弱凝胶-表面活性剂复合调驱技术应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,弱凝胶调驱技术已经成为注水开发油田后期稳油控水的主要技术之一。由于技术本身的原因以及短期效果与长期效益之间的矛盾,使得目前普遍采用小规模、多轮次重复调驱的做法。然而,油田的生产实践表明,这种做法存在随着作业轮次的增加增油效果逐渐递减的现象。因此一方面研究人员对多轮次调驱效果逐次递减机理进行研究以提高多轮次调驱工艺水平;另一方面,重新对弱凝胶调驱规模和轮次进行系统的研究显得尤为重要;同时寻找以更大程度的提高注水油田开发后期采收率为目的的稳油控水新技术就显得迫在眉睫。本文提出的弱凝胶复合调驱技术,就是将弱凝胶调驱技术与化学驱油技术结合起来的一门新兴的技术,即弱凝胶处理后采用聚合物驱、表面活性剂驱、复合驱提高原油采收率。这项研究无论是对于弱凝胶处理后的油田进一步提高采收率还是对于未进行弱凝胶处理的油田更有效的提高采收率都是有着重要的现实意义。
     本文首先通过物理模拟实验研究了弱凝胶多轮次重复调驱,得出多轮次调驱逐次效果递减规律,同时分析增油效果递减机理。研究结果认为:多轮次重复注入弱凝胶体系对层间非均质性、层内非均质性能起到良好的调整作用,能够使后续水作用于低渗透层等开发程度不够的油层,能够有效的提高采收率。但是多轮次调驱明显的存在增油效果逐次递减的现象,分析的结果认为原因归结于以下几点:采用单一调驱剂时每轮调剖的受效面部分重叠、由于每轮的调剖需要不同注入等量调驱剂存在着调剖效果随径向距离增加而减弱的现象、封堵时机引起调剖效果逐次递减、注入工艺引起调剖效果逐次递减和堵剂部分失效引起调剖效果逐次递减等。因此,为了缓解多轮次调驱效果逐次递减,应建立适宜近井地带、过渡地带及远井地带的多轮次调剖堵剂系列;针对调剖剂作用随径向距离增加而递减机理,多轮次调剖时堵剂用量应适当递增,以保证堵剂在放置的位置上有足够的厚度;针对封堵时机引起调剖效果逐次递减机理,应通过数模研究及考虑经济效益综合优化确定每一轮调剖的封堵时机;为了减少注入工艺对多轮次调剖效果的影响,每一轮调剖前应研究调剖井层的启动压力,优化调剖注入压力。
     本文的另一个研究重点是弱凝胶复合调驱体系的研制、技术的可行性和提高采收率机理以及弱凝胶表面活性剂复合调驱工艺研究。
     本文采用了一种新型的聚合物——疏水缔合聚合物,研制出性能良好的弱凝胶复合调驱体系,完全能满足常规(<80℃)弱凝胶复合调驱的要求。同时,针对在弱凝胶配方研究方面存在的温度使用范围较窄(30~90℃)的问题,本文研制出两种耐温(90~120℃)耐盐调驱体系,完全能够满足高温高盐油藏的弱凝胶复合调驱需要。
     弱凝胶复合调驱技术不是弱凝胶调驱和化学驱油的简单加和,它涉及两项技术之间的协同作用,同时调驱剂和驱油剂之间也存在相互作用,这两种作用的结果决定这项技术的可行性及驱替方式等问题。研究的结果表明:弱凝胶处理后,采用聚合物驱、表面
So far, the technology on weak gel for profile modification and oil displacement has become one of the main technologies to stabilize oil-output and control water-cut at the latter exploitation of oil field by water injection. For technical reasons and conflicts between short-term effects and long-term beneficial results, multi-cycle weak gel treatments with small scale are adopting in oilfields. However, generous practices show it exists that with the cycles of treatment increasing, the results of EOR gradually decrease. Therefore, for one thing, the mechanism of this phenomenon is being studied in order to improve the technology on multicycle weak gel. For another, it's time to take a fresh look at scale and cycles of treatment. Besides, it is urgent to search for new technologies in order to further enhance oil recovery. This article demonstrates a new technology combining weak gel and chemical flooding, namely weak-gel in-depth water-diverting and chemical flooding combination technology. That is adopting polymer flooding, surfactant flooding or combination flooding after weak gel treatment. It is a significant study on this technology to further enhance oil recovery for the oilfields by, weak gel treatment. It is also important to more efficiently enhance oil recovery for ones without gel treatment.In this article, physical models are employed to study multi-cycle weak gel treatments. The result shows that it really exists that with the cycles of treatment increasing, the results of EOR gradually decrease. The reasons are following. Firstly, the influence areas of every cycle are partly overlapping. Secondly, with the radial distance increasing, the result of profile modification by equal amount of gel injection becomes worse. Thirdly, the opportunity of injection is another important reason. Lastly, unfitting injection crafts cause worse effects. So, in. order to ease this problem, the following measures can be employed, namely adopting a series of agents, increasing the amounts of treatments with radial distance increasing, optimizing the opportunity and craft of injection.The research on the development of agents, the feasibility of this technology, the mechanism of EOR and the craft of weak-gel in-depth water-diverting and surfactant flooding combination technology is another main emphasis of this article.In this paper, a new kind of polymer, namely hydrophobic associating polymer, is adopted in the study on the development of agents. The formulation of weak gel used this polymer can suit the general need when the temperature of reservoirs is bellow 80 degree. It is well known that common weak gel can not endure high temperature (90-120□) . So, two formulations are developed in this paper in order to satisfy the need of high temperature and salinity reservoirs.
    The weak-gel in-depth water-diverting and chemical flooding combination technology is not the one that simply puts the technique on weak gel and chemical flooding together. It involves the cooperation of the two techniques and the compatibleness of the two kinds of agents. And the two actions determine the feasibility of the technology and ways of injection. The result of our research shows that the application of polymer flooding, surfactant flooding or polymer-surfactant combination flooding after weak gel treatment can further enhance oil recovery. In addition to weak gel enhancing sweep efficiency and chemicals improving oil displacement efficiency, the two techniques have a good cooperation and thus the oil recovery is enhanced. In-depth water diverting by weak gel results in the following chemicals entering into low permeability layer in which remaining oils enrich.The research on the compatibleness of weak gel and surfactants shows that unformed weak gel and surfactants have a disagreeable interaction. However, pre-formed weak gel and surfactants have a good compatibleness. So, the direct contact of unformed weak gel and surfactants must be avoided.In this paper, take Huabei oilfield for instance, the adaptability of weak-gel in-depth water-diverting and surfactant flooding combination technology on this oilfield is estimated. To look on the physical property and fluid property of the reservoir, the gel can selectively enter into the stratums. With the formulations of weak gel with good temperature and salinity tolerance, the suitable craft and the proper opportunity of injection, weak-gel in-depth water-diverting and surfactant flooding combination technology has an excellent adaptability in Huabei oilfield.
引文
[1] 张琪.采油工程原理与设计.东营:石油大学出版社,2001
    [2] 赵福麟等.调剖堵水的潜力、限度和发展趋势.石油大学学报,1999,23(1):49-54
    [3] 孔凡群等.胜沱油田特高含水期堵水调剖技术研究与应用.刘翔鹗主编,’97油田堵水技术论文集.北京:石油工业出版社,1998
    [4] 赵福麟.调剖剂与驱油剂.油气采收率技术,1994,1(1):1-5
    [5] 尹文军等.多轮次调剖效果逐次递减机理研究.油气地质与采收率,2004,11(2):48-50
    [6] 赵秀娟等.弱凝胶调驱微观渗流机理研究.油田化学,2004,21(1):51-60
    [7] 王德民等.国外三次采油技术[M].上海:上海交大出版社,128-138
    [8] 王志武等.大庆油田稳油控水系统工程[M].北京:石油工业出版社,2000
    [9] 郭尚平等.物理化学渗流微观机理[M].北京:科学出版社,1990
    [10] 朱怀江.弱凝胶对油水相对渗透率的影响.石油学报,2002,23(3):69-72
    [11] 沈平平等.中国陆上油田提高采收率潜力评价及发展战略研究[J].石油学报,2001,22(1):45-48
    [12] 刘玉章等.胜利油田用化学法提高原油采收率的探索与实践[J].油气采收率技术,1994,1(1):25-28
    [13] 田根林等.交联聚合物剪切特性及渗流规律研究[J].油气采收率技术,1997,4(4):19-24
    [14] Dawe R A, Zhang Y. Mechanistic study of the selective action of oil and water penetrating into a gel emplaced in a porous medium [J]. Journal of Petroleum Science and Engineering 1994, 12(4):113-125.
    [15] Seright R S, Liang J, Sun H. Gel treatments in production wells with water-coning problem [J]. In Situ 1992, 17(3):243-272.
    [16] Liang J, Seright R S. Further investigation of why gels reduce K_w, more than K_o [C]. SPE 37249, 1997:225-230.
    [17] Thompson K E, Fogler H S. Pore-level mechanisms for altering multiphase permeability with gels [J]. SPEJ 1997, 18(2):350-362.
    [18] Nilsson S, Stavland A, Jonsbraten H C. Mechanistic study of disproportionate permeability reduction [C]. SPE 39365, 1998:19-22.
    [19] Puchun Zhao, Huating Zhao, Baojun Bai et al. Improve Injection Profile by Combining Plugging Agent Treatment and Acid Stimulation. SPE 89394
    [20] Nguyen T Q, Green D W et al. Effect of Composition of a Polyacrylamide-Chromium(Ⅲ) Acetate Gel on the Magnitude of Gel Dehydration and Disproportionate Permeability Reduction. SPE 89404
    [21] Baojun Bai, Yuzhang Liu. Preformed Particle Gel for Conformance Control: Transport Mechanism Through Porous Media. SPE 89468
    [22] Cuiyue Lei, Clark P E. Crosslinking of Guar and Guar Derivatives. SPE 90840
    [23] Jain R, McCool C S. Reaction Kinetics of the Uptake of Chromium(Ⅲ) Acetate by Polyacrylamide. SPE 89399
    [24] Frampton H, Morgan J C. Development of a Novel Waterflood Conformance Control System. SPE 89391
    [25] 马自俊,罗建辉,刘继德.国外提高采收率化学剂发展状况.油田化学,1996,13(4):381-384
    [26] 陈立滇.驱油用聚丙烯酰胺.油田化学,1993,10(3):283-290
    [27] 马广彦.耐盐聚合物PAM104与高含盐油藏聚合物驱油物理模拟.油田化学,1995,12(4):353-357
    [28] 戴永胜等.疏水缔合水溶性耐温耐盐聚合物的研究进展.精细与专用化学品,2003,(19):11-14,(20):18-21
    [29] 罗健辉等.梳型聚丙烯酰胺的研制及应用.2003表面活性剂技术经济文集.成都:精细与专用化学品编辑部,2003:398-407
    [30] 李明远等.部分水解聚丙烯酰胺/柠檬酸铝交联体系分类探讨.油田化学,2000,17(4):343-345
    [31] 黄宁等.低度交联AMPS共聚物驱油体系的研究.石油与天然气化工,2002,31(4):205-207
    [32] 吕茂森等.耐温抗盐共聚物AMPS/AM/AMC_(14)S的合成.油田化学,1999,16(4):362-364
    [33] 彭朴主编.采油用表面活性剂.北京:化学工业出版社,2003
    [34] 俞家雍等.化学复合驱基础及进展.北京:中国石化出版社,2002
    [35] 周国华等.表面活性剂在胜利油田二元和三元复合驱中的应用研究.中国石化油田化学品论文集,南京:中国石油化工集团科学技术委员会,2001:307-312
    [36] 赵福麟等.二次采油与三次采油的结合技术及其进展.石油学报,2001,22(5):38-42
    [37] Taugbol T, et al. Chemical flooding of oil reservoirs 3. Dissociative surfactant-polymer interaction with a positive effect on oil recovery. Colloids and Surfaces. 1995, 103:83-90
    [38] 朱有益,沈平平编著.三次采油复合驱用表面活性剂合成、性能及应用.北京:石油工业出版社,2002
    [39] 李秀兰等.表面活性剂在胜利油田二元复合驱中的应用.2003表面活性剂技术经济文集,成都:《精细与专用化学品》编辑部,2003:300-304
    [40] Hirasaki G, Zhang D L. Surface Chemistry of Oil Recovery from Fractured Oil-wet Carbonate Formation. Houston: SPE International Symposium on Oilfield Chemistry. SPE 80989, 2003
    [41] Standnes D C, Austad T. Wettability alteration in chalk 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants. Journal of Petroleum Science and Engineering. 2000,28:123-143
    [42] Dawe, Bob; Oswald, Tom. Reduced adsorption and separation of blended surfhctants on sand and clay. J. Can. Pet. Technol. 1991,30(2):133-137
    [43] 湛凡更等.碱木素油田化学剂研究进展.油田化学,1996,13(2):183-189
    [44] 李宗石等.木质素磺酸盐在三次采油中的应用.2000工业表面活性剂技术经济文集.大连:大连出版社,2000:341-345
    [45] 乔卫红等.改性木质素磺酸盐及其对胜利原油油水界面张力行为的研究.中国石化油田化学品论文集.南京:中国石油化工集团科学技术委员会,2001:303-306
    [46] De Bons. Lignin Based Surfactants for EOR. Report of Workshop, Rice University, Houston, TX:2001
    [47] 李干佐等.我国三次采油进展.日用化学品科学,1999(增刊):1-9
    [48] 李干佐等.新型驱油用表面活性剂天然混合羧酸盐.油田化学,1999,16(1):57-59
    [49] Huang H, et al. Ultra-low Oil-water IFTs Using Neutralized Oxidized Hydrocarbons as Surfactants. JAOCS. 1990,67(6):407-415
    [50] 黄宏度等.驱油表面活性剂石油羧酸盐和磺酸盐的协同效应.2000工业表面活性剂 技术经济文集.大连:大连出版社,2000:195-198
    [51] 黄宏度等.驱油剂石油羧酸盐界面活性的特点.中国石化油田化学品研讨会论文集.南京:中国石油化工集团科学技术委员会,2001:290-294
    [52] 李干佐等.天然混合羧酸盐在三次采油和稠油降粘中的应用.中国石化油田化学品研讨会论文集.南京:中国石油化工集团科学技术委员会,2001:295-298
    [53] 徐军等.磺基甜菜碱的性能及其在油田化学中的应用.中国石化油田化学品论文集.南京:中国石油化工集团科学技术委员会,2001:299-302
    [54] 秦冰等.羧酸盐在稠油乳化中的作用.石油炼制与化工,2002,33(3):1-4
    [55] 彭朴等.石油馏分中各烃族的磺化率测定方法.中国石化油田化学品研讨会论文集.南京:中国石油化工集团科学技术委员会,2001:317-320
    [56] 刘璞.用于强化采油的表面活性剂的一些进展.油田化学,1985,2(1):1-8
    [57] 崔正刚等.重烷基苯磺酸盐的合成及其在提高采收率中的应用.华东理工大学学报,1999,25(4):339-346
    [58] 崔正刚等.重烷基苯磺酸盐生产工艺及驱油剂性能的改进.日用化学工业,2001,31(3):17-21
    [59] 崔正刚等.重烷基苯磺酸盐/碱/原油体系的界面张力.油田化学,1999,16(2):153-157
    [60] 崔正刚等.重烷基苯磺酸盐微乳体系的相行为.日用化学工业,1999,(6):15-19
    [61] 崔正刚等.重烷基苯磺酸盐在大庆油砂上的静态吸附损失研究.油田化学,2000,17(4):359-363
    [62] 邹文华等.重烷基苯磺酸盐驱油剂中试产品的应用性能.油田化学,2002,32(6):16-19
    [63] 张天林等.重烷基苯磺酸盐的合成.日用化学工业,2000,30(3):56-58
    [64] Peter H Doe et al. The Influence of Surfactant Structure on Low Interfacial Tensions. Preprints. Am Chem Soc. Div Petro Chem. 1978,23(2):672
    [65] 乔卫红等.三次采油表面活性剂结构与性能关系的研究.中国石化油田化学品论文集.南京:中国石油化工集团科学技术委员会,2001:299-302
    [66] 秦冰等.磺酸盐在稠油乳化降粘中的作用.中国石化油田化学品研讨会论文集.南京:中国石油化工集团科学技术委员会,2001:328-331
    [67] Austad T, Taugbol K. Chemical flooding of oil reservoirs 1. Low tension polymer flood using a polymer gradient in the three-phase region. Colloids and Surfaces. 1995:101.87-97
    [68] Paul D. Berger et al. Anion Surfactants based on alkene sulfonic acid. US 00643391A. 2000.
    [69] P. D. Berger, C. H. Lee. Ultra-low Concentration Surfactants for Sandstone and Limestone Floods. SPE75186. SPE/DOE 13th Symposium on Improved Oil Recovery. Tulsa, Oklahoma, 2002:13-17
    [70] 赵普春等.低碱度非离子表面活性剂驱油体系界面张力研究.油田化字,1998,15(2):150-154
    [71] 李干佐等.非离子表面活性剂吐温80的复合驱油体系研究.日用化学工业,2003,33(1):1-7
    [72] 曹绪龙等.孤岛馆5~(2+3)层三元复合驱油体系双截锥体模型驱替试验.油田化学,1993,10(2):159-163
    [73] 王业飞等.高矿化度条件下应用的表面活性剂驱油体系.中国石化油田化学品研讨会论文集.南京:中国石油化工集团科学技术委员会,2001:321-323
    [74] 李宜坤等.以丙酮作溶剂合成烷基酚聚氧乙烯醚羧酸盐.石油学报(石油加工),2003,19(2):33-38
    [75] 黄辉.烷基醇醚羧酸盐性能的研究.精细石油化工进展,2003,4(5):19-23
    [76] 余维初等.OP-10改性为OPC-10的条件优化.2000,22(3):103-104
    [77] 秦冰等.抗矿盐表面活性剂的研究进展.中国石化油田化学品研讨会论文集.南京:中国石油化工集团科学技术委员会,2001:324-327
    [78] Britton L. Designing Surfactants for Improved Petroleum Recovery.
    [79] Wellington A L, Richardson E A. Surface Active Molecules Designed for Oil Recovery.
    [80] 韩巨言等.烷基苯基聚氧乙烯醚磺酸盐.日用化学工业,1998,12:60-62
    [81] Rasheed K et al. Alkoxylated Alkyl Substituted Phenol Sufonate Compounds and Composition. The Preparation Thereof and Their Use in Various Applications. 1991: USP5049311
    [82] 彭朴等.表面活性剂合成工业中的烷基化催化剂进展.成都:2003工业表面活性剂技术经济研讨会.《精细与专用化学品》编辑部,2003:26-29
    [83] 秦冰.超高矿盐地层稠油乳化将年对策的探讨.表面活性剂/功能助剂在石油工业领域应用技术研讨会.西安:表面活性剂国家工程研究中心,2003:73-78
    [84] Jerry Casteel. Reservoir Efficiency Processes. In Miller C A, Hirasaki G J ed. Use of Surfactants for Improved Petroleum Recovery. Report of Workshop, Rice University, Houston, TX:2001
    [85] 曾胜文等.耐温耐盐聚合物优选评价进展.中国石化油田化学品研讨会论文集.南京:中国石油化工集团科学技术委员会,2001:272-278
    [86] Malcolm J. Pitts. Recent Field Work in the United States with Alkali-Surfactartt. In Miller C A, Hirasaki G J ed. Use of Surfactants for Improved Petroleum Recovery. Report of Workshop, Rice University, Houston, TX:2001
    [87] 赵福麟.EOR原理.东营:石油大学出版社,2001
    [88] 张威.天然混合羧酸盐复合驱油体系在新北油田的应用研究.表面活性剂/功能助剂在石油工业领域应用技术研讨会文集.西安:表面活性剂国家工程研究中心,2003:69-72
    [89] 杨瑞敏等.天然混合羧酸盐SDC-M高温高盐下的性能特点.2003表面活性剂技术经济文集.成都:《精细与专用化学品》编辑部,2003:251-254
    [90] 李宗石.烷基萘磺酸盐在三次采油中的应用.表面活性剂/功能助剂在石油工业领域应用技术研讨会文集.西安:表面活性剂国家工程研究中心,2003:49-56
    [91] 沈平平,俞稼镛主编.大幅度提高石油采收率的基础研究.石油工业出版社.北京:2001
    [92] 俞稼镛,宋万超,李之平.化学复合驱基础及进展.中国石油化工出版社.北京:2002
    [93] 陈咏梅等.化学驱中动态界面张力行为的研究进展.石油学报,2001,22(4):97-103
    [94] 卞锦儒等.温度和盐度对原油与碱水界面张力的影响(Ⅰ).油田化学,1986,3(3):167-173
    [95] 卞锦儒等.温度和盐度对原油与碱水界面张力的影响(Ⅱ).油田化学,1986,3(3):174-178
    [96] 王之玉等.动态法研究固液界面的吸附.油田化学,1989,6(3):247
    [97] 白宝君,刘翔鹦,李宇乡.我国油田化学堵水调剖技术新进展.石油钻采工艺,1998,20(3)
    [98] 白宝君,江如意,刘翔鹦.聚合物冻胶堵水调剖机理.97油田堵水技术论文集.石油工业出版社,1998
    [99] 赵永胜等.聚合物驱能否提高驱油效率的几点认识.石油学报,2001,22(3):43-46
    [100] 唐孝芬等.弱凝胶调驱技术研究和应用.全国第十一次堵水技术研讨会论文,2001.7,辽宁丹东
    [101] 王鉴,赵福麟等.高价金属离子与聚丙烯酞胺的交联机理.石油大学学报,1992,16(3)
    [102] 韩明,白宝君等.冻胶类堵剂对油水不同封堵能力研究.石油钻采工艺,1997,19(6)
    [103] 李宇乡.注水井调剖技术的应用和发展.SPE17844
    [104] 赵福麟等.聚合物交联机理研究.交联聚合物研讨会材料,1998.12,北京
    [105] Fielding R. C. etc. "In-Depth Drive Fluid Divertion Using an Evolution of Colloidal Dispersion Gels and New Bulk Gels: An Operational Case History of North Rainbow Ranch Unit", SPE/DOE 27773, 1994.4
    [106] Hardy M.. Improvememts in the Design of Water Shutoff Treatments. SPE 38562, 1997.9
    [107] Kvanvik, B. A. et al. "An Evaluation of Stable Gel Systems for Deep Injector Treatments and High-Temperature Producer Treatments," presented at the 8th European IOR Symposium, Vienna, Austria, May 15-17, 1995.
    [108] 赵秀娟.耐高温弱凝胶的研制及其调驱机理研究.西南石油学院硕士学位论文,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700