红层路堑边坡失稳机理及加固防护技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以南渝、安楚高速公路的典型红层路堑边坡的研究对象,在广泛的地质资料调研和工程地质特性分析的基础上,采用理论研究、数值分析和大型地质力学模型试验,对红层路堑边坡变形破坏机理、稳定性分析及加固防护措施进行了深入系统的研究。同时利用大量岩样的室内试验和现场试验,研究了红层岩体力学参数的选取原则。通过理论分析和试验研究,得出的主要结论和研究成果如下:
     (1)根据红层路堑边坡的工程地质特征,按坡体结构将边坡分为近水平、倾斜和上覆堆积层三大类。按岩性组合和结构体特征又将近水平边坡细分为软质泥岩为主的岩体结构、砂泥岩互层的软硬相间的岩体结构、巨厚层砂岩为主的岩体结构,不同岩性组合的近水平边坡破坏机理共有8种;根据岩层倾向和边坡倾向的关系将倾斜边坡岩体结构进一步划分为为顺层、反倾和斜交边坡三个亚类,其中的顺层边坡破坏机制主要为完全平面顺层—滑移型、滑移—拉裂型和滑移—弯曲型三种,反倾边坡的失稳过程分为弯曲—倾倒—滑移三个阶段,斜交红层边坡的破坏形式可分为阶梯状顺层滑塌、阶梯状顺节理滑塌和楔形滑塌三种。
     (2)提出了红层岩体力学参数选取原则。①通过对试验结果和收集的资料分析,对红层岩石、结构面的力学性质、水理及风化特性有了较为完整的认识;②系统阐述了利用H-B公式计算节理岩体力学参数,研究了BQ指标与RMR指标之间的关系,总结出了利用BQ指标估算岩体弹性模量的经验公式。③结合红层边坡坡体结构和红层的特殊力学性质,提出了红层岩体力学参数的选取方法。边坡岩体所含结构面在4组以下者,主要根据不同地区岩块和结构面力学参数试验值的随机模糊统计结果来选取;而边坡岩体中结构面组数在4组以上者,则应用Hoek-Brown经验强度准则来确定整个节理岩体的综合力学参数。
     (3)近水平红层路堑边坡稳定性研究。用数值方法对近水平红层中砂泥岩软硬互层边坡开挖变形机理进行分析;对拉裂崩塌破坏采用岩石的抗拉强度对其稳定性进行评价;对后缘陡倾节理发育的平推式滑坡的稳定性评价方法进行了研究,得出了当节理里面充满水时,裂缝位于坡项线的位置时边坡具有最小的稳定性系数的结论。
     (4)倾斜红层路堑边坡稳定性研究。建议先用赤平投影图对倾斜红层边
Based on extensive geological investigation and analysis, deformation and failure mechanism, stability analysis and support measures of road cut slope in red beds are studied systematically and thoroughly in this paper. The author uses theoretic, numerical analysis and large-scale model tests to assist his research. Methods oriented by the typical projects of the red bed road cut slopes involved in the highway from Nanchong to Chongqing and the highway from Anning to Chuxiong in Yunnan Province. The mechanic parameters of rock mass in red bed are simultaneously studied by using large numbers of laboratory test and field test. The main results of this paper can be summed up as follows:1. On the basis of geologic engineering investigation, the formation structure of red bed slope is classified as dip slope, accumulative formation slope and approximate horizontal slope, which is classified as three types in slope structure: mudstone, interbedded strata of sandstone and mudstone, heavy sandstone. According to lithological combination characters, approximately horizontal slope has eight failure modes. Considering the relationship between the dip of bedding plane and the dip of slope, the dip red bed slope is further divided into three subgroups: consequent bedding rock slope, countertendency bedding slope and oblique crossing bedding slope. First, the deformation and failure mode consists of three types among consequent bedding rock slope: bedding sliding, sliding and fracturing, bending and fracturing. Secondly, the deformation and failure modes of coutertendency bedding slope are bending, toppling and sliding. Finally the failure modes of oblique crossing bedding slope consist of three types: ladder consequent bedding sliding, ladder consequent joint sliding, and wedge sliding.2. The principle of choosing mechanic parameters of rock mass in red bed is also put forward, we get integrated understanding on mechanic, hydrolytic and weathering characters of red beds via anlysis on test results and collected data in the first place. Then, the method using Hoek-Brown empirical strength criterion to decide mechanic parameters of jointed rock mass is expounded, the relationship between BQ and RMR is studied. From which empirical formula of using BQ to estimate elasticity modulus is summarized. Then, the principle of choosing
    mechanic parameters ot rock mass in red beds is proposed on formation structure and mechanic parameters in red bed slope. Mechanic parameters of rockmass with less than four groups joints is mainly obtained through test results of rock and structure planes. The test results have been processed with the random-fuzzy statistical method. Hoek-Brown empirical strength criterion is suggested to confirm mechanic parameters of rockmass with more than four groups joints.3. Studies are carried on stability of approximately horizontal slope. Numerical analysis has been done on complex interbedded strata of sandstone and mudstone slope to validate failure mechanism. Taking tensile strength as ripping falling criterion is suggested. Special study are carried on the horizontal impulse landslide with dense high angle joints on back of slope, the results show that the stability factor is minimal when the high angle joints with water are located in the top line of slope surface.4. Studies are carried on stability of dip slope. The author suggests using stereographic projection of structure planes to judge the failure modes of dip slope in red beds. Stereographic projection relationship of structure planes with two-faced slope is presented. The essential factors involved in stability of dip slope are presented as following: the formula from stress field used to calculate the bedding slip range of the consequent bedding rock slope with failure mode of sliding, the formula used to calculate critical slope angle, bending failure stress and breaking length of countertendency bedding rock slope, the formula used to calculate stability factor of wedge failure with different friction angles on two structure planes using limit equilibrium method and theory of plasticity upper limit method.5. The stabilities of red bed high slope excavated by step are studied. To cover the shortage of bench design based on experience, the influence on entire stability after setting bench and the width of wide bench in the middle of slope are studied. The results show slope stability after setting bench is slightly higher than that without bench. The excavation disturbed zone of slope is independent when the width of bench is wide enough. The K56 width of wide bench in Nanchong to Chongqing and highway is decided by numerical analysis.6. The methods to calculate internal force of lattice beam is presented. According to the difference of mechanical mode between rope-bolt and bolt, the
    method calculating for single beam internal force, the mechanical model of lattice rope-bolt (bolt) frame design are put forward, whole winkle elastic foundation model for rope-bolt frame and for elastic bearing in node model for bolt frame. Examples on internal force of frame tallied with this theory is studied by FEM(fmite element method).7. The large-scale geomechanical model test is carried for discovering the mechanism and support measure. The results have testified that the failure mechanism of interbedded strata of sandstone and mudstone slope which is mainly caused by waters, setting the wide bench in the middle of slope is favorable to reducing the disturbed area due to excavation. The test results show the moment of resistance in lattice rope-bolt frame is consistent with theoretical calculation in the paper.
引文
[1] 彭华,吴志才.关于红层特点及分布规律的初步探讨[J].中山大学学报,2003,42 (5):109-113
    [2] 李廷勇,王建力.中国的红层及发育的地貌类型[J].四川师范大学学报,2002,25 (4):427-431
    [3] 程强,寇小兵,黄绍槟.中国红层的分布及地质环境特征[J].工程地质学报,2004,
    [4] 张忠胤.俄罗斯地台东部上二叠纪红层的成因及该地层粘土质岩石的工程地质性质[M].北京:地质出版社,1958,5-124
    [5] Joel S. Watkins. Regional stratigraphy of the deepwater gulf of mexico[C] . 31st Annual Offshore Technology Conference Volume 1: Geology, Earth Sciences,and Environmental Factors 3-6 May 1999 Astrodome U.S.A. Houston, Texas: 431-438
    [6] Christian A. Hecht. Geomechanical and petrophysical properties of fracture systems in permocarboniferous "red-beds"[C] . 38th U.S. Rock Mechanics Symposium, DC Rocks 2001, Jul 7-10, 2001, Washington D.C./USA:
    [7] 程强,周德培,寇小兵.红层软岩地区公路建设中的主要岩土工程问题.第八次全国岩石力学与工程学术大会论文集,2004:128-131
    [8] 洪嘉祥,冯学才.甘肃省滑坡史料分析[J].兰州大学学报(自然科学版),1992,28(甘肃滑坡泥石流学术讨论会文集):145-149
    [9] 王少东.四川雨季滑坡规律的初步探讨[A].滑坡文集(3)[C].北京:中国铁道出版社,1984,32-44
    [10] 孔纪名,陈自生.川东89.7暴雨过程中的红层滑坡[A].滑坡文集(9)[C].北京:中国铁道出版社,1989,36-42
    [11] 成昆铁路技术总结委员会.成昆铁路—第二册(线路、工程地质及路基)[M],北京:人民铁道出版社,1980:99-115,249-253
    [12] 居恢扬,顾仁杰.我国南方红层滑坡的初步研究.滑坡文集(4)[C].北京:中国铁道出版社,1984,22-31
    [13] 黄昌乾,丁恩保.边坡工程常用稳定性分析方法[J].水电站设计,1999,15 (1):53-58.
    [14] Fellenius W.. Erdstatiche Berechnungen mit Reibung and Kohasion, Ernst, Berlin(in German), 1927
    [15] Bishop A.W.. The use of the slip circle in the stability analysis of slopes. Geotichnique, London, Vol.5(1), 1955,pp:7-17
    [16] Janbu N. Earth pressures and bearing capacity calculations by generalized procedure of slices. Proceedings of the fourth international conference on soil mechanics and foundation engineering, Vol.2, 1957
    [17] Morgenstern N. R., Price V. E.. The analysis of the stability of general slip surfaces. Geotechnique, London, Vol. 15 (1), 1965,pp:79-93
    [18] Spencer E. A.. Method of analysis of the stability of embankments assuming parallel interslice forces. Geotechnique, London, Vol. 17(1), 1967, pp: 11-26
    [19] Janbu N. Slope stability computions. Soil Mech. And Found. Engrg. Rep., The technical university of Norway, Trondheim, Norway, 1968
    [20] Hoek E., Bray J.W., Boyd, J.M. The stability of a rock slope containing a wedge resting on two intersecting discontinuities. Quarterly J. Engineering Geology. Vol.6(1), 1973
    [21] Revilla J., Castillo E.. The calculus of variation applied to stability of slope. Geotech, 27(1), 1977, pp: 1-11
    [22] Sarma S.K.. Stability analysis of embankments and slopes. J. Geotech. Engrg. Div., ASCE, 105(12), 1979,pp: 1511 - 1524
    [23] 潘家铮.建筑物的抗滑稳定和滑坡分析[M].水利出版社,1980
    [24] 陈祖煜.建筑物抗滑稳定分析中“潘家铮最大最小原理”的证明[J].清华大学学报(自然科学版),Vol.38(1):1-4
    [25] Leshchinsky D.. Slope stability analysis: Generalized approach. J.Geotech. Eng. Vol. 116(5),1990, pp:851-867
    [26] Li K.S., White W.. Rapid evaluation of the critical surface in slope stability problems. International for Numerical and Analytical Methods in Geomechanics. Vol. 11 (5), 1987,pp:449-473
    [27] Clough A.K. Variable factor of safety in slopes stability analysis by limit equilibrium method. J., 1st Eng. India Part Ⅱ Vol.69(3), 1988, pp:149-155
    [28] Milutin M Srbalov. Limit equilibrium method with local factors of safety for slope stability. Can. Geotech. J., Vol.24(4),1987, pp:652-656
    [29] Chen Z.-Y., Shao C.-M.. Evaluation of minimum factor of safety in slope stability analysis. Can. Geotech. J., Vol.25(4), 1988, pp:735-748
    [30]Meiketsu, Enoki, Mori, Yagi, Ryuichi and Yatabe. Generalized slice method for slope stability analysis. Soil. Found. J., Vol.30(2), pp:l-13
    [31]Espinazo R.D., Bourdeau, P.L and Mahunthan, B.. Unified formulation for analysis of slopes with general surface. Geotech. Eng. Vol. 120(7), 1994,pp:185-204
    [32] Baker R. Determination of the critical slip surface in slope stability computations. International for Numerical and Analytical Methods in Geomechanics. Vol.4,1980, pp:333-359
    [33]Boutrup E. and Lovell C.W.. Search technique in slope stability analysis. Engrg. Geol.,Vol.l6(l)1980,pp:51-61
    [34]Cherubini C. and Creco V.R.. A probabilistic method for locating the critical slip surface in slope stability analysis. Proc.,5th I.C.S.A.P.,2,1987,pp:1182-1187
    [35]Yamagami T. and Ueta Y. Search for noncircular slip surfaces by the Morgenstern-Price method. Proa, 6th Int. Conf. Numer. Methods in Geomech.,1988,pp:1219-1223
    [36]Chen Z.-Yu. Random trials used in determining global minimum factors of safety of slopes, Can. Geotech. J., Vol.29,pp:225-233
    [37]Greco V.R.. Efficient Monte Carlo technique for locating critical slip surface. Geotechl. Eng.Vol. 122(7),1996,pp:517-525
    [38]Anagnosti P.. Three dimensional stability of fill dams. Proc. 7th Int. Conf. on Soil Mech, and Found. Engrg., A.A. balkema, Rotterdam, the Neterlands,1969
    [39]Giger M.W. and Krizek R.J.. Stability of vertical corner cut with concentrated sruchrge load. J. Geotech. Engerg. Div. ASCE, Vol.l02(1),1976,pp:31-40
    [40]Baligh M.M., Azzouz A.S. and Ladd C.C.. Line loads on cohesive slopes. Proc, 9th Int. Conf. on soil Mech. And Found. Engrg., Japan Soc. For Soil Mech. And Found. Engrg., Tokyo, 2,1977,pp:13-17
    [41]Dennhardt M. and Forster W.. Problems of three dimension slope stability. Proc, 11th Int. Conf. on Soil Mech. And Found. Engrg., A.A.Balkema, Rotterndam. The Netherlands.2. 1985,pp:427-431
    [42]Ugai K. Three-dimensional stability analysis of vertical cohesive slopes. Soils and Found. Tokyo, Vol.25(3),1985,pp:41-48
    [43]Seed R.B., Mitchell, J.K. and Seed, H.B.. Kettlemen Hills waste landfill slope failure Instability analysis. J. Geotech. Engrg., ASCE, Vol.116(4), 1990, pp: 669-690
    [44] Benko B.. Numerical Modelling of Complex Sope Deformation. Department of Geological Science, University of Saskatchewan, Saskatoon, Canada, 1997
    [45] Eberhardt E., Stead D.. Mechanisms of slope instability in thinly bedded surface mine slopes. In Moore&Hunger(eds.), Proceedings, 3th International IAEG Congress, Vancouver. A.A. Balema, Rotterdam, 1998,pp:3011-3018
    [46] Chen G., Ohnishi, Y.. Solpe stability using discontinuous deformation analysis method. In Amadei et al.(eds.), Proceedings of the 37th U.S. Rock Mechanics Symposium, Vail. A.A. Balkema, Rotterdam, 1999,pp:535-541
    [47] Stead D., Benko B., Eberhardt E. Coggan J.. Failure mechanisms of complex landslides:A numerical modeling perspective. In Bormhead et al.(eds.), Landslides in Reasearch, Theory and Practice:Proceedings of the 8th International Symposium on Landslides, Cardiff. Thomas Telford, London, 2000,pp: 1401-1406
    [48] Eberhardt E., Stead D., Coggan J., Willenberg H.. An integrated numerical analysis approach to the Randa rockslide. In Rybar et al.(eds.), Landslides in the Central Eruope, Proceedings of the 1st European Conference on Landslides, Prague. Swets & Zeitinger, The Netherlands(In Press), 2002
    [49] Shi Gen-hua. Discontinuous deformation analysis—a new numerical model for the statics and dynamics of block systems. Ph.D. Thesis, Dept. of civil engrg. Univ. of California at Berkeley, 1988
    [50] 雷晓燕.接触摩擦单元的理论及其应用[J].岩土工程学报,1994,16(3):23-32
    [51] Zienkiewicz O.C., Humpheson C., Lewis R.W.. Associated and non-associated visco-plasticity and plasticity in soil mechnics. Geotechnique, Vol.25(4), 1975, pp:671-689
    [52] Griffiths D V, Lane P A.. Slope stability analysis by finite elements. Geotechnique, 1999,49(3):387-403
    [53] Dawson E M, Roth W H, Drescher A.. Slope stability analysis by strength reduction. Geotechnique, 1999, 49:835-840
    [54] Matsui T, San K C.. Finite element slope stability analysis by shear strength reduction technique. Soils and Foudations, 1992, 32(1): 59-70
    [55] 赵尚毅,时卫东,郑颖人.边坡稳定性分析的有限元法[J].地下空间,2001.12,21(5):450-454
    [56] 张鲁渝,郑颖人.奉节县新城区头道河小区4号路D区高边坡有限元分析.地下空间,2001.12,21(5):445-479
    [57] 时卫民,郑颖人,张鲁渝.岩石高边坡的有限元分析及其简化分析方法.地下空间,2001.12,21(5):455-460
    [58] 郑颖人,赵尚毅.用有限元法求边坡稳定安全系数.公路交通技术,2002.3,(1):7-9
    [59] 赵尚毅,郑颖人,时卫东,王敬林.用有限元强度折减法求边坡稳定安全系数.岩土工程学报,2002.5,24(3):343-346
    [60] 张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析.岩土工程学报,2002.7,24(4):487-490
    [61] 郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定性分析.中国工程科学,2002.10,4(10):57-61
    [62] 赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析.岩石力学与工程学报,2003.2,22(2):254-260
    [63] 张鲁渝,郑颖人,赵尚毅,时卫东.有限元强度折减系数法计算土坡稳定安全系数的精度研究.水利学报,2003.11,(1):21-27
    [64] 赵尚毅,郑颖人,唐树名.路堑边坡施工顺序对边坡稳定性影响数值模拟分析.地下空间,2003.12,23(4):370-374
    [65] 郑颖人,赵尚毅,邓卫东.岩质边坡破坏机制有限元数值模拟分析.岩石力学与工程学报,2003.12,22(12):1942-1952
    [66] Schofield A.N.. Use of centrifugal model testing to assess slope stability. Canadian Geotechnical Journal, 15,1978,pp: 14-31
    [67] Schofield A.N.. Cambridge geotechnical centrifuge operations. Geotechnique, 30, 1980,pp:227-268
    [68] Bray J.W. and R.E. Goodman.. The theory of base friction models. International Joural of Rock Mechanics and Mining Science & Geomechanical Abstracts 18,1981 ,pp:453-468
    [69] 朱维申,张玉军,任伟中.系统锚杆对三峡船闸高边坡岩体加固作用的块体相似模型试验研究.岩土力学,1996.6,17(2):1-6
    [70] 杜应吉.地质力学模型试验的研究现状与发展趋势.西北水资源与水工程,1996,7(2):64-67
    [71] 周德培,李安洪.软岩高边坡喷锚挡护的试验研究.岩土力学,1997.12,18(4):48-53
    [72] 孙世国,王思敬,李国和,蔡美峰.开挖对岩体扰动与滑移机制的模拟试验研究.工程地质学报,2000.8,(3):312-315
    [73] 董龙雷,闫桂荣,廖红建.岩土工程中动态离心模型试验技术的应用.岩石力学与工程学报,2000.11,19(6):789-793
    [74] 袁大祥,朱子龙,朱乔生.高边坡节理岩体地质力学模型试验研究.三峡大学学报(自然科学版),2001.3,23(3):193-197
    [75] 沈泰.地质力学模型试验技术的进展.长江科学院报,2001.10,18(5):32-36
    [76] Hencher S.R., Liao Q.H. and B.G. Monaghan.. Modelling slope behavior for open pits. Trans. Inst. Min. Metall(Sect.A: Mining Industry), 105,pp:A37-47
    [77] 郑家坚,丘占祥.华南白垩纪—早第三纪陆相地层的特征及有关问题的讨论[C].见:中国科学院古脊椎动物于古人类研究所,南京地质古生物研究所编.华南中、新生代红层广东南雄“华南白垩纪—早第三纪红层现场会议”论文选集.北京:科学出版社,1979,1~57
    [78] 杨恒仁,王震,李曼英.华南中生代晚期至早第三纪生物群及地层的划分和对比[C].见:中国科学院古脊椎动物于古人类研究所,南京地质古生物研究所编.华南中、新生代红层广东南雄“华南白垩纪—早第三纪红层现场会议”论文选集.北京:科学出版社,1979,58-78
    [79] 中国科学院南京地质古生物研究所、云南省地质局、云南省冶金局地质勘探公司.云南中生代红层[M],北京:科学出版社,1975:1-76
    [80] 胡文华,赵绍琮,杨子文.四川盆地红层岩石(体)物理力学性质指标汇编[M].水电部成都勘测设计院科研所,1983年7月
    [81] 曹乐安,张鸣动,朱文华.葛洲坝工程丛书—基础设计与处理[M].中国水利水电出版社,1983,1-123
    [82] 吉随旺,张倬元等.川中红色砂泥岩岩石力学特性研究[J].地质灾害与环境保护,2000,11(1):72-74
    [83] 吉随旺,陈强,刘兴德.川中地区岩土工程地质特性浅析[J].成都理工学院学报,2000,27(增刊):202-204
    [84] 胡厚田.焦柳线红层边坡病害规律性研究[J].四川建筑,1996,16 (2):55-57
    [85] 万宗礼,聂德新,吴曾谋.黄河上游新第三系红层工程地质特性研究[J].西北水电,2002 (2):60-63
    [86] 郭天龙.对“滇西红层”认识的探讨[J].云南交通科技,2002,18 (5): 17-28
    [87] 刘汝明,孙英勋,鲁志强,宗家烈.滇西红层的工程地质特征及工程对策[J].云南交通科技,2001,17 (6):1-10
    [88] 董泽福,刘多文.“红砂岩”的路堤用工程性质研究[J].湖南大学学报,2003,30(3):90-93
    [89] 冯启言,韩宝平,曹丁涛,张崇良.红层的微观结构与工程地质特性研究[J].水文地质工程地质,1994 (5):15-21
    [90] 周德培:在多轴压缩下红砂岩的强度和变形特征[J].西南交通大学学报,1982年第1期:24-38
    [91] Qu-qing Gao, Hong-tai Zheng, De-pei Zhou: THE STRENGTH DEFORMATION AND RUPTURE CHARACTERISTICS OF RED SANDSTONE UNDER POLYAXIAL COMPRESSION, Proceedings of 5th International Congress on Rock Mechanics, Melbourne(Australia), 1983.
    [92] 高渠清,郑鸿泰,周德培:多轴压缩下红砂岩的强度变形和破坏特征[J].岩石力学与工程学报,1983,2 (1):41-47
    [93] 朱定华,陈国兴.南京红层软岩流变特性试验研究[J].南京工业大学学报,2002,24 (5):77-79
    [94] 杨淑碧,徐进,董孝壁.红层地区砂泥岩互层状斜坡岩体流变特性研究[J].地质灾害与环境保护,1996,7 (2):12-24
    [95] 周德培:岩石侧向和体积变形的时间效应.四川省岩石力学与工程学会首届学术会议论文集,西南交通大学出版社,成都,1994年11月
    [96] 周德培:岩石单向拉伸的蠕变特性[J].西南交通大学学报,1988年第3期:21-29
    [97] 周德培:岩石双向压缩的蠕变特性[J].第一届全国计算岩土力学岩讨论文集(二),1987年11月成都,134-138
    [98] 金德濂.水利水电边坡的工程地质分类(上)[J].西北水电,2000,(1):10-16
    [99] R L舒斯特,R J克利泽克.滑坡的分析和防治[M].北京:中国铁道出版社,1987
    [100] Hoek E,Bray J.W.岩石边坡工程[M].卢世宗等译.北京:冶金工业出版社,1983.20~32
    [101] 谷德振.岩体工程地质力学基础[M].科学出版社,1983
    [102] 张倬元,王士天,王兰生.工程地质分析原理[M].第2版.地质出 版社,1994
    [103] 中国岩石力学与工程学会地面岩石工程专业委员会.中国典型滑坡[M].北京:科学出版社,1988.
    [104] 郑颖人,赵尚毅,邓卫东.岩质边坡破坏机制有限元数值模拟分析[J].岩石力学与工程学报,2003,22(12):1943—1952
    [105] 何昆,蒋楚生.云南元磨高速公路路堑高边坡及滑坡整治工作[J].路基工程,2004 (1):49-51
    [106] 张忠平.万梁高速公路近水平层状岩石高边坡变形模式探讨[J].路基工程,2005 (1):10-12
    [107] 吉随旺,张倬元,王凌云等.近水平软硬互层斜坡变形破坏机制[J].中国地质灾害与防治学报,2000,11(9)
    [108] 张忠平.万梁高速公路顺层岩石滑坡变形机理分析[J].路基工程,2004 (4):32-34
    [109] 骆银辉,朱春林,李俊东.云南红层边坡变形破坏机制及其危害防治研究[J].岩土力学 2003,24(5)
    [110] 骆银辉,邓星理,王兴安.试论疏排水在红层地区滑坡治理中的重要作用[J].中国地质灾害与防治学报,2003,14 (3):58-60
    [111] 朱宝龙,胡厚田,陈强.红层M形路堑边坡特征及病害的初步研究[J].工程地质学报,2003,11 (4):411-415
    [112] 周德培,张俊云.植被护坡工程技术[M],人民交通出版社.2003
    [113] 肖世国,周德培.岩石高边坡一种预应力锚索框架型地梁的内力计算[J].岩土工程学报,2002,24(4):479—482.
    [114] 杨明,胡厚田,卢才金等.路堑土质边坡加固中预应力锚索框架的内力计算[J].岩石力学与工程学报,2002,21(9):1383—1386.
    [115] 王跃敏.预应力锚索与格形地梁的联合应用[J].路基工程,1997,(5):56—59.
    [116] 夏雄.预应力锚索地梁的设计理论及工程应用[硕士学位论文 D].成都:西南交通大学,2002.
    [117] 许英姿,唐辉明.滑坡治理中格构锚固结构的解析解分析[J].地质科技情报,2002,21(3):89-93
    [118] 李海光等.新型支挡结构设计与工程实践[M].人民交通出版社,2004
    [119] 尉希成.支挡结构设计手册[M].北京:中国建筑工业出版社,1995
    [120] 程良奎.岩土锚固[M].中国建筑工业出版社,2003
    [121] 谷德振,王思敬.论工程地质力学的基本问题:1979.见:古德振文集.北京:地震出版社,1994.240-252
    [122] 金德濂.水利水电边坡的工程地质分类(中)[J].西北水电,2000,(2):10-12
    [123] 韩佳泳.直剪实验中参数误差原因探讨.大坝观测与土工测试.2001,25(2):43-44.
    [124] 熊文林,李胡生.岩石样本力学参数的随机-模糊处理方法[J].岩土工程学报,1992,14(2):101-108
    [125] 李胡生.岩土参数随机-模糊统计中的隶属函数形式[J].同济大学学报,1993,21(3):361-369
    [126] 李胡生,魏国荣.用随机-模糊线性回归方法确定岩石的抗剪参数[J].同济大学学报,1993,21(3):421-429
    [127] Hoek E., Brown E.T.. Empirical Strength Criterion fox Rock Masses[J] . Geotechnical Engineering, Division. America Society.Civil Engineering. 1980(b).(9):1013-1035
    [128] E Hoek, E T Brown. Empirical Strength Criterion fox Rock Masses[J] . Geotechnical Engineering, Division America Society.Civil Engineering. 1994
    [129] Hoek E., Brown E.T.. Prictical estimation or rock mass strength[J] . Int. J. Rock Mech. & Mining Sci. & Geomechanics Abstracts. 1997. (8): 1165-1186
    [130] Hoek E., Marinos P. K. and Benissi, W.F. Application of the Geologocal Strength Index (GSI) classification for very weak and sheared rock masses[J] . The case of the Athens Schist Formation. Bull, Engg. Goel. Env. 1998 (2): 151-160
    [131] 陈祖煜,汪小刚,杨健等.岩质边坡稳定分析——原理方法程序[M].中国水利水电出版社,2005:243-289
    [132] Itasca Consulting Group. Inc, 2003, FLAC-3D(Version2.1) Users Manual.
    [133] W.S. Yoon, U.J. Jeong, J.H. Kim. Kinematic analysis for sliding failure of multi-faced rock slopes[J] . Engineering Geology, 67(2002) :51-61.
    [134] 邓荣贵,周德培,李安洪等.顺层岩质边坡不稳定岩层临界长度分析[J].岩土工程学报,2002,24 (2):178-181
    [135] 高加美,顿志林.楔形体应力理论及其在工程中的应用[M].北京:煤炭工业出版社,2000.
    [136] Goodman R E, Bray J W. Toppling of Rock Slopes. Proceedings of the Speciality Conference on Rock Engineering for Foundations and Slopes, ASCE/Bouider, Colorado, 1976
    [137] 陈祖煜,张建红,汪小刚.岩石边坡倾倒稳定分析的简化方法[J].岩土工程学报,1996,18 (6):92-95
    [138] Aydan Omer, Kawamoto Toshikazu. The stability of slopes and under-ground openings against flexural toppling and their stabilization[J] . Rock Mechanics and Rock Engineering, 1992, 25:143~165
    [139] 陈红旗,黄润秋.反倾层状边坡弯曲折断的应力及挠度判据[J].工程地质学报,2004,12 (03):243-246,273
    [140] Chen, Z.Y., Wang, Y.J. , Wang X. G. , An upper bound wedge failure analysis method. Proceedings of the International Symposium on Slope Stability Analysis. Mastuyama: A.A. Balkema, 1999. Vol. Ⅰ. 325-328
    [141] 铁道部第一勘测设计院.铁路工程设计技术手册——路基[M].北京:中国铁道出版社,1995:20-21
    [142] 交通部第二公路勘察设计院.公路设计手册——路基 (第二版)[M].北京:人民交通出版社,2001:60-61
    [143] 中国人民共和国国家发展和改革委员会.水电边坡工程设计规范(征求意见稿).22-23
    [144] 房定旺.中等倾斜页岩层面边坡结构初探[J].化工矿山技术,1996,25(3):4-8
    [145] 答志华,沈尧良.裂土堑坡平台的设置[J].铁道工程学报,1997,56 (4):82-87
    [146] 董晋雷.岩质路堑边坡稳定性因素分析[J].山西交通科技,2003,158(4):33-34,80
    [147] 田华.影响边坡稳定的因素分析[J].山西水利,2004,6:63-75
    [148] 蒋爵光.铁路岩石边坡[M].中国铁路出版社,1997,1-15
    [149] 丁秀美,刘光士,黄润秋等.剪应变增量在堆积体边坡稳定性研究中的应用[J].地球科学应用.2004,19 (增刊):318-323
    [150] 肖世国.岩石高边坡开挖松弛区及加固支挡结构研究[D].西南交通大学博士学位论文,2003
    [151] 盛谦.深挖岩质边坡开挖扰动区与工程岩体力学性状研究[D].中国科学院博士学位论文,2002.3
    [152] 张发明,邵蔚侠.岩质高边坡预应力锚固问题研究.河海大学学报.1999,27(6):73~76.
    [153] 顾金才,明治清,沈俊等.预应力锚索内锚固段受力特点现场试验研究.岩石力学与工程学报.1998,17(增刊):788~792.
    [154] 张治强,张国,赵赤云等.边坡预应力锚固结构的试验研究.东北大学学报(自然科学版).1999,20(5):536~539.
    [155] Wijk G.. A theoretical remark on the field round prestressed rock bolts. Int. J. Rock Mech. Min. Sci.. 1978, (6): 289~294.
    [156] 陈安敏,顾金才,沈俊等.预应力锚索的长度与预应力值对其加固效果的影响.岩石力学与工程学报.2002,21(6):848~852.
    [157] 李德芳,张友良,陈从新.边坡加固中预应力锚索地梁内力计算.岩土力学,2000,21(2):170—172.
    [158] 宋从军,周德培,肖世国.预应力锚索地梁的内力计算.西南交通大学学报,2001,(5):486—490.
    [159] Shoji E, Yamada. Beam on partially yielded foundation. Journal of Engineering Mechanics, 1988, 114(2): 353— 363.
    [160] Bing Y. Ting, Eldon F. Mockry. Beam on elastic foundation finite element[J] . Journal of Structural Engineering, 1984, 110(10): 2324— 2339.
    [161] 龙驭球.弹性地基梁的计算[M].北京:人民教育出版社,1981
    [162] 龙驭球,包世华.结构力学[M].北京:高等教育出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700