华北土石山区基于森林植被演替规律的森林健康的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国华北土石山区由于多年治理,森林覆盖率不断增加,然而,由于目前该地区森林存在着人工林面积较大,树种单一,中幼林、纯林比例较高,生物多样性较低,碳汇能力较弱等问题,因此,如何按照森林植被演替规律提高森林的健康水平,提高森林的生物多样性和土壤有机碳含量成为该地区面临的新问题。本研究主要是以北京市密云潮关西沟为研究对象,对华北土石山区森林植被演替规律和基于演替规律的群落结构、物种多样性和森林有机碳库等森林植被生态学特性进行研究,在此基础上提出了森林健康评价指标,并对潮关西沟研究区和八达岭森林健康试验示范区森林健康进行了初步评价,提出了八达岭森林健康试验示范区森林健康调控的技术方案,为华北土石山区森林健康经营,发挥森林生态系统的多种服务功能提供理论与技术支持。
    本研究采用野外调查和室内实验相结合,定性判断和定量分析相结合,对研究区进行了深入的调查研究,取得了以下主要成果:
    (1)经过调查,以吴征镒分类系统为基础,把潮关西沟的天然森林植被划分为3个植被型,17个群落类型。其中,温性针叶林有侧柏林;落叶阔叶林包括栎树林、栎树椴树林、山杨栎树林、黑桦椴树林、榆树椴树林、山杨榆树椴树林、山杨椴树林、臭檀林、栾树林、山杏丁香林和臭椿林;落叶阔叶灌木有荆条酸枣小叶朴灌丛、荆条三裂绣线菊灌丛、三裂绣线菊小叶朴灌丛、荆条酸枣灌丛和平榛灌丛。
    在该地区天然植被演替规律分析中,综合分析了封育时间、坡向、侵蚀程度、优势种组成变化、群落内主要树种的更新与枯树情况、以及群落组成树种的种群类型,初步得出的该地区植被演替序列为:白羊草群落→平榛灌丛→绣线菊灌丛→荆条灌丛→山杨林、榆树林→椴树林→黑桦林→栎树林。其中榆树林、椴树林和栎树林的主要优势种为春榆、蒙椴和柞栎。基于演替,分析了森林群落的组成与结构、生物量与土壤有机质变化。结果表明群落群落植被生物量随着演替的进程呈增加趋势,土壤有机质含量先升高后降低。
    (2)在多样性研究方面,通过对潮关西沟天然森林植被乔木、灌木和乔灌木的物种多样性进行了研究,结果表明:随着演替的进行,乔灌木的物种多样性并不总是增加的,在后期,多样性呈下降趋势。此外,还研究了该地区天然植被乔灌木的种间联结和生态位,在种对正联结方面,演替优势种中,种间正联结非常显著的有柞栎和蒙椴、柞栎和迎红杜鹃、蒙椴和山杨、蒙椴和白蜡、山杨和白蜡、春榆和
In the rocky mountain area of North of China, forest coverage has increasedcontinuously after soil and water treatment. However, some new problems have appeared.For example, the afforestration area is too large compared with natural forest;planted treespecies are less;proportions of pure forest, and half-mature, sapling forest are too high;forest biodiversity and forest carbon stocking ability are low. Therefore, we have to solvethe new problems in this region about how to improve the level of forest health, forestbiodiversity and forest carbon stocking ability according to forest plant succession rule.In this research, we mainly researched forest succession rule, forest community structure,biodiversity and forest organic carbon in experimental site of the rocky mountain ofNorth of China, and based on them we also brought forward assessment indexes of foresthealth and evaluated the health level forest in experimental site. Then put forwardtechnique plan of control of forest health in Badaling.which will afford theory andtechniques for forest health management and forest ecosystem service function in therocky mountain of North of China.
    Combining methods of investigation and experiment, qualitative judgment andquantitative analysis. The results are as follows:
    1 Based on Wu Zhengyi plant classification system, the forest vegetations wereclassified into 3 vegetation types and 17 communities. Among them, temperate coniferforests include Form. Platycladus orientalis. Deciduous broadleaved forests include Ass.Qurcus sp, Ass. Qurcus sp.+Tilia sp., Ass Populus davidiana+ Qurcus sp., Ass. Batuladahurica + Tilia sp., Ass. Ulmus japonica+ Tilia sp., Ass. Ulmus japonica+ Populusdavidiana+Tilia sp, Ass. Populus davidiana+Tilia sp., Ass. Evodia daniellii , Ass.Koelreuteria paniculata, Ass. Syringa pekinensis+ Prunus sibirica, Ass. Ailanthusaltissima. Deciduous broadleaved scrubs include Ass. Vitex negundo + Zizyphus jujuba +Celtis bungeana, Ass. Vitex negundo + Spiraea trilobata, Ass. Spiraea trilobata + Celtisbungeana, Ass. Vitex negundo + Zizyphus jujuba and Form. Corylus heterophylla.
    Furthermore, through analyzing synthetically region closed type, aspect of slope,degree of soil erosion, changes of dominant species in communities, regeneration anddead trees in different communities and population type, we have gotten the plantcommunity succession sequence in Chaoguanxigou. The result shows that theconsequence of plant community succession is: Form Corylus heterophylla, FormSpiraea trilobata, Form Vitex negundo, Form. Populus davidiana and Form Ulmusjaponica, Form Batula dahurica + Tilia sp., Form Batula dahurica, Form Qurcus sp..Inthe course of plant community succession, the composition of tree species and structure,
    community biomass and soil organic matter were analyzed. The results show thatcommunity biomass increase while soil organic matter increase at first then decease atlast period.2 In the aspect of biodiversity of communities, we researched the speciesbiodiversity of tree, shrubs and community that combining trees and shrubs. The resultshows that with succession proceeding, the species diversity increase at first and begindecrease in the last period. The species diversity of trees is higher than the one of naturalscrubs and the species diversity of natural scrubs is higher than the one of plantations.Among dominant species of main succession communities, the interspecific associationsof Qurcus dentata and Batula dahurica, Qurcus dentata and Rhododendronmucronulatum, Tilia mongolica and Populus davidiana, Tilia mongolica and Fraxinussp., Populus davidiana and Fraxinus sp., Ulmus japonica and Syringa pekinensis,Ulmus japonica and Deutzia sp. are obvious. On the other hand, the consequence of nichebreadth of main dominant species is: Vitex negundo> Spiraea trilobata> Tilia mongolica>Qurcus dentata> Ulmus japonica> Populus davidiana> Batula dahurica. Another indexreflecting the relation between species is niche overlap. The value of niche overlap ofTilia mandshurica and Ulmus japonica, Tilia mongolica and Tilia mandshurica, Tiliamongolica and Ulmus japonica in tree pairs are 0.9130, 0.5309, 0.5160, 0.3535 and thesespecies pairs have high niche overlap. The niche overlap between Vitex negundo andZizyphus jujuba, Spiraea trilobata and Rhododendron mucronulatum, Vitex negundo andCeltis bungeana, Myriopnois dioica and Rhododendron mucronulatum are high and theirvalues are 0.9470、0.8955、0.6617、0.6016. The result shows that the species diversityof natural trees is higher than the one of plantations in Badaling.3 Carbon storage of vegetation in communities increase with plant communitysuccession, but the soil organic carbon density increase at the beginning and decrease atlast period of succession. The results of community carbon research have shown that theaverage organic carbon density of different communities is 239.67 t/hm2, the organiccarbon densities of vegetation, litter and soil are 36.06 t/hm2、16.24 t/hm2、187.37 t/hm2and are 15.04%, 6.78%, 78.18% of total organic carbon in communities. The organiccarbon of soil is highest. The average carbon density of vegetations is 36.06t/hm2. Thecarbon density above ground and roots of vegetation are 30.43t/hm2 and 5.63 t/hm2respectively and are 84.39 % , 15.61 % of total vegetation carbon storage. On thecomposition of vegetation carbon storage, the carbon densities of trees, shrubs andgrasses are 24.33 t/hm2, 5.77 t/hm2 and 0.32 t/hm2 respectively and are 79.96%, 18.98%and 1.06% of total vegetation carbon above ground. On the other hand, we also make outthe regression equations of changes of soil total organic carbon and labile organic carbon
    with depth and analyze the regulation of roots with different diameter and soil depth.The water-holding capacity of litter, capillary porosity of soil, infiltration ability ofsoil and water holding ability increase at beginning and decrease in the last period ofsuccession. The values of communities that dominant species include Tilia sp. are highest.The runoff yield is in the reverse order comparing with the indexes above.4 Based on analysis of forest succession, biodiversity and organic carbon, the healthstatements were evaluated. Forest health levels were divided into 5, the concept of indexof forest health was put forward and the equation of it was provided. Then, put forwardfive assessment indexes of succession degree, biodiversity, organic carbon, naturalregeneration, hierarchical structure. According to the research results above, theassessment indexes of forest health were sieved out and the simple and practicalstandards of all of them are given and calculate health assessment indexes ofrepresentative community in experimental site. It shows that community average healthindexes are 2.2 and 2.9, health grades are 2 and 3 respectively in Chaoguanxigou andBadaling. Chaoguanxigou's health degree is superior to Badaling's. Through computing,the sequence of health statements of different communities in Chaoguanxigou are Ass.Ulmus japonica+ Tilia sp.> Ass. Syringa pekinensis+ Prunus sibirica> Ass. Ulmusjaponica+ Populus davidiana+Tilia sp> Form. Ailanthus altissima> Ass. Populusdavidiana+Tilia sp., Ass. Batula dahurica + Tilia sp. >Ass. Qurcus sp.> Form.Koelreuteria paniculata >Ass. Evodia daniellii and Ass. Vitex negundo + Zizyphusjujuba> Ass. Spiraea trilobata + Celtis bungeana >Ass. Corylus heterophylla. Thesequence of health statements of different communities in Badaling are Form. Juglansmandshurica > weedtree forest> Ass. Platycladus orientalis+Cotinus coggygriavar.cinerea> Form. Pinus tabulaeformis, Ass. Larix principis-rupprechtii and Ass. Pinustabulaeformis +Acer truncatum > Form. Robania pseudoacacia > Form. Pinus amandi.5 According the forest actuality of experimental site in Badaling, the forest healthcontrol aim which give priority to ecology and society benefit were established. the foresthealth control aim structure were put forward besides of tree compose, biodiversity,organic carbon, forest hierarchy and age structure, forest health grade et. We divided intoforest health control phase and put forward commonly method of forest control.According to practice condition and control aim of forest health in experimental site. Atlast the forest control technological plan of experimental site was made out. Lay afoundation for forest health research in rocky mountain area in North of China.
引文
[1] 安树青,王峥峰,朱学雷.土壤因子对次生森林群落演替的影响[J]. 生态学报,1997, 17(1):45~50.
    [2] 安树青,李升峰,王峥峰.南京灵谷寺森林动态变化的研究[J].植物学报,1997,39(7):661~666.
    [3] 安树青.土壤因子对次生森林群落多样性发育和维持的影响[J]. 武汉植物学研究,1997,5(2):143~150.
    [4] 安树青,赵儒林.中国北亚热带次生森林植被的特征分析[J]. 南京大学学报,1991,27:323~331.
    [5] 陈庆强,沈承德,易惟熙.土壤碳循环研究进展[J]. 地球科学进展 1998,13(6):555-563.
    [6] 陈雄文,王凤友.林窗模型 BKPF 模拟伊春地区红松针阔叶混交林采伐迹地对气候变化的潜在反应[J]. 应用生态学报,2000,11(4):513~517.
    [7] 程根伟,罗辑.贡嘎山亚高山森林自然演替特征与模拟[J]. 生态学报,2002,(22)7: 1049~1056.
    [8] 程先富,史学正,于东升,潘贤章.兴国县森林土壤有机碳库及其与环境因子的关系[J]. 地理研究,2004,23(2): 211~217.
    [9] 丛沛桐,赵则海,张文辉,史军,祖元刚. 东灵山辽东栎群落演替的连续时间马尔可夫过程研究[J]. 木本植物研究,2000,20(4):438~443
    [10] 崔国发,成克武,申国珍等. 北京喇叭沟门林区森林植被现状及分类[J]. 北京林业大学学报,22(4): 46~51
    [11] 达良俊,杨永川,宋永昌.浙江天童国家森林公园常绿阔叶林主要组成种的种群结构及更新类型[J]. 植物生态学报,2004,28(3):376~384.
    [12] 董厚德,唐炯炎.辽东山地“乱石窖”植被演替规律的初步研究[J]. 植物生态学与地植物学丛刊,1965,(1):117~130.
    [13] 丁圣彦,宋永昌.常绿阔叶林演替过程中马尾松消退的原因[J]. 植物学报,1998,40(8):755~760.
    [14] 丁圣彦,宋永昌.浙江天童国家森林公园常绿阔叶林演替前期的群落生态学特征[J]. 植物生态学报,1997,23(2):197~207.
    [15] 丁圣彦,宋永昌.浙江天童常绿阔叶林演替系列优势种光合生理生态的比较[J]. 生态学报,1999,19(3):318~323.
    [16] 丁圣彦.常绿阔叶林演替系列中木荷和栲树呼吸作用特性的比较[J]. 生态学报,2001,21(1):61~67.
    [17] 丁圣彦.常绿阔叶演系列比较生态学[M]. 开封:河南大学出版社,1999.
    [18] 丁圣彦,宋永昌. 常绿阔叶林植被动态研究进展[J]. 生态学报, 2004,24(8): 1769-1779.
    [19] 方运霆,莫江明,SandraBrown,等.鼎湖山自然保护区土壤有机碳贮量和分配特征[J]. 2004, 24(1): 135~142.
    [20] 方华军,杨学明,张晓平.东北黑土有机碳储量及其对大气 CO2 的贡献[J]. 水土保持学报,2003,17(3): 9~20.
    [21] 高贤明,马克平,陈灵芝.暖温带若干落叶阔叶林群落物种多样性及其与群落动态的关系[J]. 植物生态学报,2001,25(3):283~290.
    [22] 高英志,汪诗平,韩兴国等.退化草地恢复过程中土壤氮素状况以及与植被地上绿色生物量形成关系的研究[J]. 植物生态学报,2004, 38(3): 285~293.
    [23] 郭全帮,刘玉成,李旭光.缙云山森林次生演替序列优势种群的生态位[J]. 西南师范大学学报,1997,22(1):73~78.
    [24] 郭全邦,刘玉成,李旭光.缙云山森林次生演替序列群落的物种多样性动态[J]. 应用生态学报,1999 10(5):521~524.
    [25] 翰密斯.凯密斯(加拿大). 平衡的法则:林业与环境问题[J]. 中国环境科学出版社,1996.
    [26] 黄忠良.南亚热带森林演替动力分析[J]. 热带亚热带植物学报,1996,4(4):42~49.
    [27] 韩玉萍,李雪梅,刘玉成.缙云山森林群落次生演替序列的垂直结构与物种多样性的关系[J]. 西南农业大学学报,1999,21(4): 391~396.
    [28] 韩玉萍,李雪梅,刘玉成.缙云山常绿阔叶林次生演替序列群落物种多样性动态研究[J]. 西南师范大学学报(自然科学版), 2000,25(1):62~68.
    [29] 蒋有绪,卢俊培等. 中国海南岛尖峰岭热带林生态系统[M]. 北京:科学出版社,1991
    [30] 金则新.浙江天台山常绿阔叶林次生演替序列群落物种多样性[J]. 浙江林学院学报, 2002,19(2):133~137.
    [31] 林鹏编著. 植物群落学[M]. 1986,上海:上海科学技术出版社.
    [32] 李成茂. 密云水库集水区可持续发展评价及其调控对策研究[D]. 硕士论文,2003,北京林业大学.
    [33] 刘加珍,陈亚宁,李卫红等. 塔里木河下游植物群落分布与衰退演替趋势分析[J]. 生态学报, 2004, 24(2):379~383.
    [34] 刘玉成.四川缙云山常绿阔叶林次生演替及其物种多样性的研究[J]. 武汉植物学研究,1993,11(4):327~336.
    [35] 刘玉成,杜道林,岳全.缙云山森林次生演替中优势种群的特性与生态因子的关联度分析[J]. 植物生态学报,1994,18(3):283~289.
    [36] 刘玉成,缪世利,杜道林.四川缙云山常绿阔叶林次生演替及其物种多样性的研究[J]. 武汉植物学研究,1984,11(4):327~336.
    [37] 李翠环,余树全,周国模.亚热带常绿阔叶林植被恢复研究进展[J]. 浙江林学院学报,2002,19(3):325~329.
    [38] 李裕元,邵明安.子午岭植被自然恢复过程中植物多样性的变化[J]. 生态学报,2004,24(2):252~260.
    [39] 李淑芬,俞元春,何晟.南方森林土壤溶解有机碳与土壤因子的关系[J]. 浙江林学院学报,2003,20(2):119~123.
    [40] 李淑芬,俞元春,何晟.土壤溶解有机碳的研究进展[J]. 土壤与环境,2002,11(4):422~429.
    [41] 区智,李先砚,吕仕洪等.桂西南岩溶植被演替过程中的植物多样性[J]. 广西科学,2003,10(1):63~67.
    [42] 李飙,昝启杰,李鸣光.黑石顶森林中次生裸地上的群落演替进程研究[J]. 热带亚热带植物学报,1997,5(3):16~21.
    [43] 李兴东,宋永昌.浙江东部常绿阔叶林次生演替的随机过程模型[J]. 植物生态学与地植物学学报,1993,17(4):345~351.
    [44] 李兴东,宋永昌.常绿阔叶林次生演替的一种系统动力学模型[J]. 生态学报,1993,13(3):287~290.
    [45] 李志安,王伯荪.鼎湖山南亚热带季风常绿阔叶林凋落物的养分动态[J]. 热带亚热带植物学报,1998,6(3):209~215.
    [46] 李雪梅,刘玉成,李旭光.缙云山森林次生演替序列群落结构、物种多样性与稳定性关系[J]. 西南师范大学学报,1998,23(1):79~84.
    [47] 吕亚强.望天树林次生演替趋势初探[J]. 云南林业科技,2001,(1):21~25.
    [48] 雷泞霏,苏智先,宋会兴.缙云山常绿阔叶林不同演替阶段植物生活型谱比较研究[J]. 应用生态学报,2002,13(3):267~270.
    [49] 雷相东,唐守正,李冬兰,陈宝升,王福军.东北过伐林灌木层物种多样性与林分因子的典型相关分析[J]. 应用与环境生物学报,2002,8(4):346~350.
    [50] 雷相东,唐守正.林分结构多样性指标研究综述[J]. 林业科学,2002,38(3): 140~146.
    [51] 雷相东,唐守正.群落本质多样性排序及应用[J]. 林业科学研究,2002,15(3):285~290.
    [52] 雷相东,唐守正,李冬兰,陈宝升,张则路.影响天然林下层植物物种多样性的林分因子的研究[J]. 2003,22(3):18~22.
    [53] 蒋有绪,卢俊培等. 中国海南岛尖峰岭热带林生态系统[M]. 北京:科学出版社,1991.
    [54] 马钦彦,陈遐林,王娟等.李文宇华北主要森林类型建群种的含碳率分析[J]. 北京林业大学学报, 2002,2(5/6):96~100.
    [55] 马钦彦,谢征鸣.中国油松林储碳量基本估计[J]. 北京林业大学学报,1996,18(3):31~34.
    [56] 马克明,孔红梅,关文彬,傅伯杰. 生态系统健康评价:方法与方向[J]. 生态学报,2001 21(12): 2106~2116.
    [57] 马克平,黄建辉,于顺利等.北京东灵山区植物群落多样性研究.II丰富度、均匀度和物种多样性指数[J]. 生态学报,1995,15(3):268~2773.
    [58] 倪进治,徐建民,谢正苗.土壤水溶性有机碳的研究进展[J]. 生态环境,2003,12(1):71~75.
    [59] 潘根兴.中国土壤有机碳和无机碳库量研究[J]. 科技通报, 1999, 15(5):330~332.
    [60] 彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展[J]. 土壤学报, 2004, 41(4):618~623.
    [61] 彭少麟.森林群落稳定性与动态测度[J]. 广西植物,1987,7(1):67~72.
    [62] 彭少麟.南亚热带森林群落动态学[M]. 北京:科学出版社,1996.
    [63] 彭少麟.植物群落演替研究-动态研究的方法[J]. 生态科学,1994,2:117~119.
    [64] 彭少麟,方炜.南亚热带森林演替过程生物量和生产力动态特征[J]. 植物生态学报与地植物学.1990,14(1):23~32.
    [65] 彭少麟,方炜,任海.鼎湖山厚壳桂群落演替过程的组成和结构动态[J]. 植物生态学报,1998,22(3):45~249.
    [66] 彭少麟,方炜.鼎湖山植被演替过程优势种群动态研究 III. 黄果厚壳桂和厚壳桂种群[J]. 热带亚热带植物学报,1994,2(4):79~87.
    [67] 彭少麟,方炜.鼎湖山植被演替过程中椎栗和荷木种群的动态[J]. 植物生态学报,1995,19(4):311~318.
    [68] 曲仲湘,文振旺.琅琊山林木现况分析[J]. 植物学报,1953(3):349~369.
    [69] 曲仲湘.南京灵谷寺森林现况的分析[J]. 植物学报,1952,2(1):18~45.
    [70] 区智,李先砚,吕仕洪等.桂西南岩溶植被演替过程中的植物多样性[J]. 广西科学,2003,10(1):63~67.
    [71] Rexford Daubenmire 著,陈庆诚译. 植物群落-植物群落生态学教程[M]. 北京:人民教育出版社, 1981:113~298.
    [72] 任海,彭少麟.鼎湖山森林生态系统演替过程中的能量生态特征[J]. 生态学报,1999,19(6):817~825.
    [73] 任海,蔡锡安,饶兴权,等.植物群落的演替理论[J]. 生态科学,2001,20(4):59~67.
    [74] 斯嘉特.(李承彪等译).森林动态理论-森林演替模型的生态学原理[M]. 贵阳:贵州科技出版社,1992,51~263.
    [75] 沈宏,曹志洪,胡正义.1999.土壤活性有机碳的表征及其生态效应[J]. 生态学杂志,18(3):32~38.
    [76] 宋会兴,苏智先,彭远英. 渝东山地黄壤肥力变化与植物群落演替的关系[J]. 应用生态学报,2005,16(2)∶223~226.
    [77] 苏宏新,桑卫国.宏观植物生态模型的研究现状与展望[J]. 植物生态学报,2002,26(增刊)98~106.
    [78] 宋永昌,王祥荣,由文辉.缙云山森林次生演替序列群落结构、物种多样性与稳定性关系[J]. 西南师范大学学报(自然科学版), 23(1):79~84.
    [79] 桑卫国,陈灵芝,马克平.蒙古栎红松林演替模型 FOROAK 的研究[J]. 植物学报 1999,41(6):658~668.
    [80] 桑卫国,李景文.小兴安岭南坡红松林动态模拟[J]. 生态学报.1998, 18 (1):38~47.
    [81] 桑卫国.暖温带落叶阔叶林动态变化的模拟研究[J]. 生态学报.2004,24(6):1194~1198.
    [82] 桑卫国,马克平,陈灵芝,郑豫.森林动态模型概论[J]. 植物学通报, 1999,16(3):193~200.
    [83] 孙航,周浙昆,俞宏渊.喜马拉雅东部雅鲁藏布江大峡弯地区热带森林植被的次生演替规律初探[J]. 云南植物研究,1996,18 (3): 308~316.
    [84] 石胜友,李旭光,王周平等.缙云山风灾迹地生态恢复过程中的群落动态研究[J]. 西南师范大学学报(自然科学版),2001,26(1):57~61.
    [85] 铁牛.长白山云冷杉针阔混交林经营模式研究[D]. 北京林业大学博士论文. 2005.
    [86] 汤孟平,唐守正,洪玲霞等.森林类型多样性最大覆盖模型与一种可行算法[J]. 2003,39(3): 70~75.
    [87] 唐罗忠,生原喜久雄,黄宝龙等.江苏省里下河地区杨树人工林的碳储量及其动态.南京林业大学学报(自然科学版), 2004, 28(2): 1~6.
    [88] 汤孟平,唐守正,李希菲等.树种组成指数及其应用[J]. 林业资源管理,2003,(2): 33~36.
    [89] 田自强,陈王月,赵常明等.中国神农架地区的植被制图及植物群落物种多样性[J]. 生态学报,24(8):1611~1621.
    [90] 王继兴,赖慧武,刘达成. 八达岭森林旅游规划与管理信息系统[J]. 北京林业大学学报2003, 25(特刊),19~23.
    [91] 王淑平,周广胜,高素华等. 中国东北样带土壤活性有机碳的分布及其对气候变化的响应[J]. 植物生态学报 2003,27(6):780~785.
    [92] 王晶,解宏图,朱平,李晓云.土壤活性有机质(碳)的内涵和现代分析方法概述[J]. 生态学 杂志. 2003,22(6):109~112.
    [93] 王战,傅沛云,邓玉成.动态地植物学与未来的应用生态学展望[J]. 应用生态学报,1997,8(4):337~340.
    [94] 王伯荪,马曼杰.鼎湖山自然保护区森林群落的演变[J]. 热带亚热带森林生态系统研究,1982,(1):142~156.
    [95] 王伯荪,彭少麟.鼎湖山森林群落分析.物种联结性[J]. 中山大学学报(自然科学版),1983,(4):27~35.
    [96] 王伯荪,彭少麟.鼎湖山森林群落分.相似性与聚类分析.中山大学学报(自然科学版),1985,(1):31~38.
    [97] 王伯荪,彭少麟.鼎湖山森林群落分析.线性演替系统与预测.中山大学学报(自然科学版),1985,(4):75~80.
    [98] 王伯荪,彭少麟.鼎湖山森林群落分析.生态优势度.中山大学学报(自然科学版),1986,(2):93~97.
    [99] 王永繁,余世孝,黄向等.黑石顶森林群落演替系列.α 多样性的尺度效应[J]. 中山大学学报,2002.41(3):68~72.
    [100] 王献溥.广西大穗鹅耳枥林的分类和演替趋向[J]. 植物资源与环境,1997,6(3):13~18..
    [101] 王绍强,周成虎.中国陆地土壤有机碳库的估算[J]. 地理研究,1999, 18(4):349~356.
    [102] 王绍强,周成虎,李克让等.中国土壤有机碳库及空间分布特征分析[J]. 2000,55(5) :533~544.
    [103] 王金叶,车克钧,张学龙,闫文德,傅辉恩.祁连山森林土壤碳的初步研究[J]. 甘肃农业大学学报 1996,(4):356~36
    [104] 王晶,解宏图, 朱平, 李晓云. 土壤活性有机质(碳)的内涵和现代分析方法概述[J]. 生态学杂志. 2003,22(6):109~112.
    [105] 吴征镒. 论中国植物区系的分区问题[J]. 云南植物研究,1979,1(1)::1~20
    [106] 吴仲民,李意德,曾庆波,周光益,陈步峰,杜志鹄,林明献.尖峰岭热带山地雨林C素库及皆伐影响的初步研究[J]. 应用生态学报, 1998, 9(4):341~344
    [107] 吴建国,张小全,王彦辉,徐德应. 土地利用变化对土壤物理组分中有机碳分配的影响[J]. 林业科学,38(4): 593~599.
    [108] 吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J]. 应用生态学报,2004,15(4): 593~599.
    [109] 吴彦,刘庆,何海,林波.亚高山针叶林人工恢复过程中物种多样性变化[J]. 应用生态学报,2004,15(8): 1301~1306.
    [110] 吴邦兴.云南哀牢山徐家坝中山湿性常绿阔叶林动态和节律的研究[J]. 植物学报,1995,37(12):969~977.
    [111] 吴金水. 子午岭植被演替过程中土壤有机碳积累与变化[D]. 硕士论文,西北农林科技大学,2003.
    [112] 邬建国.生态演替理论和模型.见:刘建国主编,当代生态学博论[C]. 北京:中国科学技术出版社,1992:49~64.
    [113] 吴彦,刘庆,何海,林波. 亚高山针叶林人工恢复过程中物种多样性变化[J]. 应用生态学报. 2004,15(8) ∶ 1301~1306.
    [114] 熊利民,钟章成.四川缙云山森林群落的同期发生演替及其模型预测[J]. 生态学报,1991,11(1):49~53.
    [115] 熊利民.缙云山群落的线性和非线性演替研究.见:钟章成主编,常绿阔叶林生态系统研究[C]. 重庆:西南师范大学出版社,1992.412~438.
    [116] 熊文愈,骆林川.植物群落演替研究概述[J]. 生态学进展,1989,6(4):229~235.
    [117] 肖国拾,陈博,苏克. 硫酸银催化容量法快速测定土壤中的有机碳[J]. 吉林大学学报(地球科学版),2003,33(2): 249~251.
    [118] 谢晋阳,陈灵芝.暖温带阔叶林的物种多样性特征[J]. 生态学报,1994,14(4):339~3438.
    [119] 解宪丽,孙波,周慧珍等. 中国土壤有机碳密度和储量的估算与空间分布分析[J]. 土壤学报,2004, 41(1):35~43.
    [120] 沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J]. 生态学杂志,1999,18(3):32~38.
    [121] 徐德应.人类经营活动对森林土壤碳的影响[J]. 世界林业研究,1995,(5):26~32.
    [122] 徐秋芳,徐建明,姜培坤.集约经营毛竹林土壤活性有机碳库研究[J]. 水土保持学报, 2003, 17(4).15~21
    [123] 徐明岗,于荣,王伯仁.土壤活性有机质的研究进展[J]. 土壤肥料,2000(6): 3~7.
    [124] 徐小锋,宋长春.全球碳循环研究中“碳失汇”研究进展[J]. 中国科学院研究生院学报, 2004,21(2):145~152.
    [125] 许凯扬,叶万辉,曹洪麟等.植物群落的生物多样性及其可入侵性关系的实验研究[J]. 植物生态学报,2004,28(3):385~391.
    [126] 延晓冬,赵士洞,于振良.中国东北森林生长演替模拟模型及其在全球变化研究中的应用[J].植物生态学报,2000,24(1):1~8.
    [127] 阳含熙,潘愉德,伍业钢.长白山阔叶红松林马氏模型[J]. 生态学报,1988,8(3):211~219.
    [128] 杨玉盛,谢锦升,王义祥等.杉木观光木混交林C库与C吸存[J]. 北京林业大学学报, 2003,25(5):10~14.
    [129] 杨玉盛,刘艳丽,陈光水等.格氏栲天然林与人工林土壤非保护性有机 C 含量及分配[J]. 2004,24(1): 1~8.
    [130] 杨小波.南亚热带不同演替阶段的森林群落优势种种群动态研究[J]. 海南大学学报,1998,16(4):321~327.
    [131] 杨小波,王伯荪.森林次生演替优势种苗木的光可塑性比较研究[J]. 植物学通报,1999,16(3):304~309.
    [132] 余新晓,徐军亮,马履一.华北土石山区小流域天然次生林演替规律研究[J]. 全国水土保持生态修复研讨会论文汇编,2004,102~107.
    [133] 于志民,王礼先主编. 水源涵养林效益研究[M]. 1999,北京:中国林业出版社
    [134] 游秀花.马尾松天然林不同演替阶段土壤理化性质的变化[J]. 福建林学院学报, 2005, 25(2):121~124.
    [135] 喻理飞,朱守谦,叶镜中,等.退化喀斯特森林自然恢复过程中群落动态研究[J]. 林业科学,2002,38(1):1~7.
    [136] 余树全.浙江淳安天然次生林演替的定量研究[J]. 林业科学,39(1): 17~22.
    [137] 张甲绅,陶尌,曹军. 2000. 土壤中水溶性有机碳测定中的样品保存与前处理方法[J]. 土壤 通报,31 (4) :174~176.
    [138] 张家来.应用最优分割法划分森林群落演替阶段的研究[J]. 植物生态学与地植物学学报,1993,17(3):224~231.
    [139] 张德强,叶万辉,余清发.鼎湖山演替系列中代表性森林凋落物研究[J]. 生态学报,2000,20(6):938~944.
    [140] 张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系[J]. 生态学报,1999,19(2):173~176.
    [141] 张庆费,由文辉,宋永昌.浙江天童植物群落演替对土壤化学性质的影响[J]. 应用生态学报,1999,10(1):19~22.
    [142] 张庆费,由文辉,宋永昌.浙江天童森林公园植物群落演替对土壤物理性质的影响[J]. 植物资源与环境,1997,(2):36~40.
    [143] 张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系[J]. 生态学报,1999,19(2): 174~178.
    [144] 张甘霖,何跃,龚子同.人为土壤有机碳的分布特征及其固定意义[J]. 第四纪研究, 2004,24(2): 149~159.
    [145] 张玉钧,王建中,刘武生等. 密云水库上游北庄试验区植被性质的初步研究[J]. 北京林业大学学报,1997,19(3):39~44 .
    [146] 赵常明,陈庆恒,乔永康等.青藏高原东缘岷江冷杉天然群落的种群结构和空间分布格局[J]. 植物生态学报,2004,28(3):341~350.
    [147] 周先叶,王伯荪,李鸣光等.黑石顶自然保护区森林次生演替过程中群落主要种的种间协变分析[J]. 应用生态学报,2004,15(3):367~371.
    [148] 周先叶,李鸣光,王伯荪等.广东黑石顶自然保护区森林次生演替不同阶段土壤种子库的研究[J]. 植物生态学报,2000,24(2):222~230.
    [149] 周先叶,王伯荪,李鸣光等.广东黑石顶自然保护区森林次生演替过程中群落的种间联结性分析[J]. 植物生态学报,2000,24(3):332~339.
    [150] 周先叶,王伯荪,李鸣光等.广东黑石顶自然保护区森林次生演替过程中的群落动态[J]. 植物学报,1999,41(8):877~886.
    [151] 周先叶,王伯荪,李鸣光.广东黑石顶自然保护区森林次生演替过程中的群落动态[J]. 植物学报,1998,41(3):7~886.
    [152] 周厚诚,任海,彭少麟.广东南澳岛植被恢复过程中的群落动态研究[J]. 植物生态学报,2001,25(3)298~305.
    [153] 钟章成主编.常绿阔叶林生态学研究[M]. 重庆:西南师范大学出版社,1988.
    [154] 朱华,王洪,李保贵.滇南勐宋热带山地雨林的物种多样性与生态学特征[J]. 植物生态学报,2004 28(3):351~360.
    [155] Aber JD, Magill A, Boone R et al. Plant and soil response to chronic nitrogen addtions at the Harvard forest [J]. Massachusetts Ecol, l993, 3: 56~166
    [156] Auclair Alon N, Goff Glenn F. Diversity relations of upland forests in the western great lakes area [J]. Amer. Nat., 1972, 105 (P46): 499~528.
    [157] Benabdellah BA, lbrecht KF, Pomaz VD et al. Markov chain models for forest successions in the Erzgebirge, Germany [J]. Ecological Modelling, 2003, 159.
    [158] Bhandari BS, Mehta JP, Tiwari SC. Dominance and diversity relations of woody vegetation structure along an altitudinal gradient in a montane forest of Garhwal Himalaya [J]. Journal-of-Tropical-Forest-Science (Malaysia), 2000, 12 (1): 49~61.
    [159] Blair GJ, Lefroy RDB, Lisle L. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems [J]. Aust. J. Agric. Res., 1995, 46 :1459~1466.
    [160] Bonet A. Secondary succession of semi-arid Mediterranean old-fields in south-eastern Spain: insights for conservation and restoration of degraded lands [J]. Journal of Arid Environments, 2004, 56 (2): 203~233.
    [161] Botkin, DB, Janak JF & Wallis JR. Some ecological consequences of a model of forest growth [J]. Journal of Ecology, 1972, 60: 849~873.
    [162] Brown S and Lugo AE. Storage and Production of organic matter in tropical forests and their role in the global carbon cycle [J]. Biotropica, 1982, 14: 161~187.
    [163] Browns, Sathaye J, Cannell M et al. Management of forests for mitigation of greenhouse gas emissions In: Watson RT, Zinyowera MC, and Moss RH eds Climate Change 1995. Impact, Adaptation and mitigation of Climate Changes: Scientific-Technical Analysis. Contribution of Working Group II to the Second Assessment Report of the lntergovernmental Panel on Climate Change [M]. Cambridge and New York: Cambridge UniVersity Press, 1996.
    [164] Calvo L, Tarrega R, de Luis E. Secondary succession after perturbations in a shrubland community [J]. Acta Oecologica-International Journal of Ecology, 2002, 23(6): 393~404.
    [165] Chadwich OA, Derry LA, Vitousek PM et al. Changing sources of nutrients during four million years of ecoystem developmentt [J]. Nature, l999, 397: 491~497.
    [166] David FRP, Burslem, Nancy CG and Sean CT [J]. Tropical Forest Diversity--The Plot Thickens Science, 2001, 291 (5504): 606.
    [167] Michael LR. Heeding the Warning in Biodiversity's Basic Law [J]. Science, 1999, 284 (5412): 276.
    [168] David T. Diversity by Default [J]. Science, 1999, 283 (5401): 495.
    [169] De Deyn GB, Raaijmakers CE, Van der Putten WH. Plant community development is affected by nutrients and soil biota [J]. Journal of Ecology, 2004, 92(5): 824~834.
    [170] Densow, JS Guzman, S. Variation in stand structure, light and seedling abundance across a tropical moist forest chronosequence, Panama [J]. Journal of Vegetation Science, 2000, 11.
    [171] Dixon RK, Brown S, Houghton RA et al. Carbon pools and flux of global forest ecosystem [J]. Science, 1994, 263: 185~190.
    [172] Forest service USDA. Healthy Forest for America'Future—A Strategic Plan [R]. USA, 1993.
    [173] Forest Service USDA. America's Forests 1999,Health Update,Agriculture Information Bulletin 157[R]. 2000.
    [174] Foster DR, Aber JD, Melillo JM et al. l993. Forest response to disturbance and anthropogenic stress [J]. Bio. Science, 47: 437~445.
    [175] Franklin J. Regeneration and growth of pioneer and shade-tolerant rain forest trees in Tonga [J]. New Zealand Journal of Botany, 2003, 41(4): 669~684.
    [176] Gates DM. CO2 and plants[M]. Boulder, Colorado:West View Press, 1983, 7~20.
    [177] Hertel D, Leuschner C, Holscher D. Size and structure of fine root systems in old-growth and secondary tropical montane forests (Costa Rica) [J]. BIOTROPICA, 2003, 35(2): 143~153.
    [178] Houghton JT, Jenkins GJ, Ephraums JJ. Climate change: the IPCC scientific assessment[M]. New York: Cambridge University Press, 1990, 283~310.
    [179] Huggins DR, CE Clapp, RR Allmaras et al. Carbon dynamics in corn-soybean sequences as estimated from natural 13C abundance [J]. Soil Science Society of America Journal, 1998, 62: 195~203.
    [180] IPCC. Land use, land 一 use change, and forestry, Summary for policymakers, a specal report of the lntergovernmental panel on Climate Change[EB/OL]. Geneva: Switzerland 2001. 1~20 Available from http://www.ipcc.ch/pub/srlulucf-e.pdf.
    [181] Ishizuka M, Toyooka H, Osawa A et al. Secondary succession following catastrophic windthrow in a boreal forest in Hokkaido, Japan: the timing of tree establishment [J]. Journal-of-Sustainable-Forestry (USA), 1998, 6 (3/4): 367~388.
    [182] Jaramillo VJ, Ahedo-Hernandez R and Kauffman JB. Root biomass and carbon in a tropical evergreen forest of Mexico: changes with secondary succession and forest conversion to pasture [J]. Journal of Tropical Ecology, 2003, 19 (4): 457~464.
    [183] Jenkinson DS. The rothamsted long-term experiments: Are they still of use? [J]. Journal of Agronomy, 1991, (83): 2~10.
    [184] Johns MM, Skogley EO. Application of carbonaceous resin capsules to soil organic matter testing and labile C identification [J ]. Soil Sci . Soc. Amer. J, 1994, 58 (3): 751~757.
    [185] Kamo K, Vacharangkura T and Tiyanon et al. Plant species diversity in tropical planted forests and implication for restoration of forest ecosystems in Sakaerat, northeastern [J]. Thailand. Jaro-Japan Agricultural Research Quarterly, 2002, 36.
    [186] Katherine JW and Robert JW. Species Diversity--Scale Matters [J]. Science 2002, 15: 1245~1248.
    [187] Kvalseth. Note on biological diversity, evenness, and homogenety measures [J]. Oikos. 199l, 62: 123~127.
    [188] Lafon CW, Huston MA and Horn SP. Effects of agricultural soil loss on forest succession rates and tree diversity in east Tennessee [J]. OIKOS, 2000, 90 (3): 431~441.
    [189] Lee CS, You YH, Robinson GR. Secondary succession and natural habitat restoration in abandoned rice fields of central Korea [J]. Restaration Ecology, 2002, 10 (2): 306~314.
    [190] Leemans R &IC Prentice. FORSKA, A general forest succession model[M]. 1989, Institute of Ecological Botanv, Uppsala .70.
    [191] Li X, Wilson SD. Song Y. Secondary succession in two subtropical forests [J]. Plant Ecology, 1999, 143 (1) : 13~21.
    [192] Likens GE, Driscoll CT, Buso DC. Long-term effects of acid rain:Response and recovery of a forested ecosystem [J]. Science, 1996, 272: 244~246.
    [193] Lu D, Moran E, Mausel P. Linking amazonian secondary succession forest growth to soil properties [J]. Land Degradation & Development. 2002, 13 (4): 331~343.
    [194] Lu DS, Mausel P, Brondizio E and Moran E. Classification of successional forest stages in the Brazilian Amazon basin [J]. Forest Ecology and Management, 2003, 181 (3): 301~312.
    [195] Lugo AE, Sanchez AJ, Brown S. Land use and organic carbon content of some subtropical soil [J]. Plant and Soil, 1986, (96): 185~196.
    [196] Margalef R. lnformation theory in ecology [J]. General Syst., 1957, 3: 37~71.
    [197] Margalef R. Diversity, stability and materiality in natural ecosyste ms In: Dobben WH, Lowe 一Mcconnell RH eds. Unifying Concepts in Ecology[M]. Wageningen:Centre for Agricultural publishing and Documentation. 1975 ,151~160.
    [198] McNaughton SJ. Stability and biodiversity of ecological communities [J]. Nature, 1978,274:251~253.
    [199] Mooney HA, PM Vitousek & PA Matson. Exchange of materials between terrestrial ecosystems and the atmosphere [J]. Science, 1987, 238: 926~932.
    [200] Needelman BA, Wander MM, Bollero GA et al. Interaction of tillage and soil texture :biologically active soil organic matter in Illinois [J] . Soil Sci . Soc. Amer. 1999, 63: 1326~34.
    [201] Odum EP. The strategy of ecosystem development [J]. Science, 1969, 164: 262~270.
    [202] Post WM, Emannuel WR, Zinke PJ et al. soil carbon Pools and life zones [J]. Nature, 1982, 298: 156~159.
    [203] Pena-Claros M. Changes in forest structure and species composition during secondary forest succession in the Bolivian Amazon [J]. BIOTROPICA, 2003, 35 (4): 450~461.
    [204] Perez CA, Carmona MR and Aravena JC et al. Successional changes in soil nitrogen availability, non-symbiotic nitrogen fixation and carbon/nitrogen ratios in southern Chilean forest ecosystems [J]. Oecologia, 2004, 140 (4): 617~625.
    [205] Pierre T and Rachid C. Quaternary Refugia and Persistence of Biodiversity [J]. Science 2002, 20: 2009~2010.
    [206] Prentice IC, TS Matin & TA Cramer. Simulation model for the transient effects of climate change on forest landscape [J]. Ecological Modelling, 1993, 65: 51~70.
    [207] Reynolds HL. Soil heterogeneity and plant competition in an annual grassland [J]. Ecology, 1997, 78: 2076~2090.
    [208] Risch AC, Schutz M, Krusi BO et al. Detecting successional changes in long-term empirical data from subalpine conifer forests [J]. Plant Ecology, 2004, 172 (1): 95~105.
    [209] Santruckova H. Microbial biomass, activity and soil respiration in relation to secondary succession [J]. Pedobiologia, 1992, 36 (6): 341~350.
    [210] Sedjo RA, The carbon cyc1e and globa1 forest ecosystem [J]. Water, Air and Soil Pollution. 1993, (70): 295~307.
    [211] Schiffman PM, Jonhson WC. Phytomass and detrial storage during forest regrowth in the southeastern United States Piedmont [J]. Canadian Journal of Forestry Research, 1990, (19): 69~78.
    [212] Schlesinger WH. Evidence from chronosequence studies for low carbon-storage Potentail of soils [J]. Nature, 1990, (348): 232~234.
    [213] Siegenthaler U, Sramiento, JL. Atmospheric carbon dioxide and the ocean [J]. Nature, 1993, 365:119~125.
    [214] Shimel DS. Terrestrial ecosystem and the carbon cycle [J]. Global Change Biology, 1995, 1: 77 ~ 91.
    [215] Shugart HH, & West DC. Development of an Appalachain decidduous forest succession model and its application to assessment of impact of the chestnut blight [J]. Journal of Environmental Management, 1977, 5: 161~179 .
    [216] 孙建新, John C, Beverlye L et al. Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwestern, USA [J]. Global Change Biology, 2004, 10: 1470~1481.
    [217] Suter GW Ⅱ. Critique of ecosystem health concepts and indexes [J]. Environmental Toxicology and Chemistry, 1993, 12 (9): 1533~1539.
    [218] Tamura K, Hayashi I and Iwaki H. Changes of soil properties in early stages of secondary succession in cool temperate region in Japan [J]. Acta Oecologica, 1986, 7: 1, 75~85.
    [219] Tilman D, Knops J, Wedin P et al. The influenced of functional biodiversity and composition on ecosystem processes [J]. Science, l997, 277: 1300~1302
    [220] Tilman D, Wedin D, Knops J. Productivity and Sustainability influenced by biodiversity in grasslands ecosystems. Nature, l996, 379: 718~720.
    [221] Veldkamp E, Becker A & Schwendenmann, L. Clark DA and Schulte-Bisping, H. Substantial labile carbon stocks and microbial activity in deeply weathered soils below a tropical wet forest [J]. Global Change Biology, 2003, 9: 1171~1184.
    [222] Verroios G, Georgiadis T. Post-fire vegetation succession: The case of Aleppo pine (Pinus halepensis Miller) forests of Northern Achaia (Greece) [J]. Fresenius Environmental Bulletin, 2002, 11.
    [223] Whitbread AM,Lefroy RDB. A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales [J]. Aust. J. Soil Res. 1998, 36 (4): 669~681.
    [224] White LL, Zak DR, Barnes BV. Biomass accumulation and soil nitrogen availability in an 87-year-old Populus grandidentata chronosequence [J]. Forest Ecology and Management, 2004, 191 (1-3): 121~127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700