie, J; Britton, M. M. Magnetic resonance studies of a redox probe in a reverse sodium bis(2-ethylhexyl)sulfosuccinate/octane/ water microemulsion. J Phys Chem B.2010,114,12558-64.
    [105]Assimiltiano, A.; Antonella, F.; Erika, M.D.; Costantino Z.; Andrea A. Characterization of Electronic Properties in Complex Molecular Systems: Modeling of a Micropolarity Probe. J. Phys. Chem. B 2010,114,1915-1924.
    [106]Sayyed-Ahmad, A.; Lichtenberger, L. M.; Gorfe, A. A. Structure and dynamics of cholic acid and dodecylphosphocholine-cholic acid aggrega-tes. Langmuir 2010,26,13407-13414.
    [107]Kyrychenko, A.; Wu F.; Thummel, R. P.; Waluk, J.; Ladokhin, A. S. Partitioning and localization of environment-sensitive 2-(2'-pyridyl)-and 2-(2'-pyrimidyl)-indoles in lipid membranes:a joint refinement using fluores-cence measurements and molecular dynamics simulations. J. Phys. Chem. B 2010,114,13574-13584.
    [108]Wang, Z.; Larson, R. G. Molecular dynamics simulations of threadlike cetyltrimethylammonium chloride micelles:effects of sodium chloride and sodium salicylate salts. J. Phys. Chem. B 2009,113,13697-13710.
    [109]Maria, S.; Mikko, K.; Mikko, H. Ionic surfactant aggregates in saline solutions:Sodium dodecyl sulphate (SDS) in the presence of excess NaCl or CaC12. J. Phys. Chem. B 2009,113,5863-5870.
    [110]Hantal, G.; Partay, L. B.; Varga, I.; Jedlovszky, P.; Gilanyi, T. Counterion and surface density dependence of the Adsorption Layer of Ionic surfactants at the vapor-aqueous solution interface:a computer simulation study. J. Phys.Chem. B. 2007,111,1769-1774.
    [111]Yang, W.; Yang, X. Z. Molecular dynamics study of the foam stability of a mixed surfactant/water system with and without calcium ions. J. Phys. Chem. B. 2010,114,10066-10074.
    [112]彭朴,采油用表面活性剂.北京:化学工业出版社,2003.
    [113]赵福麟.采油用剂.石油大学出版社,东营,1997.
    [114]隋智慧.驱油用表面活性剂的研究.精细石油化工进展2005,6,6-10.
    [115]Shaw, J. E. Enhanced oil recovery using carboxylate surfactant systems. J. Am. Oil Chem. Soc.1984,61,1389-1394.
    [116]Yang, J.; Qiao, W.; Li, Z.; Cheng, L. Effects of branching in hexadecyl benzene sulfonate isomers on interracial tension behavior in oil/alkali systems. Fuel 2005,84,1607-1611.
    [117]朱友益;沈平平.三次采油复合驱用表面活性剂:合成、性能及应用,石油工业出版社,北京2002.
    [118]Mukerjee, P.; Chan, C. C. Effects of high salt concentrations on the micellization of octyl glucoside:salting-out of monomers and electrolyte effects on the micelle-water interfacial tension. Langmuir 2002,18,5375-5381.
    [119]Long, F. A.; McDevit, W. F. Activity coefficients of nonelectrolyte solutes in aqueous salt solutions. Chem. Rev.1952,51,119-169.
    [120]Wattebled, L.; Laschewsky, A. Effects of organic salt additives on the behavior of dimeric ("Gemini") surfactants in aqueous solution. Langmuir 2007,23,10044-10052.
    [121]Grover, P. K.; Ryall, R. L. Critical Appraisal of salting-out and its implications for chemical and biological sciences. Chem. Rev.2005,105,1-10.
    [122]Koelsch, P.; Motschmann, H. Varying the counter-ions at a charged interface. Langmuir 2005,21,3436-3442.
    [123]Alargova, R. G.; Petkov, J. T.; Petsev, D. N.; Ivanov, I. B.; Broze, G.; Mehreteab, A. Light scattering study of sodium dodecyl Polyoxyethylene-2-sulfonate Micelles in the presence of multivalent counterions. Langmuir 1995, 11,1530-1536.
    [124]Xu, Q.; Nakajima, M.; Ichikawa, S.; Nakamura, N.; Roy, P.; Okadome, H.; Shiina, T. Effects of surfactant and electrolyte concentrations on bubble formation and stabilization. J. Colloid Interface Sci.2009,332,208-214.
    [125]Luan, Y.; Xu, G. Y.; Yuan, S. L.; Xiao, L.; Zhang, Z. Comparative Studies of structurally similar surfactants:sodium Bis(2-ethylhexyl) phosphate and sodium Bis(2-ethylhexyl)sulfosuccinate. Langmuir,2002,18,8700-8705.
    [126]Gong, H.J.; Xin, X.; Xu, G. Y.; Wang, Y.J. The dynamic interfacial tension between HPAM/C17H33COONa mixed solution and crude oil in the presence of sodium halide. Colloids Surf. A 2008,317,522-527.
    [127]Corrin, M. L.; Harkins, W. D. The effect of salts on the critical concentration for the formation of micelles in colloidal electrolytes. J. Am. Chem. Soc.1947,69,683-688.
    [128]Aswal, V. K.; Goyal, P. S. Dependence of the size of micelles on the salt effect in ionic micellar solutions. Chem. Phys. Lett.2002,364,44-50.
    [129]Mu, J. H.; Li, G. Z.; Jia, X. L.; Wang, H. X.; Zhang, G. Y. Rheological Properties and Microstructures of Anionic Micellar Solutions in the Presence of Different Inorganic Salts. J. Phys. Chem. B 2002,106,11685-11693.
    [130]Khatory, A.; Lequeux, F.; Kern, F.; Candau, S. J. Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high salt content. Langmuir 1993,9,1456-1464.
    [131]Alargova, R. G.; Petkov, J. T.; Petsev, D. N.; Ivanov, I. B.; Broze, G.; Mehreteab, A. Light scattering study of sodium dodecyl Polyoxyethylene-2-sulfonate micelles in the presence of multivalent counterions. Langmuir 1995, 11,1530-1536.
    [132]Shikata, T.; Hirata, H.; Kotaka, T. Micelle formation of detergent molecules in aqueous media 3. Viscoelastic properties of aqueous cetyltrimethylammonium bromide-salicylic acid solutions. Langmuir 1989,5,398-405.
    [133]Clausen, T. M.; Vinson, P. K.; Minter, J. R.; Davis, H. T.; Talmon, Y.; Miller, W. G. Viscoelastic micellar solutions:microscopy and rheology. J. Phys. Chem.1992,96,474-484.
    [134]Hassan, P. A.; Yakhmi, J. V. Growth of Cationic Micelles in the Presence of Organic Additives. Langmuir 2000,16,7187-7191.
    [135]Bunton, C. A.; Minch, M. J.; Hidalgo, J.; Sepulveda, L. Electrolyte effects on the cationic micelle catalyzed decarboxylation of 6-nitrobenzisoxazole-3-carboxylate anion. J. Am. Chem. Soc.1973,95,3262-3272.
    [136]Bijma, K.; Engberts, J. B. F. N. Effect of Counterions on Properties of Micelles Formed by Alkylpyridinium Surfactants 1. Conductometry and 1H-NMR Chemical Shifts. Langmuir 1997,13,4843-4849.
    [137]Israelachvili, J. N.; John Mitchell, D.; Ninham, B. W. Micelle formation of detergent molecules in aqueous media 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. J. Chem. Soc., Faraday Trans.2 1976,72,1525-1564.
    [138]Berret, J. F. Molecular Gels:Materials with Self-Assembled Fibrillar Networks; Springer:Dordrecht. The Netherlands,2006,667-720.
    [139]Shikata, T.; Hirata, H.; Kotaka, T. Micelle formation of detergent molecules in aqueous media 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. Langmuir 1988,4,354-359.
    [140]Rehage, H.; Hoffmann, H. Rheological properties of viscoelastic surfactant systems. J. Phys. Chem.1988,92,4712-4719.
    [141]Shikata, T.; Imai, S. I.; Morishima, Y. Self-Diffusion of Constituent Cationic Surfactants in Threadlike Micelles. Langmuir 1998,14,2020-2026.
    [142]Berret, J. F. Transient Rheology of Wormlike Micelles. Langmuir 1997,13,2227-2234.
    [143]Khatory, A.; Kern, F.; Lequeux, F.; Appell, J.; Porte, G.; Morie, N.; Ott, A.; Urbach, W. Entangled versus multiconnected network of wormlike micelles. Langmuir 1993,9,933-939.
    [144]Kern, F.; Zana, R.; Candau, S. J. Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium chloride in the presence of sodium salicylate and sodium choride. Langmuir 1991,7,1344-1351.
    [145]Aswal, V. K. Effect of the Hydrophilicity of Aromatic Counterions on the Structure of Ionic Micelles. J. Phys. Chem. B 2003,107,13323-13328.
    [146]Yu, D. F.; Huang, X.; Deng, M.; Lin, Y. Y.; Jiang, L. X.; Huang, J. B.; Wang, Y. L. Effects of inorganic and organic salts on aggregation behavior of cationic Gemini surfactants. J. Phys. Chem. B.2010,114,14955-14964.
    [147]赵涛涛;宫厚健;徐桂英;曹绪龙;宋新旺;王红艳.阴离子表面活性剂在水溶液中的耐盐机理研究.油田化学2010,27,112-118.
    [148]Paulson, B. P.; Curtiss, L. A.; Bal, B.; Closs, G. L.; Miller, J. R. Investigation of Through-Bond Coupling Dependence on Spacer Structure J. Am. Chem. Soc.1996,118,378-387.
    [149]Shinoda, K.; Hirai, T. Ionic surfactants applicable in the presence of multivalent cations. Physicochemical properties. J. Phys. Chem.1977,81, 1842-1845.
    [150]Ma, J. G.; Boyd, B. J.; Drummond, C.J. Positional isomers of linear sodium dodecyl benzene sulphonate:solubility, self-Assembly and air/water interfacial activity. Langmuir.2006,22,8646-8654.
    [151]Goddard, E. D.; Kao, O.; Kung, H. C. J. Monolayer properties of fatty acids Ⅳ. Influence of cation at high pH. Colloid Interface Sci.1967,24,297-309.
    [152]Biesheuvel, P. M.; van Soestbergen, M. Counterion volume effects in mixed electrical double layers. J. Colloid Interface Sci.2007,316,490-499.
    [153]Tibor, G.; Imre, V.; Robert, M. Specific counterion effect on the adsorption of alkali decyl sulfate surfactants at air/solution interface. Phys. Chem. Chem. Phys.2004,6,4338-4346.
    [1]Hamley, I. W. Introduction to Soft Matter (rev. ed.); J. Wiley:Chichester,2007.
    [2]Wennerstrom, H.; Lindman, B. Micelles. Physical chemistry of surfactant ociation Phys.Rep.1979,52,1-86.
    [3]Laughlin, R. G. The Aqueous Phase Behavior of Surfactants; Academic Press: New York,1994.
    [4]Gruner, S. M. Stability of lyotropic phases with curved interfaces. J. Phys. Chem. 1989,93,7562-7570.
    [5]Tschopp, J.; Mullereberhard, H. J.; Podack, E. R. Formation of transmembrane tubules by spontaneous polymerization of the hydrophilic complement protein C9. Nature 1982,298,534-538.
    [6]Kekicheff, P. Phase diagram of sodium dodecyl sulfate-water system:2. Complementary isoplethal and isothermal phase studies. J. Colloid Interface Sci. 1989,131,133-152.
    [7]Leigh, I. D.; McDonald, M. P.; Wood, R. M.; Tiddy, G. J. T.; Trevethan, M. A. Structure of liquid-crystalline phases formed by sodium dodecyl sulphate and water as determined by optical microscopy, X-ray diffraction and nuclear magnetic resonance spectroscopy. J. Chem. Soc., Faraday Trans.1981,77, 2867-2876.
    [8]Pileni, M. P. Zinc-porphyrin sensitized reduction of simple and functional quinones in vesicle systems. Chem. Phys. Lett.1980,71,317-321.
    [9]Bandyopadhyay, S.; Shelley, J. C.; Tarek, M.; Moore, P. B.; Klein, M. L. Surfactant aggregation at a hydrophobic surface. J. Phys. Chem. B 1998,102, 6318-6322.
    [10]Jokela, P.; Jonsson, B.; Khan, A. Phase equilibria of catanionic surfactant-water systems.J. Phys. Chem.1987,91,3291-3298.
    [11]Kogan, A.; Garti, N. A. Microemulsions as transdermal drug delivery vehicles. Colloid Interface Sci.2006,123,369-385.
    [12]Eriksson, J. C.; Gilberg, G. NMR-studies of the solubilisation of aromatic compounds in cetyltrimethylammonium bromide solution.Ⅱ. Acta Chem. Scand. 1966,20,2019-2027.
    [13]Takenaka, T.; Harada, K.; Nakagawa, T. Bull. Inst. Chem. Res. Kyoto Univ.1975, 53,173.
    [14]Cardiual, J. R.; Mukarjee, P. Solvent effects on the ultraviolet spectra of benzene derivatives and naphthalene. Identification of polarity sensitive spectral characteristics. J. Phys. Chem.1978,82,1614-1620.
    [15]Zachariasse, K. A.; van Phuc, N.; Kozankiowicz, B. Investigation of micelles, microemulsions, and phospholipid bilayers with the pyridinium-N-phenolbetaine ET(30), a polarity probe for aqueous interfaces. J. Phys. Chem.1981,85, 2676-2683.
    [16]Ohnishi, S.; Cyr, T. J. R.; Fukushima, H. Biradical spin-labeled micelles. Bull. Chem. Soc. Jpn.1970,43,673-676.
    [17]Lianos, P.; Viriot, M. L.; Zana, R. Study of the solubilization of aromatic hydrocarbons by aqueous micellar solutions. J. Phys. Chem.1984,88,1098-1101.
    [18]Dong, D. C.; Winnik, M. A. Can. The Py scale of solvent polarities. Can. J. Chem.1984,62,2560-2565.
    [19]Szajdzinska, E. P.; Sulak, K.; Dragutan, I.; Schlick, S. ESR Study of Aqueous micellar solutions of perfluoropolyether surfactants with the use of fluorinated spin probes.J. Colloid Interface Sci.2007,312,405-412.
    [20]Honda, C.; Itagaki, M.; Takeda, R.; Endo, K. Solubilization of pyrene in CnE7 micelles. Langmuir 2002,18,1999-2003.
    [21]Lakowicz, J. R. Principles of fluorescence spectroscopy,2nd ed.; kluwer/hlenum: New York,1999.
    [22]Liu, J.; Fang, Y.; Chen, C. L. Computer simulation study on the structural-optical related properties of a pyrene-functionalized fluorescent film. Langmuir 2008,24,1853-1857.
    [23]Goodpaster, J. V.; Harrison, J. F.; McGuffin, V. L. Ab Initio study of selective fluorescence quenching of polycyclic aromatic hydrocarbons. J. Phys. Chem. A 2002,106,10645-10654.
    [24]Behera, G.B.; Mishra, B. K.; Behera, P. K.; Panda, M. Fluorescent probes for structural and distance effect studies in micelles, reversed micelles and microemulsions. Adv. Colloid Interface Sci.1999,82,1-42.
    [25]Amitabha, C.; Soumi, M.; Raghuraman, H. Reverse micellar organization and dynamics:a wavelength-selective fluorescence approach. J. Phys. Chem. B 2002, 106,13002-13009.
    [26]Kalyanasundaram, K.; Thomas, J. K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc.1977,99,2039-2044.
    [27]Khatua, D.; Dey, J. Fluorescence, circular dichroism, light scattering, and microscopic characterization of vesicles of sodium salts of three N-acyl peptides. J. Phys. Chem. B 2007,111,124-130.
    [28]Nakajima, A. Solvent effect on the vibrational structures of the fluorescence and absorption spectra of pyrene. Bull. Chem. Soc. Jpn.1971,44,3272-3277.
    [29]Vekshin, N. L. Exciplexes of pyrene with indole and diethylaniline in 1 iposomes and biomembranes. Anal. Chim. Acta.1989,227,267-272.
    [30]Pownall, H. J.; Smith. L. C. Viscosity of the hydrocarbon region of micelles. measurement by excimer fluorescence. J. Am. Chem. Soc.1973,95,3136-3140.
    [31]Selinger, B. K.; Watkins, A. R. Fast kinetics of pyrene excimer formation in micelles of cetyltrimethylammonium bromide. J. Photochem.1981,16,321330.
    [32]Zana, R. Microviscosity of aqueous surfactant micelles:effect of various parameters. J. Phys. Chem. B 1999,103,9117-9125.
    [33]Turro, N. J.; Kuo, P.-L. Photoluminescence probes for pressure and temperature effects on the aggregates of water-soluble block copolymers. J. Phys. Chem.1986, 90,4205-4210.
    [34]Matzinger, S.; Hussy, D. M.; Fayer, M. D. Fluorescent probe solubilization in the headgroup and core regions of micelles:fluorescence lifetime and orientational relaxation measurements. J. Phys. Chem. B 1998,102,7216-7224.
    [35]Khan, A. M.; Shah, S. S. A UV-visiible study of partitioning of pyrene in an anionic surfactant sodium sodecyl sulfate. J. Dispers. Sci. Technol.2008,29, 1401-1407.
    [36]Lebedeva, N.; Bales, B. L. Location of spectroscopic probes in self- aggregating assemblies.Ⅰ. the case for 5-doxylstearic acid methyl ester serving as a benchmark spectroscopic probe to study micelles. J. Phys. Chem. B 2006,110,9791-9799.
    [37]Lebedeva, N.; Ranganathan, R.; Bales, B. L. Location of spectroscopic probes in self-aggregating assemblies. Ⅱ. the location of pyrene and other probes in sodium dodecyl sulfate micelles. J. Phys. Chem.B 2007,111,5781-5793.
    [38]Hoff, B.; Strandberg, E.; Ulrich, A. S.; Tieleman, D. P.; Posten, C.2H-NMR study and molecular dynamics simulation of the location, alignment, and mobility of pyrene in POPC bilayers. Biophys. J.2005,88,1818-1827.
    [39]Curdova, J.; Capkova, P.; Plasek, J.; Repakova, J.; Vattulainen, I. Free Pyrene probes in gel and fluid membranes:perspective through atomistic simulations. J. Phys. Chem. B 2007,111,3640-3650.
    [40]Huang, J. B.; Zhao, G. X. Fluoresce probes study on the mixed cationic-anionic surfactant solutions. Colloid Polym Sci.1996,274,747-753.
    [41]Schuettelkopf, A. W.; van Aalten, D. M. F. PRODRG:a tool for high-throughput crystallography of protein-ligand complexe. Acta Crystallogr., Sect D:Biol. Crystallogr.2004,60,1355-1363.
    [42]Bales, B. L.; Messina, L.; Vidal, A.; Peric, M.; Nascimento, O. R. Precision relative aggregation number determinations of SDS micelles using a spin probe. A model of micelle surface hydration. J. Phys. Chem. B 1998,102,10347-10358.
    [43]Alargova, R. G.; Kochijashky, I. I.; Sierra, M. L.; Zana, R. Micelle aggregation numbers of surfactants in aqueous solutions:a comparison between the results from steady-state and time-resolved fluorescence quenching. Langmuir 1998,14, 5412-5418.
    [44]Bruce, C. D.; Berkowitz, M. L.; Perera, L.; Forbes, M. D. E. Molecular dynamics simulation of sodium dodecyl sulfate micelle in water:micellar structural characteristics and counterion distribution. J. Phys. Chem. B 2002,106, 3788-3793.
    [45]Shang, B. Z.; Wang, Z. W.; Larson, R. G. Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly(ethylene oxide) polymer. J. Phys. Chem. B 2008,112,2888-2900.
    [46]Berendsen, H. J. C.; van der Spoel, D.; van Drunen. P. GROMACS:a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995,91,43-56.
    [47]Lindahl, E.; Hess, B.; van der Spoel, D. GROMACS 3.0:a package for molecular simulation and trajectory analysis. J. Mol. Model.2001,71,306-317.
    [48]Spoel, D. V.; Van Buuren, A. R.; Apol, E.; Meulenhoff, P. J.; Tieleman, D. P.; Sijbers, A.; Feenstra, K. Gromacs User Manual, version 4.0; Gromacs:Groningen, The Netherlands,2009.
    [49]Schuler, L. D.; Daura, X.; Van Gunsteren, W. F. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem.2001, 22,1205-1218.
    [50]Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Hermans, J. Interaction models for water in relation to protein hydration. Intermolecular Forces; Reidel:Dordrecht, The Netherlands,1981,331-342.
    [51]Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys.1984,81, 3684-3690.
    [52]Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS:A linear constraint solver for molecular simulations. J. Comput. Chem.1997,18, 1463-1472.
    [53]Essman, U.; Perela, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G.) A smooth particle mesh ewald method. J. Chem. Phys.1995,103,8577-8593.
    [54]Humphrey, W.; Dalke, A.; Schulten, K. VMD-visual molecular dynamics. J. Mol. Graphics 1996,14,33-38.
    [55]Itri, R.; Amaral, L. Q. Distance distribution function of sodium dodecyl sulfate micelles by x-ray scattering. J. Phys. Chem.1991,95,423-427.
    [56]Yan, H.; Yuan, S. L.; Xu, G. Y.; Liu, C. B. Effect of ca2+ and mg2+ ions on surfactant solutions investigated by molecular fynamics simulation. Langmuir 2010,26,10448-10459
    [57]Kim, J. H.; Domach, M. M.; Tilton, R. D. Effect of electrolytes on the pyrene solubilization capacity of dodecyl sulfate micelles. Langmuir 2000,16,10037-10043.
    [1]Yoneyama, M.; Fujii, A.; Maeda, S; Yoneyama, M.; Fujii, A.; Maeda, S. Wavelength-doubled spiral fragments in photosensitive monolayers. J. Am. Chem. Soc.1995,117,8188-8191.
    [2]刘孝恒;White, J.;汪信,以表面活性剂为模板ZrO2薄膜在空气-水界面的自组装研究.化学学报,2005,63,1699-1702
    [3]俞建长;胡胜伟;徐卫军.阴离子表面活性剂辅助模板途径合成介孔结构氧化锆纳米晶.化学学报,2005,63(13),1429-1432.
    [4]Koyano, H.; Bissel, P.; Yoshihara, K.; Ariga, K.; Kunitake, T. Syntheses and interfacial hydrogen-bonded network of hexaalkyl tris(melamine) amphiphiles. Langmuir 1997,13,5426-5432.
    [5]Kawai, T.; Kamio, H.; Kondo, T.; Kon-No, K. Effects of concentration and temperature on SDS monolayers at the air-solution interface studied by infrared external reflection spectroscopy. J. Phys. Chem. B 2005,109,4497-4500.
    [6]Islam, M. N.; Ren, Y.; Kato, T. Polarization modulation infrared reflection absorption spectroscopy of gibbs monolayer at the air/water interface. Langmuir 2002,18,9422-9428.
    [7]Kjaer, K. Some simple ideas on x-ray reflection and grazing-incidence diffraction from thin surfactant films. Phys. B 1994,198,100-109.
    [8]Bain, C. D.; Davies, P. B.; Ward, R. N. In-situ sum-frequency spectroscopy of sodium dodecyl sulfate and dodecanol coadsorbed at a hydrophobic surface. Langmuir 1994,10,2060-2063.
    [9]Kawai, T.; Umemura, J.; Takenaka, T. Kinetic energy release distribution and the mechanism for evaporation of one and two Csl molecules from sputtered Cs(CsI)n+ clusters. Chem. Phys. Lett.1989,162,243-249.
    [10]Honig, D.; Mobius, D. Direct visualization of monolayers at the air-water interface by brewster angle microscopy. J. Phys. Chem.1991,95,4590-4592.
    [11]Kim, J.; Chou, K. C.; Somorjai, G. A. Structure and dnamics of aetonitrile at the air/lquid iterface of bnary slutions sudied by ifrared-vsible sum frequency generation. J. Phys. Chem. B 2003,107,1592-1596.
    [12]Miranda, P. B.; Shen, Y. R. Liquid interfaces:a study by sum-frequency vibrational spectroscopy. J. Phys. Chem. B 1999,103,3292-3307.
    [13]Kuzmenko, I.; Rapaport, H.; Kjaer, K.; Als-Nielsen, J.; Weissbuch, I.; Lahav, M. L. Design and characterization of crystalline thin film structures at the air-liquid interface:simplicity to complexity. Chem. Rev.2001,101,1659-1696.
    [14]H.Y. Erbil, Surface chemistry of solid and liquid interfaces, Wiley, New York 2006.
    [15]Shushkov, P. G.; Tzvetanov, S. A.; Ivanova, A. N.; Tadjer, A. V. Dielectric properties tangentialto the interface in model insoluble monolayers:theoretical assessment. Langmuir 2008,24,4615-4624.
    [16]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03; Gaussian, Inc.:Wallingford, CT, 2004.
    [17]Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W.F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys.1984, 81,3684-3690.
    [18]Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes. J. Comput. Phys.1977,23,327-341.
    [19]Sun, H. COMPASS:an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J. Phys. Chem.1998,102,7338-7364.
    [20]Connolly M. L. Solvent-accessible surfaces of proteins and nucleic-acids. Science 1983,221,709-713.
    [21]Kamenka, N.; Chorro, M.; Talmon, Y.; Zana R. Study of mixed aggregates in aqueous-solutions of sodium dodecyl-sulfate and dodecyltrimethylammonium bromide. Colloids Surf. A.1992,67,213-222.
    [22]Van Voorst Vader, F. Adsorption of detergents at the liquid-liquid interface Ⅱ, Trans. Faraday Soc.1960,56,1078-1084.
    [23]Hait, S. K.; Majhi, P. R.; Blume, A.; Moulik, S. P. A critical assessment of micellization of sodium dodecyl benzene sulfonate (SDBS) and its interaction with poly(vinyl pyrrolidone) and hydrophobically modified polymers, JR 400 and LM 200. J. Phys. Chem. B 2003,107,3650-3658.
    [24]Ghosh, T.; Garcia, A. E.; Garde, S. Molecular dynamics simulations of pressure effects on hydrophobic interactions. J. Am. Chem. Soc.2001,123,10997-11003.
    [25]T. Ghosh,; Garcia, A. E.; GArde, S. Water-mediated three-particle interactions between hydrophobic solutes:size, pressure, and salt effects. J. Phys. Chem. B 2003,107,612.
    [26]Svishchev, I. M.; Kusalik, P. G. Structure in liquid water:A study of spatial distribution functions. J. Chem. Phys.1993,99,3049-3058.
    [27]Vishnyakov, A.; Lyubartsev, A. P.; laaksonen, A. Molecular dynamics simulations of dimethyl sulfoxide and dimethyl sulfoxide-water mixture. J. Phys. Chem. A 2001,105,1702-1710.
    [28]Stephenson, B. C.; Beers, K. J. Determination of the interfacial characteristics of a series of bolaamphiphilic poly(fluorooxetane) surfactants through molecular dynamics simulation.J. Phys. Chem. B 2006,110,19393-19405.
    [1]方云.两性表面活性剂.北京:中国轻工业出版社2001
    [2]Hou, J. R.; Liu, Z. C.; Zhang, S. F.; Yue, X. A.; Yang, J. Z. The role of viscoelasticity of alkali/surfactant/polymer solutions in enhanced oil recovery. J. Petrol. Sci. Eng.2005,47,219-235.
    [3]王刚;王德民;夏惠芬;鞠野;刘春德.聚合物驱后用甜菜碱型表明活性剂提高驱油效率机理研究.石油学报,2007,28,86-90.
    [4]夏惠芬;王海峰;王刚;胡锦强;刘春德.聚合物/甜菜碱表面活性剂提高水驱后残余油采收率研究.中国石油大学学报2007,31,74-78.
    [5]夏惠芬;刘仁强;鞠野;刘春德;王亚婷,超低界面张力下甜菜碱型表面活性剂水驱残余油的作用机理.大庆石油学院学报2006,30,24-27.
    [6]Schonherr, H.; Rozkiewica, D. I.; Vancso, G. J. Atomic force microscopy assisted immobilization of lipid vesicles. Langmuir 2004,20,7308-7312.
    [7]Kepczynski, M.; Lewandowska, J.; Romek, M.; Zapotoczny, S.; Ganachaud, F.; Nowakowska, M. Silicone nanocapsules templated inside the membranes of catanionic vesicles. Langmuir 2007,23,7314-7320.
    [8]Jorge, M. Molecular dynamics simulation of self-assembly of n-decyltrimethyl ammonium bromide micelles. Langmuir 2008,24,5714-5725
    [9]Miller, C. A.; Abbott, N. L.; de Pablo, J. J. Surface activity of amphiphilic helical β-peptides from molecular dynamics simulation. Langmuir 2009,25,2811-2823.
    [10]陈美玲;王正武;王海军;张革新;陶福明.量子化学方法研究表面活性剂在气液界面上的吸附.科学报,2007,52,521-524.
    [11]Gadre, S. R.; Pingale, S. S. An electrostatic investigation:how polar are the surfactant hydrocarbon tails? Chem. Commun.1996,5,595-596.
    [12]Yan, P.; Xie, J. X. Polymer-surfactant interaction:differences between alkyl sulfate and alkyl sulfonate. Colloid Surf. A 2004,244,39.
    [13]Hu, X.; Li, Y.; Sun, H.; Song, X.; Li, Q.; Cao, X.; Li, Z. Effect of divalent cationic ions on the adsorption behavior of zwitterionic surfactant at silica/ solution interface.J. Phys. Chem.B 2010,114,8910-8916.
    [14]Huibers, P. D. T. Quantum-chemical calculations of the charge distribution in ionic surfactants. Langmuir 1999,15,7546-7550.
    [15]Milani, A.; Castiglioni, C. Modeling of molecular charge distribution on the basis of experimental infrared intensities and first-principles calculations:the case of CH bonds. J. Phys. Chem. A 2010,114,624-632.
    [16]Shishkin, M.; Ziegler, T. Oxidation of H2, CH4, and CO molecules at the interface between nickel and yttria-stabilized zirconia:a theoretical study based on DFT. J. Phys. Chem. C 2009,113,21667-21678.
    [17]Karwowski, B. T.5',8-Cyclopurine-2'-deoxynucleosides:Molecular structure and charge distribution-DFT study in gaseous and aqueous phase. J. Mol. Struct. Theochem 2009,915,73-78.
    [18]Wallrapp, F.; Voityuk, A.; Guallar, V. Solvent effects on donor-acceptor couplings in peptides. a combined QM and MD study. J. Chem. Theory Comput.2009,5, 3312-3320.
    [19]Niehaus, T. A. Approximate time-dependent density functional theory. J. Mol. Struct. Theochem 2009,914,38-49.
    [20]Frisch M. J.; Trucks G. W.; Schlegel H. B. Gaussian 03. Revision B.05. Pittsburgh, PA:Gaussian Inc.,2003
    [21]Connolly, M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science 1983,221,709-713.
    [22]Connolly, M. L. Analytic molecular surface calculation. J. Appl. Crystallogr. 1983,16,548-558
    [23]Florenzano, F. H.; Dias, L. G. Critical micelle concentration and average aggregation number estimate of zwitterionic amphiphiles:salt effect. Langmuir 1997,13,5756-5758.
    [24]Rosen, M. J. Surfactants and interfacial phenomena, third Ed., Wiley, New York, 2004.
    [25]曹绪龙,吕凯,崔晓红,石静,苑世领,阴离子表面活性剂与阳离子的相互作用.物理化学学报2010,26,1959-1964.
    [26]Kalyanasundaram, K. Photochemistry in microheterogeneous systems. New York:Academic Press,1987.
    [1]Chen, L.; Xiao, J. X.; Ma, J. Striking differences between alkyl sulfate and alkyl sulfonate when mixed with cationic surfactants. Colloid Polym. Sci.2004,282, 524-529.
    [2]Rosen, M. J. Surfactant and Interfacial phenomena. Wiley:New York,1989.
    [3]Tajima, K.; Muramatsu, M.; Sasaki, T. Radiotracer studies on adsorption of surface active substance at aqueous surface.Ⅰ. accurate measurement of adsorption of tritiated sodium dodecyl sulfate. Bull. Chem. Soc. J.1970,43, 1991-1998.
    [4]Janczuk, B.; Gonzalez-Martin, M. L.; Bruque, J. M.; Dorado-Calasanz, C. A study of the adsorption of sodium dodecyl sulphonate at the solution-air interface. Colloid. Surf. A.1998,137,15-24.
    [5]Turro, N. J.; Lei, X. G.; Ananthapadmanabhan. K. P.; Aroson, M. Spectroscopic probe analysis of protein-surfactant interactions:The BSA/SDS System. Langmuir 1995,11,2525-2533.
    [6]Cabane, B. Structure of some polymer-detergent aggregates in water. J. Phys. Chem.1977,81,1639-1645.
    [7]Hou, Z.; Li, Z.; Wang, H. Interaction between poly(ethylene oxide) and sodium dodecyl sulfonate as studied by surface tension, conductivity, viscosity, electron spin resonance and nuclear magnetic resonance. Colloid Polym. Sci.1999,277, 1011-1018.
    [8]Yan, P.; Xiao, J. X. Polymer-surfactant interaction:differences between alkyl sulfate and alkyl sulfonate. Colloid.Surf. A.2004,244,39-44.
    [9]Tummal, N. R.; Striolo, A. Role of counterion condensation in the self-assembly of SDS surfactants at the water-graphite interface. J. Phys. Chem. B 2008,112, 1987-2000.
    [10]Berendsen, H. J. C.; Grigera, J. R; Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem.1987,91,6269-6271
    [11]Lyubartsev, A. P.; Laaksonen, A. Concentration effects in aqueous NaCl solutions. a molecular dynamics simulation. J. Phys. Chem.1996,100,16410-16418.
    [12]Larentzos, J.P.; Criscenti, L. J. Computer simulations of surfactant mixtures at the liquid/liquid interface.J. Phys. Chem. B 2008,112,14243-14250.
    [13]Dominguez, H. Computer simulations of surfactant mixtures at the liquid/liquid Interface. J. Phys. Chem. B 2002,106,5915-5924.
    [14]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03; Gaussian, Inc.: Wallingford, CT,2004
    [15]Liu, X. M.; Zhang, S. J.; Zhou, G. H.; Wu, G. W.; Yuan, X. L.; Yao, X. Q. New force field for molecular simulation of guanidinium-based ionic liquids. J. Phys. Chem. B 2006,110,12062-12071.
    [16]Criado, A. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc.1995,117,5179-5197.
    [17]Lyubartsev, A. P.; Laaksonen, A. M.DynaMix-a scalable portable parallel MD simulation package for arbitrary molecular mixtures. Comput. Phys. Commun. 2000,128,565-589.
    [18]Tuckerman, M.; Berne, B. J.; Martyna, G. J. Reversible multiple time scale molecular dynamics. J. Chem. Phys.1992,97,1990-2001.
    [19]Martyna, G. J.; Tuckerman, M. E.; Tobias, D. J.; Klein, M. L. Explicit reversible integrators for extended systems dynamics molecular physics:an international journal at the interface between chemistry and physics. Mol. Phys.1996,87, 1117-1157.
    [20]Bruce, C. D.; Senapati, S.; Berkowitz, M. L.; Perera, L.; Forbes, M. D. E. Molecular dynamics simulations of sodium dodecyl sulfate micelle in water:the behavior of water. J. Phys. Chem.B 2002,106,10902-10907.
    [21]Ghosh, T.; Garcia, A. E.; GArde, S. Molecular dynamics simulations of pressure effects on hydrophobic interactions. J. Am. Chem. Soc.2001,123,10997-11003.
    [22]Ghosh, T.; Garcia, A. E.; GArde, S. Water-mediated three-particle interactions between hydrophobic solutes:size, pressure, and salt effects. J. Phys. Chem. B 2003,107,612-647.
    [23]Koneshan, S.; Rasaiah, J.C.; Lynden-Bell, R. M.; Lee, S. H. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 ℃. J. Phys. Chem. B 1998, 102,4193-4204.
    [24]Vishnyakov, A.; Neimark, A. V. Molecular simulation study of nafion membrane Solvation in water and methanol. J. Phys. Chem. B 2004,104,4471-4478.
    [1]Paria, S; Khilar, K. C. A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Adv. Colloid Interface Sci.2004,110, 75-95.
    [2]Lu, T.; Huang, J.; Liang, D. Salt Effect on microstructures in cationic gemini surfactant solutions as studied by dynamic light scattering. Langmuir 2008,24, 1740-1744.
    [3]Koelsch. P.; Mostschmann, H. Varying the counterions at a charged interface. Langmuir 2005,21,3436-3442.
    [4]Jodar-Reyes, A. B.; Lyklema, J.; Leermakers, F. A. M. Comparison between inhomogeneous adsorption of charged surfactants on air-water and on solid-water interfaces by self-consistent field theory. Langmuir 2008,24, 6496-6503.
    [5]Gutig, C.; Grady, B. P.; Striolo, A. Experimental studies on the adsorption of two surfactants on solid-aqueous interfaces:adsorption isotherms and kinetics. Langmuir 2008,24,13814.
    [6]Moulik, S. P.; Chakraborty, I. Self-aggregation of ionic C10 surfactants having different headgroups with special reference to the behavior of decyltrimethyl-ammonium bromide in different salt environments:a calorimetric study with energetic analysis. J. Phys. Chem. B 2007,111,3658-3664.
    [7]Shi, L.; Tummala, N.R.; Striolo, A. C12E6 and SDS surfactants simulated at the vacuum-water interface. Langmuir 2010,26,5462-5474.
    [8]Berret, J. F.; Herve, P.; Aguerre-Chariol, O.; Oberdisse, J. Colloidal complexes obtained from charged block copolymers and surfactants:a comparison between small-angle neutron scattering, cryo-TEM, and simulations. J. Phys. Chem. B 2003,107,8111-8118.
    [9]Larson, K.; Vaknin, D.; Villavicencio, O.; McGrath, D.; Tsukruk, V. V. Molecular packing of amphiphiles with crown polar heads at the air-water interface. J. Phys.Chem.B 2002,106,7246-7251.
    [10]Reynolds, P. A.; McGillivray, D. J.; Gilbert, E. P.; Holt, S. A.; Henderson, M.J.; White, J. W. C12E6 and SDS surfactants simulated at the vacuum-water interface. Langmuir 2003,19,752-761.
    [11]Purcell, I. P.; Thomas, R. K.; Penfold, J.; Howe, A. M. Hydrogen-bond kinetics in the solvation shell of a polypeptide. Colloids Surf. A 1995,94,125-130.
    [12]Gragson, D. E.; McCarty, B. M.; Richmond, G. L. Surfactant/water interactions at the air/water interface probed by vibrational sum frequency generation. J. Phys. Chem.1996,100,14272-14275.
    [13]Howes, A. J.; Radke, C. J. Monte carlo simulations of lennard-jones nonionic surfactant adsorption at the liquid/vapor interface. Langmuir 2007,23,1835-1844.
    [14]Tummal, N. R.; Striolo, A. Role of counterion condensation in the self-assembly of SDS surfactants at the water-graphite interface. J. Phys. Chem. B 2008,112, 1987-2000.
    [15]Bruce, C. D.; Berkowitz, M. L.; Perera, L.; Forbes, M. D. E. Molecular dynamics simulation of sodium dodecyl sulfate micelle in water:micellar structural characteristics and counterion distribution. J. Phys. Chem. B 2002,106, 3788-3793.
    [16]Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem.1987,91,6269-6271.
    [17]Frisch M. J.; Trucks G. W.; Schlegel H. B. Gaussian 03. Revision B.05. Pittsburgh, PA:Gaussian Inc.,2003
    [18]Tsuzuki, S. T.; Shinoda, W.; Saito, H.; Mikami, M.; Tokuda, H.; Watanabe, M. Molecular dynamics simulations of ionic liquids:cation and anion dependence of self-diffusion coefficients of ions. J.Phys. Chem. B 2009,113,10641-10649.
    [19]Aaqvist, J. Ion-water interaction potentials derived from free energy perturbation simulations. J. Phys. Chem.1990,94,8021-8024.
    [20]Jorgensen, W. L.; Maxwell, D. S.; Tirada-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc.1996,118,11225-11236.
    [21]Krisch, M. J.; D'Auria, R.; Brown, M.A.; Tobias, D.J.; Hemminger, J.C.; Ammann, M.; Starr. D.E.; Bluhm, H. The effect of an organic surfactant on the liquid-vapor Interface of an electrolyte solution. J. Phys. Chem. C 2007,111, 13497-13509.
    [22]Hantal, G.; Partay, L. B.; Varga, I.; Jedlovszky, P; Gilanyi, T. Counterion and surface density dependence of the adsorption layer of ionic surfactants at the vapor-aqueous solution interface:a computer simulation study. J. Phys.Chem. B 2007,111,1769-1774.
    [23]Bandyopadhyay, S.; Tarek, M.; Lynch, M. L.; Klein, M. L. Molecular dynamics study of the poly(oxyethylene) surfactant C12E2 and water. Langmuir 2000,16, 942-946.
    [24]Bandyopadhyay, S.; Chanda, J. Monolayer of monododecyl diethylene glycol surfactants adsorbed at the air/water interface:a molecular dynamics study. Langmuir 2003,19,10443-10448.
    [25]Bandyopadhyay, S.; Shelley, J.C.; Klein, M. L. Molecular dynamics study of the effect of surfactant on a biomembrane. J. Phys. Chem. B 2001,105,5979-5986
    [26]Jang. S. S.; Goddard, Ⅲ. W. A. Structures and properties of newton black films characterized using molecular dynamics simulations. J. Phys. Chem. B 2006,110, 7992-8001.
    [27]Lindahl, E.; Hess, B.; van der Spoel, D. GROMACS 3.0:a package for molecular simulation and trajectory analysis. J. Mol. Model.2001,71,306-317.
    [28]Spoel, D. V.; van Buuren, A. R.; Apol, E.; Meulenhoff, P. J.; Tieleman, D. P.; Sijbers, A.; Feenstra, K. Gromacs User Manual, version 4.0; Gromacs:Groningen, The Netherlands,2009.
    [29]Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys.1984, 81,3684-3690.
    [30]Hess, B.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS:A linear constraint solver for molecular simulations J. Comput. Chem.1997,18,1463-1462.
    [31]Essman, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh Ewald method. J. Chem. Phys.1995,103,8577-8593.
    [32]Jiao, D.; King, C.; Grossfield, A.; Darden, T. A.; Ren, P. Thermodynamic studies of molecular interactions in aqueous α-cyclodextrin solutions:application of mcmillan-mayer and kirkwood-buff Theories. J. Phys. Chem. B 2006,110, 18553-18593.
    [33]Nightingale, E. R. A smooth particle mesh Ewald method. J. Phys. Chem.1959, 63,1381-1387.
    [34]Kumar, P. P.; Kalinichev, A. G.; Kirkpatrick, R. J. Hydrogen-bonding structure and dynamics of aqueous carbonate species from car-parrinello molecular dynamics simulations. J.Phys. Chem.B 2009,113,794-802.
    [35]Lopez, C. F.; Nielsen, S. O.; Klein, M. L.; Moore, P. B. Hydrogen bonding structure and dynamics of water at the dimyristoylphosphatidylcholine lipid bilayer surface from a molecular dynamics simulation. J. Phys. Chem. B 2004, 108,6603-6610.
    [36]Husslein, T.; Newns, D. M.; Pattnaik, P. C.; Zhong, Q.; Moore, P. B.; Klein, M. L. Constant pressure and temperature molecular-dynamics simulation of the hydrated diphytanolphosphatidylcholine lipid bilayer. J. Chem. Phys.1998,109, 2826-2832.
    [37]Koubi, L.; Tarek, M.; Klein, M. L.; Scharf, D. Distribution of halothane in a dipalmitoylphosphatidylcholine bilayer from molecular dynamics calcula-tions. Biophys. J.2000,78,800-811.
    [38]Bergman, D. L.; Laaksonen, L.; Laaksonen, A. Visualization of solvation structures in liquid mixtures. J. Mol. Graphics Modell.1997,15,301-306.
    [39]Andreani, C.; Menzinger, F.; Ricci, M. A.; Soper, A. K.; Dreyer, Neutron diffraction from liquid hydrogen bromide:study of the orientational correlations. J. Phys. Rev. B 1994,49,3811-3820.
    [40]Shelley, J. C.; Sprik, M.; Klein, M. L. Molecular dynamics simulation of an aqueous sodium octanoate micelle using polarizable surfactant molecules. Langmuir 1993,9,916-926.
    [41]Svishchev, I. M.; Kusalik, P. G. Structure in liquid water:a study of spatial distribution functions. J. Chem. Phys.1993,99,3049-3058.
    [42]Ghosh, T.; Garcia, A. E.; Garde, S. Molecular dynamics simulations of pressure effects on hydrophobic interactions. J. Am. Chem. Soc.2001,123,10997-11003.
    [43]Ghosh, T.; Garcia, A. E.; GArde, S. Water-mediated three-particle interactions between hydrophobic solutes:size, pressure, and salt effects. J. Phys. Chem. B 2003,107,612-617.
    [44]Xu, H.; Berne, B. J. Hydrogen-bond kinetics in the solvation shell of a polypeptide. J. Phys. Chem. B 2001,105,11929-11932.
    [45]Stillinger, I. F. Theory and molecular models for water. Adv. Chem. Phys.1975, 31,1-101.
    [46]Luzar, A.; Chandler, D. Hydrogen-bond kinetics in liquid water. Nature 1996, 379,55-57.
    [47]Chandra, A. Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions. Phys. Rev. Lett.2000,85,768-771.
    [48]Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.1983,79,92-9356

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700