无碱驱油用三嗪类两性表面活性剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文设计并合成了十个均三嗪两性羧基甜菜碱表面活性剂BCn-m,研究了它们的结构与性能间的关系,探究了所合成表面活性剂与烷烃、大庆二厂、四厂原油间的界面活性与其结构的关系,并与相应的均三嗪磺酸盐表面活性剂作了对比,为驱油用表面活性剂的分子设计提供了一定的参考。
     首先,以均三嗪、氯乙酸钠、脂肪胺和N,N-二甲基-1,3-丙二胺为原料,通过分子设计合成了系列对称和不对称的双长链均三嗪羧基甜菜碱表面活性剂BCn-m。采用电喷雾质谱、飞行时间质谱、红外光谱、核磁共振1HNMR和13CNMR表征了它们的结构正确。
     研究了所合成均三嗪两性羧基甜菜碱表面活性剂的表面活性和界面活性。疏水链总碳数在16~22之间的表面活性剂呈现高的表面活性,其γcmc比其它表面活性剂低了5-20mNm-1;BC8-8、BC10-8、BC12-8、BC14-8、BC10-10和BC12-10的最低烷烃/水界面张力接近或在10-3mN m-1数量级,表面活性剂浓度增大时,烷烃/水的平衡界面张力和界面张力达到平衡的时间都变小;加入NaCl后,烷烃/水的平衡界面张力和界面张力达到平衡状态所需时间都变大;BC8-8、BC10-8和BC12-8在较宽浓度范围能使大庆二厂原油和大庆四厂原油油水界面张力降至10-2~10-3mN m-1甚至更低数量级;温度升高,BC8-8、BC10-8和BC12-8的界面活性增大;加入电解质时BC10-8与原油的平衡界面张力升高,而BC12-8与原油的平衡界面张力不同程度地降低;BC12-8与疏水碳链较短的表面活性剂复配时,其界面活性较高;BC12-8和BC10-8与聚丙烯酰胺有一定的配伍性;与Na2CO3复配时,体系的界面活性都升高。
     将均三嗪羧基甜菜碱表面活性剂BC8-8、BC10-8、BC12-8与相应的磺酸盐均三嗪表面活性剂进行了比较。它们的CMC和γcmc相近;它们与烷烃作用的耐盐性均较差;羧酸盐表面活性剂与大庆二厂原油间的界面活性更高。羧酸盐表面活性剂的耐温性、耐高浓度电解质性、同系物复配体系的稳定性、与聚丙烯酰胺的配伍性均好于磺酸盐表面活性剂。
This thesis has designed and synthesized ten kinds of carboxyl betaine surfactants derived from s-triazine. The relationship between surface activity and surfactant structure has been studied and the interface activities between the surfactants and alkane as well as crude oils from Daqing Plant2and Plant4have been explored. Comparison with corresponding sulfonate triazine surfactants has made to provide guidance for molecular design of flooding surfactants.
     Firstly, in this paper, symmetric and asymmetric-chain carboxyl betaine s-triazine surfactants BCn-m have been synthesized through molecular design with s-triazine, sodium chloroacetate, fatty amines and N,N-dimethyl-1,3-propanediamine as raw materials. As a result, the structures of the products are confirmed by mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance1HNMR and13CNMR.
     Surface activity and interface activity of the synthesized surfactants have been explored. Surface activity of surfactants with total carbon numbers of hydrophobic chains in the range of16to22are better, its γcmc is5~20mN m-1lower than that of other surfactants. Interface activity between the s-triazine surfactants and alkanes/crude oil is the research focus. Study shows that the lowest alkane/water interfacial tensions of BC8-8, and BC10-BC12-8BC14-8, BC10-10and BC12-10are close to10-3mN m-1. As the surfactant concentration increases, alkane/water interfacial tension and equilibrium time of dynamic interfacial tension are smaller. Alkane/water interfacial tension and equilibrium time of dynamic interfacial tension grows larger after the addition of NaCl. In a wide concentration range, the oil-water interfacial tensions between BC8-8, BC10-8, BC12-8and Daqing Plant2crude oil and Daqing plant4crude oil are down to10-2~10-3mN m-1. As the surfactant concentration increases, the equilibrium time of dynamic interfacial tension becomes shorter time, and the equilibrium interfacial tension increases first decreased and then increased, existing an optimal surfactant concentration. BC8-8, BC10-8and BC12-8exhibit temperature tolerance ability. After adding electrolyte, interfacial tension between BC10-8and crude oil increased while that of BC12-8reduced to some extents. BC12-8mixed with surfactants of shorter hydrophobic carbon chain show higher interfacial activity. Mixed system of BC12-8, BC10-8with Na2CO3show higher interfacial activity
     Lastly, comparision between BC8-8, BC10-8, BC12-8and corresponding sulfonate triazine surfactants were made. It shows that the carboxylate and sulfonate triazine surfactants exhibit poor salt tolerance while interacting with alkane. While interacting with Daqing Plant2crude oil, compared with sulfonate surfactants, carboxylate surfactants show greater temperature resistance, better electrolyte resistance, higher stability of the homologue complex systems and polyacrylamide.
引文
[1]李干佐,翟立民,郑立强,徐桂英,毛宏志.我国三次采油进展[J].日用化学品科学,1999增刊:1-9.
    [2]李成文,姜桂萍.采用热力采油提高原油采收率[J].国外油田工程,1993,2(3):11-13.
    [3]姜永奎,邬军,杨涛.英4井区热力采油实验及效果评价[J].吐哈油气,2010,15(4):358-361.
    [4]Liu Zhenyu, He Jinbao, Wang Huzhen. A new well test model for two region heavy oil thermal recovery considering gravity override and heat loss [J]. PETROL. EXPLOR. DEVELOP.,2010, 37(5):596-600.
    [5]Zhao Haiqian, Liu Xiaoyan, Liu Lijun. Study on New Thermal Insulation Construction of Thermal Recovery Boiler [J].Enery Procedia,2012,16:1466-1471.
    [6]M. Tamin, J. H. Abou-Kasserm, S. M. Farouq Ali. Recent developments in numerical simulation techniques of thermal recovery processes [J]. Journal of Petroleum Science and Engineering,2000,26:283-289.
    [7]Cui Maolei,Ding Yunhong, Yang Zhengming. Numerical simulation study on CO2 flooding in ultra-low permeability reservoirs [J]. Procedia Enviromental Sciences,2011,11:1469-1472.
    [8]Ji-Quan Shia, Sevket Durucana, Masaji Fujioka. A reservoir simulation study of CO2 injection and N2 flooding at the Ishikari coalfield CO2 storage pilot project, Japan [J]. International Journal of Greenhouse Gas Control,2008,2(1):47-57.
    [9]Shen Pingping, Chen Xinglong, Qin Jishun. Pressure characteristics in CO2 flooding experiments [J]. Petroleum Exploration and Development,2010,37(2):211-215.
    [10]S. G. Goodyear, I. R. Hawkyard, J. H. K. Masters et al. Subsurface Issues for CO2 Flooding of UKCS Reservoirs [J]. Chemical Engineering Research and Design,2003,81(3):315-325.
    [11]Ziqiu Xue, Takashi Ohsumi, Hitoshi Koide. An experimental study on seismic monitoring of a CO2 flooding in two sandstones [J]. Energy,2005,30(11-12):2352-2359.
    [12]M.S. Karambeigi, R. Zabihi, Z. Hekmat. Neuro-simulation modeling of chemical flooding [J]. Journal of Petroleum Science and Engineering,2011,78(2):208-219.
    [13]Tor Austad, Knut Taugb(?)l. Chemical flooding of oil reservoirs 2. Dissociative surfactant-polymer interaction with a negative effect on oil recovery [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995,103(1-2):73-81.
    [14]Mingzhe Dong, Shanzhou Ma, Qiang Liu. Enhanced heavy oil recovery through interfacial instability:A study of chemical flooding for Brintnell heavy oil [J].Fuel 2009,88(6):1049-1056.
    [15]S. Ma, M. Dong, Z. Li, et al. Evaluation of the effectiveness of chemical flooding using heterogeneous sandpack flood test [J].Journal of Petroleum Science and Engineering,2007,55(3-4):294-300.
    [16]M. F. Cohen. Application of the Petrov-Galerkin method to chemical-flooding reservoir simulation in one dimension [J]. Computer Methods in Applied Mechanics and Engineering,1983,41 (2):195-218.
    [17]Q Liu, M Dong, W Zhou, et al. Improved oil recovery by adsorption-desorption in chemical flooding [J]. Journal of Petroleum Science and Engineering,2004,43 (1-2):75-86.
    [18]Yuan Shiyi, N. Van Quy. Effects of the main parameters of the chemical flooding process [J]. Journal of Petroleum Science and Engineering,1989,3(1-2):85-96.
    [19]Liu Jinfeng, Ma Lijun, Mu Bozhong, et al. The field pilot of microbial enhanced oil recovery in a high temperature petroleum reservoir [J]. Journal of Petroleum Science and Engineering,2005,48(3-4):265-271.
    [20]Alireza Soudmand-asli, S. Shahab Ayatollahi, Hassan Mohabatkar, et al. The in situ microbial enhanced oil recovery in fractured porous media [J]. Journal of Petroleum Science and Engineering,2007,58(1-2):161-172.
    [21]Harish Suthar, Krushi Hingurao, Anjana Desai, et al. Evaluation of bioemulsifier mediated Microbial Enhanced Oil Recovery using sand pack column [J]. Journal of Microbiological Methods,2008,75(2):225-230.
    [22]Qingxin Li, Congbao Kang, Hao Wang, et al. Application of microbial enhanced oil recovery technique to Daqing Oilfield [J]. Biochemical Engineering Journal,2002,11(2-3):197-199.
    [23]N. K. Bordoloi, B. K. Konwar. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions [J]. Colloids and Surfaces B:Biointerfaces,2008,63(1):73-82.
    [24]Ramkrishna Sen. Biotechnology in petroleum recovery:The microbial EOR [J]. Progress in Energy and Combustion Science,2008,34(6):714-724.
    [25]Lewis R Brown. Microbial enhanced oil recovery (MEOR) [J]. Current Opinion in Microbiology,2010,13(3):316-320.
    [26]DE GROOT M. Flooding process for recovering oil from subterranean oil bearing strata [P].US,2233382.1931.
    [27]HOLBROOK O C. Surfactant-water secondary recover process [P]. US,3006411.1961.
    [28]杨志刚.三次采油技术及进展[J].化工进展,2011,30:420-423.
    [29]V. C. Santanna, F. D. S. Curbelo, T. N. Castro Dantas, et al. Microemulsion flooding for enhanced oil recovery [J]. Journal of Petroleum Science and Engineering,2009,66(3-4):117-120.
    [30]Gokhan Coskuner. Hybrid foam flooding [J]. Journal of Petroleum Science and Engineering,1993,10(2):109-115.
    [31]Kevin C. Taylor, Laurier L. Schramm. Measurement of short-term low dynamic interfacial tensions:Application to surfactant enhanced alkaline flooding in enhanced oil recovery [J]. Colloids and Surfaces,1990,47:245-253.
    [32]Da-Kuang Han, Cheng-Zhi Yang, Zheng-Qing Zhang, et al. Recent development of enhanced oil recovery in China [J]. Journal of Petroleum Science and Engineering,1999,22(1-3):181-188.
    [33]MONSON L T. Flooding process for recovering fixed oil from subterranean oil bearing strata [P]. US,1823440.1931.
    [34]赵颖华,徐艳姝,王海峰,等.木质素磺酸盐的改性及其在三次采油中的应用[J].大庆石油地质与开发,2005,24(4):90-92.
    [35]张树彪,乔卫红,王绍辉,等.改性木质素磺酸盐与石油磺酸盐的复配研究[J].大连理工大学学报,2000,40(3):297-300.
    [36]李道山,田燕春,彭文,等.在表面活性剂驱油中木质素磺酸盐作为牺牲剂的实验室评价[J].国外油田工程,200,9:1-3.
    [37]焦艳华,徐志刚,乔卫红,等.改性木质素磺酸盐表面活性剂合成及性能研究[J].大连理工大学学报,2004,44(1):44-47.
    [38]黄宏度,吴一慧,王尤富,等.石油羧酸盐和磺酸盐复配体系的界面活性[J].油田化学,2000,17(1):69-72.
    [39]江建林,陈秋芬,陈锋,等.天然羧酸盐驱油剂ZY5在高温高盐高钙镁条件下的界面活性与岩心驱油能力[J].油田化学,2001,18(2):173-176.
    [40]陈丽文.驱油用石油磺酸盐界面张力与驱油效果研究[J].油气田地面工程,2009,28(9):19-20.
    [41]任敏红,董玲,帕提古丽,等.廉价石油磺酸盐表面活性剂KPS-2的合成及性能[J].石油学报,2002,23(2):101-104.
    [42]段友智,李阳,范维玉,等.石油磺酸盐组成及其油水体系界面张力的关系研究[J].石油化工高等学校学报,2009,22(3):46-50.
    [43]祝仰文.聚合物驱后石油磺酸盐体系提高采收率室内实验研究[J].石油勘探与开发,2007,34(2):212-215.
    [44]李华斌,杨振宇,杨林,等.大庆油田鼠李糖脂生物表面活性剂提高采收率[J].西南石油学院学报,2001,23(1):25-28.
    [45]张路,罗澜,赵濉,俞稼镛.表面活性剂亲水-亲油能力对动态界面张力的影响[J].物理化学学报,2001,17(1):62-65.
    [46]方文超,唐善法,胡小冬,等.阴离子双子表面活性剂的油水界面张力研究[J].石油钻采工艺,2010,32(5):86-89.
    [47]吴文祥,闫伟,刘春德.磺基甜菜碱BS11的界面特性研究[J].油田化学,2007,24(1):57-59.
    [48]宋文玲,方琪,伊庆庵,等.甜菜碱活性剂驱油体系对油水界面张力的影响[J].大庆石油地质与开发,2008,27(5):105-107.
    [49]郭东红,辛浩川,崔晓东,等.新型耐温耐盐表面活性剂驱油体系的研究[J].精细石油化工进展,2003,4(10):1-7.
    [50]吴文祥,张武,刘春德.磺基甜菜碱BS11/聚合物复合体系驱油实验研究[J].油田化学,2007,24(1):60-62.
    [51]罗玉祥,王海鹏,刘超卓,等.原油界面张力系数与温度关系的实验研究[J].科学技术与工程,2009,9(13):3758-3761.
    [52]梁保红,葛际江,张贵才,等.聚氧丙烯醚型表面活性剂结构及矿化度对油水界面张力的影响[J].西安石油大学学报(自然科学版),2008,23(2):58-62.
    [53]杨晓鹏,郭东红,辛浩川,等.脂肪醇聚氧乙烯醚磺酸盐NNA系列高温高盐条件下界面活性研究[J].油田化学,2009,26(4):422-424.
    [54]王静,郭东红.矿化度对三元复合体系瞬时界面张力的影响[J].精细与专用化学品,2010,18(9):17-20.
    [55]王顺,任水英,奚惠民,等.复合碱、盐多元驱各组分对油水界面张力和稠油黏度的影响[J].精细化工,2007,24(7):701-705.
    [56]孙利德,乔琦.克拉玛依油田二中区ASP三元复合驱油体系的油水界面张力特性研究[J].新疆石油科技,1997,1(7).45-51.
    [57]中国洗涤品工业协会.第十届国际表面活性剂和洗涤剂会议论文集[C].上海:高峰,王海舟,姜洋,等,2008.
    [58]刘德新,杨景纯,李子军,等.石油氧化皂及其复配体系界面活性的研究[J].江汉石油学院学报,1996,18(4):58-63.
    [59]刘春德,王德民.一种氨基酸型表面活性剂配方体系及其在三次采油中的应用[P].中国,CN1498939。
    [60]刘春德,蒲子明.一种提高原油采收率的组合物[P].中国,CN1400275.
    [61]刘春德,王德民,王彦伟,等.羧酸盐表面活性剂、其配方体系以及在三次采油中的应用[P].中国,CN1730144.
    [62]李柏林,程杰成.二元无碱驱油体系研究[J]油气田地面工程,2004,23(6):16.
    [63]王者琴,夏惠芬,王刚,等.无碱超低界面张力下二元复合体系对水驱残余油采收率的影响[J].大庆石油学院学报,2007,31(3):25-27.
    [64]鄂金太.无碱二元复合体系性能评价[J].大庆石油学院学报,2008,32(5):32-34.
    [65]牛瑞霞,程杰成,龙彪,等.二元无碱驱油体系的室内研究与评价[J].新疆石油地质,2006,27(6):733-735.
    [66]夏惠芬,王海峰,王刚,等.聚合物/甜菜碱表面活性剂提高水驱后残余油采收率研究[J].中国石油大学学报(自然科学版),2007,31(6):74-78.
    [67]高明,宋考平,陈涛平,等.适合低渗透砂岩油层的新型磺基甜菜碱表面活性剂的研究[J].油田化学,2008,25(3):265-267.
    [68]张武.驱油体系对中性润湿性油藏驱油效果室内研究[D].大庆:大庆石油学院,2007.
    [69]王业飞,李继勇,赵福麟.高矿化度条件下应用的表面活性剂驱油体系[J].油气地质与采收率,2001,8(1):67-69.
    [70]鄂金太.驱油用二元复合体系的性能评价研究[J].油气田地面工程,2007,26(1):20-21.
    [71]X. Li, Z. Hu, H. Zhu, S. Zhao, D. Cao. Synthesis and properties of novel alkyl sulfonate gemini surfactants [J]. J. Surfactants Deterg.,2010,13:353-359.
    [72]Chunli Xue, Hailin Zhu, Tingting Zhang, et al. Synthesis and properties of novel alkylbetaine zwitterionic gemini surfactants derived from cyanuric chloride [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011,375(1-3):141-146.
    [73]Weihong Qiao, Jing Li, Huan Peng, et al. Synthesis of single and double long-chain 1,3,5-triazine amphoteric surfactants and their surface activity [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,384(1-3):612-617.
    [74]Daniele Pezzoli, Laura Ciani, Sandra Ristori, Alberto Cigada, Roberto Chiesa, Gabriele Candiani. Formulation of new reducible liposomes for gene delivery [J].Drug Discovery Today,2010,15(23-24):1102.
    [75]袁敏.三元复合驱对地层的伤害实验研究[D].大庆:东北石油大学,2010.
    [76]Thomas Rosenau,Antje Potthast, Paul Kosma. Studies into reactions of N-methylmorpholine-N-oxide (NMMO) and its hydrates with cyanuric chloride [J]. Tetrahedron,2002,58(49):9809-9815.
    [77]周俊峰,杨林,张婷婷,等.含三嗪环非离子表面活性剂制备及其性能研究[J].天津化工,2010,24(5):27-29.
    [78]Tomohiro Seki, Shiki Yagai, Takashi Karatsuand Akihide Kitamura. Formation of Supramolecular Polymers and Discrete Dimers of Perylene Bisimide Dyes Based on Melamine-Cyanurates Hydrogen-Bonding Interactions [J]. J. Org. Chem.,2008,73 (9):3328-3335.
    [79]Savithri Ramurthy, Marvin J. Miller. Framework-Reactive Siderophore Analogs as Potential Cell-Selective Drugs. Design and Syntheses of Trimelamol-Based Iron Chelators [J]. J. Org. Chem.,1996,61(12):4120-4124.
    [80]Zhanfeng Xie, Yujun Feng. Synthesis and Properties of Alkylbetaine Zwitterionic Gemini Surfactants, Journal of Surfactants and Detergents,13(2010)51-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700