高速动车组电磁兼容性关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:到目前为止,国内外针对高速动车组的电磁兼容性的研究仅局限于对电磁兼容现象简单分析、测试以及评估。将高速铁路系统总体,包括其外部复杂电磁环境作为研究对象,对高速动车组的电磁兼容性做出较为全面的理论分析和研究,将对高速铁路的发展产生非常重要的意义。因此,本文以高速动车组整车为研究对象,采用电磁拓扑法和电磁兼容基本理论对高速动车组整车的电磁兼容性进行了研究。电磁拓扑法的基本思想是把整个复杂系统按照一定原则划分成许多相对简单和独立的子区域,这些子区域之间通过拓扑图相联系。采用电磁拓扑法能使复杂的高速动车组系统的结构更加清晰,为高速动车组电磁兼容性的理论分析奠定了非常重要的基础。根据系统电磁拓扑的分解结果,将高速动车组系统分为骚扰源、传输耦合途径和敏感设备三部分分别进行研究。在研究过程中采用理论分析、建模仿真和实际测试相结合的方法,将理论分析、仿真结果、计算结果与实际测试结果进行对比,从而验证了理论分析仿真计算模型的正确性和有效性。
     论文第一章结合电磁兼容学科的特点,介绍了高速铁路电磁兼容问题的发展历史和进展,概括了本领域科学研究的最新动态。第二章简要介绍了电磁拓扑理论的基本思想和基本概念,基于电磁拓扑理论,根据高速动车组列车的结构以及现场测试数据,建立了高速动车组的电磁拓扑模型和相互作用图。第三章重点研究了高速动车组的电磁骚扰源特性。研究建立了高速动车组过分相时的电磁骚扰源模型,高速动车组受电弓离线放电的传导电磁骚扰源模型以及高速动车组弓网放电脉冲的传导特性和在列车主变压器中的传播特性。第四章重点研究了高速动车组受电弓离线产生放电脉冲骚扰的机理及其传播特性,包括该辐射骚扰随距离的衰减特性、随高度的衰减特性、沿接触网方向的传播特性、在车内的耦合特性等,得到了弓网离线骚扰从源到车厢内部的传输函数,并对高速动车组离线时受电弓附近辐射电磁场的时域、频域特性进行了现场实测,比对了实测结果和仿真计算结果。结果证明了所建仿真模型的正确性。另外,本论文还利用数理统计方法,基于大量的实测数据对受电弓离线放电脉冲骚扰的时域特性和频域特性分别进行了统计分析,利用柯尔莫可洛夫-斯米洛夫检验,得到了该脉冲骚扰的上升时间、脉冲间隔等参数的概率分布、骚扰电平的频率特性和骚扰的幅度概率分布(Amplitude Probability Distribution, APD)。第五章主要研究了高速动车组系统内部复杂电磁环境下电磁骚扰的传播特性和耦合途径,研究了非屏蔽电缆和屏蔽电缆间的骚扰耦合情况以及屏蔽电缆场-线的耦合特性。
     本论文的研究结果可以为高速动车组的电磁兼容设计提供理论依据,为建立适合中国国情的高速动车组电磁兼容理论体系打下技术基础。
ABSTRACT:So far the research on the electromagnetic compatibility of China Railway High-speed (CRH) is confined only to simple analysis, test as well as assessment of electromagnetic compatibility phenomenon both in China and abroad. Under such circumstances, a research on the overall High Speed Railway system including external complex electromagnetic environment and the comprehensive theoretical and empirical researches on the electromagnetic compatibility of CRH will produce very important meaning for the development of high speed railway. In this thesis, first of all, the introduction of a new type of electromagnetic compatibility research method-electromagnetic topology method is done, its basic idea is to divide the whole complex system into many relatively simple and independent sub-volume according to certain principle. These sub-volumes are independent except through the certain way and each sub-volume is associated through the topological diagram of system. The topological decomposition of the whole system using electromagnetic topological method make the structure more clear, which laid a very important theoretical basis for subsequent analysis. Secondly, according to the decomposition results of system electromagnetic topology, the system is divided into three parts disturbance source, coupling path and sensitive equipment. The combination method of the theoretical analysis, modeling simulation and practical test is employed in the course of research and then the theoretical calculation results, modeling simulation results and actual test results are compared in order to demonstrate the correctness and effectiveness of theoretical calculation model and simulation model.
     Firstly, a thorough review of High speed railway electromagnetic compatibility problem's development history is taken in Chapter1, including its theory and applications, with regards to the characteristics of EMC discipline. The author summarizes the up-date development and the latest progress in this technology domain. In Chapter2, the basic thought and concepts of electromagnetic topology theory are introduced briefly. According to the electromagnetic topology theory, based on the structure of bullet train and the test data, the electromagnetic topology model and interaction diagram of CRH are proposed. In Chapter3, the electromagnetic disturbance source is studied. The research content is the conduction electromagnetic disturbance source model caused by train passing neutral sections, the conduction electromagnetic disturbance source model caused by pantograph-catenary offline and the propagation model of conduction electromagnetic pulse in main transformer. In Chapter4, the mechanism and propagation characteristic of the radiation electromagnetic disturbance source caused by pantograph-catenary offline is studied. The research content is that the radiation electromagnetic disturbance source caused by pantograph-catenary offline is modeled and the related propagation characteristic, including the attenuation characteristics of radio disturbance with distance and height, the propagation characteristic along the contact, the transfer function from disturbance source point to inside the train, etc. are obtained, the time domain and the frequency domain characteristics of radiation electromagnetic disturbance source caused by pantograph-catenary offline are tested. The correctness and effectiveness of simulation model is approved by comparing test results and simulation results. The time domain statistical characteristics of radiation electromagnetic disturbance source is analyzed by using Kolmogorov-Smirnov test and the probability distribution model of various parameters are obtained and the frequency domain statistical characteristics of radiation electromagnetic disturbance source are analyzed by using mathematical statistic method and the disturbance level frequency characteristic curve is obtained. The probability distribution of disturbance level at different frequency point is decided by using Kolmogorov-Smirnov test and the corresponding parameters are obtain by using the maximum likelihood estimate, finally the amplitude probability distribution(APD) of disturbance source is acquired. Chapter5gives the research on the electromagnetic disturbance propagation and coupling path under the complex electromagnetic environment including crosstalk analysis of unshielded cable and shielded cable, crosstalk experiment analysis of interconnection cable and field-line coupling characteristic analysis of shielded cable.
引文
[1]GJB72-1985.电磁干扰和电磁兼容性名词术语[S].北京:中国标准出版社,1985:.
    [2]沙斐.机电一体化系统的电磁兼容技术.北京:中国电力出版社,1999:1-3.
    [3]Paul CR,闻映红.电磁兼容导论[M].北京:人民邮电出版社,2007:8-9.
    [4]郭银景.电磁兼容原理及应用教程.北京:清华大学出版社,2004:1-5.
    [5]王庆云.关于综合交通网规划的方法与实践[J].交通运输系统工程与信息,2005,5(1):11-15.
    [6]Midya S, Thottappillil R. An overview of electromagnetic compatibility challenges in European Rail Traffic Management System[J]. Transportation Research Part C:Emerging Technologies,2008, 16(5):515-534.
    [7]Arseneau R, Heydt GT, Kempker MJ. Application of IEEE standard 519-1992 harmonic limits for revenue billing meters[J]. IEEE Transactions on Power Delivery,1997,12(1):346-353.
    [8]Bormann D. Origin of DC component in railway line current upon operation with iced-over overhead line:Theory, experimetal results and conclusions[J]. ABB Internal Rep. Project: Investigation of DC Current because of Ice On Contactwire, Ref. No:SECRC/PT/TR-2003/038, 2003.
    [9]Ching-Yin L, Wei-Jen L, Yen-Nien W et al. Effects of voltage harmonics on the electrical and mechanical performance of a three-phase induction motor[C]. Industrial and Commercial Power Systems Technical Conference, IEEE,1998. Page(s):88-94.
    [10]IEEE Guide for Harmonic Control and Reactive Compensation of Static Power Converters[J]. ANSI/IEEE Std 519-1981,1981:0-1.
    [11]Bormann D, Surajit M, Rajeev T. DC components in pantograph arcing:mechanisms and influence of various parameters [C].18th International Zurich Symposium on Electromagnetic Compatibility,2007. Page(s):369-372.
    [12]S.von Zweygbergk, L. Gertmar, L. Rothwheiler. Utredning betraffande forutsattningar for signalstorningar pa SJ signalanlag-gningar, i forsta hand harrorande fran tyristorlok[J]. Chalmers Uniersity of Technology, Go"tegorg, Sweden, Tech. Rep.,1980.
    [13]Shi-Lin C, Hsu SC, Chin-Tien T et al. Analysis of rail potential and stray current for Taipei Metro[J]. IEEE Transactions on Vehicular Technology,2006,55(1):67-75.
    [14]Chien-Hsing L. Evaluation of the maximum potential rise in Taipei rail transit systems[J]. IEEE Transactions on Power Delivery,2005,20(2):1379-1384.
    [15]Hill RJ, Weedon DN. Safety and reliability of synchronizable digital coding in railway track-circuits[J]. IEEE Transactions on Reliability,1990,39(5):581-591.
    [16]Hill RJ. Optimal construction of synchronizable coding for railway track circuit data transmission[J]. IEEE Transactions on Vehicular Technology,1990,39(4):390-399.
    [17]Joos G, Kapila R, Friem R. Electromagnetic interference issues in the specification of AC and DC propulsion systems for light rail vehicles[C]. Proceedings of the 1998 ASME/IEEE Joint Railroad Conference,1998. Page(s):41-47.
    [18]White R. Electrification traction and signalling compatibility[C]. The 11th IET Professional Development Course on Railway Signalling and Control Systems,2006. Page(s):132-164.
    [19]Hill RJ. Electric railway traction. VI. Electromagnetic compatibility disturbance-sources and equipment susceptibility[J]. Power Engineering Journal,1997,11(1):31-39.
    [20]Konefal T, Pearce DAJ, Marshman CA et al. Potential Electromagnetic Interference to Radio Services From Railways[J]. York EMC Services Ltd,2002.
    [21]Pozzobon P, Amendolara, A., Vittorini, B., Henning, U., Schmid, R., Shirran, S., Ahlstedt, S.,. Electromagnetic compatibility of advanced rail transport signalling[C].. Proceedings of the World Congress on Railway Research (WCRR), Edinburgh, UK, October, pp.1250-1263.2003.
    [22]Stemmler H. Power electronics in electric traction applications[C]. Proceedings of the IECON '93., International Conference on Industrial Electronics, Control, and Instrumentation,1993. Page(s):vol.2,707-713
    [23]Jahns TM, Blasko V. Recent advances in power electronics technology for industrial and traction machine drives[J]. Proceedings of the IEEE,2001,89(6):963-975.
    [24]Chen C. Characterizing the generation &coupling mechanisms of electromagnetic interference noise from an electric vehicle traction drive up to microwave frequencies[C]. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2000. vol.2:Page(s):1170-1176.
    [25]Wisniewski M, Kubichek R, Pierre J. EMI emissions up to 1 GHz from adjustable speed drives[C]. The 27th Annual Conference of the IEEE Industrial Electronics Society,2001. IECON'01. vol.1:Page(s):113-118
    [26]Kroger U, Grautstuck H, Wirth W. Electromagnetic or permanent-magnetic rail brake. In: Google Patents; 1999.
    [27]Adly AA, Abd-El-Hafiz SK. Speed-Range-Based Optimization of Nonlinear Electromagnetic Braking Systems[J]. IEEE Transactions on Magnetics,2007,43(6):2606-2608.
    [28]Bartlett EJ, Vaughan M, Moore PJ. Investigations into electromagnetic emissions from power system arcs[C]. International Conference and Exhibition on (Conf. Publ. No.464) Electromagnetic Compatibility.EMC York 99.,1999. Page(s):47-52.
    [29]Klapas D, Hackam R, Beanson FA. Electric arc power collection for high-speed trains [J]. Proceedings of the IEEE,1976,64(12):1699-1715.
    [30]Galdi V, Ippolito L, Piccolo A. Arcing in AC railways:a mathematical approach[C]. Proceedings of the International Conference on Computer Aided Design, Manufacture and Operation in The Railway and Other Advanced Mass Transit Systems,1998. Page(s):891-904.
    [31]Buhrkall L. DC components due to ice on the overhead contact wire of AC electrified railways[J]. ELEKTRISCHE BAHNEN-CHARLOTTENBURG THEN BERLIN THEN MUNCHEN-,2005,103(8):380.
    [32]Brillante S, Ferrari P, Pozzobon P. Modelling of electromagnetic emission from catenary-pantograph sliding contact[C]. The 6th International Conference on Computer Aided Design, Manufacture and Operation in the Railway and Other Advanced Mass Transit Systems,1998. Page(s):881-890.
    [33]Tellini B, Macucci M, Giannetti R et al. Conducted and radiated interference measurements in the line-pantograph system[J]. IEEE Transactions on Instrumentation and Measurement,2001,50(6): 1661-1664.
    [34]Tellini B, Macucci M, Giannetti R et al. Line-pantograph EMI in railway systems[J]. IEEE Instrumentation & Measurement Magazine,2001,4(4):10-13.
    [35]Giannetti R, Macucci M, Tellini B. EMI measurements in line-pantograph contact discontinuity in railway transportation systems[C].11th Int. Symp. Trends in Electrical Measurement and Instrumentation,2001. Page(s):25.
    [36]Midya S, Bormann D, Larsson A et al. Understanding pantograph arcing in electrified railways-influence of various parameters[C]. EMC 2008. IEEE International Symposium on Electromagnetic Compatibility,2008. Page(s):1-6.
    [37]Midya S, Bormann D, Schutte T et al. Pantograph Arcing in Electrified Railways-Mechanism and Influence of Various Parameters-Part Ⅱ:With AC Traction Power Supply[J]. IEEE Transactions on Power Delivery,2009,24(4):1940-1950.
    [38]Dongbing Z, Dan C, Sable D. Non-intrinsic differential mode noise caused by ground current in an off-line power supply[C].29th Annual IEEE Power Electronics Specialists Conference,1998. PESC 98 Record.:Page(s):1131-1133 vol.1132.
    [39]Kyriazis GA. Analysis of discrepancies between measured and predicted conducted emissions in switched-mode power supplies[C]. International Symposium on Electromagnetic Compatibility, 1997. IEEE Page(s):504-506.
    [40]Nagrial MH, Hellany A. Radiated and conducted EMI emissions in switch mode power supplies (SMPS):sources, causes and predictions[C]. IEEE International Multi Topic Conference,2001. IEEE INMIC 2001. Technology for the 21st Century:Page(s):54-61.
    [41]Klotz F, Petzoldt J, Volker H. Experimental and simulative investigations of conducted EMI performance of IGBTs for 5-10 kVA converters[C].27th Annual IEEE Power Electronics Specialists Conference,1996. PESC'96 Record:Page(s):1986-1991
    [42]Yen-Shin L. Investigations into the effects of PWM techniques on common mode voltage for inverter-controlled induction motor drives[C]. IEEE Power Engineering Society 1999 Winter Meeting,1999. Page(s):35-40.
    [43]Ferreira JA, Van Wyk JD. Electromagnetic energy propagation in power electronic converters: toward future electromagnetic integration[J]. Proceedings of the IEEE,2001,89(6):876-889.
    [44]Akagi H, Shimizu T. Attenuation of Conducted EMI Emissions From an Inverter-Driven Motor[J]. IEEE Transactions on Power Electronics,2008,23(1):282-290.
    [45]Erkuan Z, Lipo TA. Improvements in EMC performance of inverter-fed motor drives[J]. IEEE Transactions on Industry Applications,1995,31(6):1247-1256.
    [46]Buccella C, Feliziani M. Three dimensional magnetic field computation inside a high speed train with a.c. electrification[C]. Electromagnetic Compatibility,2003. EMC'03.2003 IEEE International Symposium on,2003. Page(s):617-620 Vol.611.
    [47]Alonso D, Rulf J, Silva F et al. Measuring, modelling and correction actions for EMC assessment between high speed railway and medical equipment[C]. Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS),2010:Page(s):1-5.
    [48]Lucca G, Moro M, Ferrero C et al. Evaluation of electromagnetic interference on telecommunication cables from an AC railway line:Measurements and calculations [J]. European transactions on electrical power,2003,13(5):285-290.
    [49]北京交通大学电磁兼容实验室[J].安全与电磁兼容,2008,(05):95.
    [50]丁一夫.车辆整车电磁抗扰度试验技术研究[D].北京:北京交通大学,2006.
    [51]李焕然.电气化铁道的无线电噪声对短波发信场的影响[D].北京:北京交通大学,2006.
    [52]梁婷.高速铁路电波传播特性的研究[D].北京:北京交通大学,2006.
    [53]尹晗芳.利用GSM-R时域特性查找干扰源[D].北京:北京交通大学,2006.
    [54]张溢强.电气化铁道无线电干扰传播特性仿真研究[D].北京:北京交通大学,2005.
    [55]朱永胜.重载列车牵引电流对铁路通信、信号影响的分析[D].北京:北京交通大学,2005.
    [56]周克生,张林昌.高速电气化铁道无线电噪声预测[J].铁道学报,1999,(02):63-66.
    [57]晓蒙.高铁时代来临[J].交通世界(建养.机械),2007,(08):24-29+14.
    [58]霍宏艳.高速动车组电磁骚扰源建模仿真分析[D].北京:北京交通大学,2010.
    [59]柳海明.铁路机车电力电子设备的电磁拓扑研究[D].北京:北京交通大学,2010.
    [60]卢怡.高速动车组车厢屏蔽效能研究[D].北京:北京交通大学,2010.
    [61]王钱矾.机车屏蔽电缆串扰机理的研究[D].北京:北京交通大学,2010.
    [62]王显文.机车顶多部天线布局带来的互耦效应研究[D]:北京交通大学.
    [63]杨永亮.高速铁路应答器系统的电磁特性研究[D].北京:北京交通大学,2010.
    [64]叶畅.动车组弓网系统电磁骚扰研究[D].北京:北京交通大学,2010.
    [65]于晓丹.机车PWM牵引逆变器的电磁干扰研究[D].北京:北京交通大学,2010.
    [66]张强.电力机车弓网离线噪声辐射场强车厢内外转换关系的研究[D].北京:北京交通大学,2010.
    [67]贺峰,彭世蕤.电气化铁路电磁干扰对情报雷达的影响分析[J].现代雷达,2005,(11):12-15.
    [68]李显欣.电气化铁路与机场仪表着陆系统电磁兼容分析[J].铁道通信信号,2008,(06):38-40.
    [69]曾祥可.电气化铁路与机场导航设施的电磁兼容[J].铁道工程学报,2006,(09):60-64.
    [70]赵国群.基于电气化铁路干扰下机场ILS导航台电磁环境的分析与研究[D].成都:西南交通大学,2009.
    [71]韩通新.弓网受流中出现连续火花的原因分析[J].铁道机车车辆,2003,23(3):58-61.
    [72]张晨,黄继东,韩通新.预测高速铁路电磁辐射的一种有效方法[J].中国铁道科学,2000,(02):88-94.
    [73]白如雪.强电磁干扰对铁路信号的影响研究[D].北京:北京交通大学,2010.
    [74]蔡世东.外界电磁干扰引起应答器接收模块故障的原因分析[J].铁道通信信号,2012,(03):19-20.
    [75]Parmantier JP. First realistic simulation of effects of EM coupling in commercial aircraft wiring[J]. Computing & Control Engineering Journal,1998,9(2):52-56.
    [76]Parmantier JP, Gobin V, Issac F et al. An application of the electromagnetic topology theory on the test-bed aircraft, EMPTAC[J]. Interaction Notes, Note 506, Nov.16,1993, ONERA, TP,1994, (1994-168).
    [77]Parmantier JP, Gobin V, Issac F et al. ETE III:Application of the electromagnetic topology theory on the EMPTAC[J]. Interaction Notes 527,1997.
    [78]Dudley D. Book review-EMP interaction:Principles, techniques and reference data[J]. Antennas and Propagation Society Newsletter, IEEE,1987,29(3):34-34.
    [79]Parmantier JP, Alliot JC, Labaune G et al. Electromagnetic coupling on complex systems: Topological approach[J]. Interaction Note,1990,488.
    [80]Parmantier JP, Degauque P. Topology based modeling of very large systems[J]. Modern radio science,1996:151-177.
    [81]Parmantier JP. Applications of EM topology on complex wiring systems[C]. International Symposium on Electromagnetic Compatibility, Magdeburg, Germany, Oct.5-7, ONERA, TP2000-1, 2000.
    [82]Tesche F. Topological concepts for internal EMP interaction[J]. IEEE Transactions on Antennas and Propagation,1978,26(1):60-64.
    [83]Baum CE. Electromagnetic topology for the analysis and design of complex electromagnetic systems[J]. Fast Electrical and Optical Measurements,1986,1:467-547.
    [84]Parmantier JP, Junqua I. EM Topology:From Theory to Application[J]. Ultra-wideband short-pulse electromagnetics 7,2007:1.
    [85]Tzeremes G, Kirawanich P, Christodoulou C et al. Transmission lines as radiating antenna in sources aperture interactions in electromagnetic topology simulations[J]. Antennas and Wireless Propagation Letters, IEEE,2004,3(1):283-286.
    [86]Kirawanich P, Yakura SJ, Christodoulou C et al. An Electromagnetic Topology Method for Cable Interactions Using a Radiating Dipole at Apertures[J]. Antennas and Wireless Propagation Letters, IEEE,2006,5(1):220-223.
    [87]Aygun K, Fischer BC, Jun M et al. A fast hybrid field-circuit simulator for transient analysis of microwave circuits[J]. IEEE Transactions on Microwave Theory and Techniques,2004,52(2): 573-583.
    [88]Clayton P. Fundamentals of electric circuit analysis[M]. New York:John Wiley & Sons,2001: 99-105.
    [89]徐俊明.图论及其应用[M].合肥:中国科学技术大学出版社,2004:55-60.
    [90]卢开澄,卢华明.图论及其应用[M].北京:清华大学出版社,1995:78-85.
    [91]路宏敏.电磁兼容性预测研究[D].西安:西安交通大学,2000.
    [92]戴丽,谢政,罗建书等.多层电磁屏蔽的电磁拓扑图分析方法[J].强激光与粒子束,2006,(09):1524-1526.
    [93]Baum CE, Liu TK, Tesche FM. On the analysis of general multiconductor transmission-line networks[J]. Interaction Note,1978,350:467-547.
    [94]Parmantier JP, Labaune G, Alliot JC et al. Electromagnetic topology:Junction characterization methods[J]. Interaction Note,1990,489:71-82.
    [95]Tesche FM, Ianoz M, Karlsson T. EMC analysis methods and computational models[M]. New York:Wiley-Interscience,1997:
    [96]Tesche FM, Butler CM. On the addition of EM field propagation and coupling effects in the BLT equation[J]. Interaction Note,2003,588:1-43.
    [97]Musumeci S, Pagano R, Raciti A et al. A novel protection technique devoted to the improvement of the short circuit ruggedness of IGBTs[C]. Industrial Electronics Society,2003. IECON'03. The 29th Annual Conference of the IEEE,2003. Page(s):1733-1738
    [98]邓学寿.CRH2型200km/h动车组牵引传动系统[J].机车电传动,2008,(04):1-7+38.
    [99]于正平,张弘.高速电气化铁路接触网——受电弓系统的研究[J].中国铁道科学,1999,20(1):59-72.
    [100]谭秀炳,刘向阳.交流电气化铁道牵引供电系统[M].成都:西南交通大学出版社,2002:185-191.
    [101]陈衍.电力系统稳态分析.北京:中国电力出版社,1995:158-170.
    [102]赵四洪.基于电力机车不同工况的负荷谐波分析与仿真[D].成都:西南交通大学,2003.
    [103]Becherini G, Di Fraia S, Genovesi G et al. Characterization of EM Emission During the Operation of Solid and Plasma Armature Rail Launchers[J]. Plasma Science, IEEE Transactions on, 39(1):22-28.
    [104]Hill RJ. Electric railway traction. Ⅶ. Electromagnetic interference in traction systems[J]. Power Engineering Journal,1997,11(6):259-266.
    [105]Sichenko VG, Gavrilyuk Ⅵ. The theoretical and experimental researches of electromagnetic influence from a traction electrosupply system on a railway circuits[C]. IEEE 6th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology,2005. Page(s):41-43.
    [106]于万聚.高速电气化铁路接触网.成都:西南交通大学出版社,2003:
    [107]文远芳.高电压技术[M].武汉:华中科技大学出版社,2001:
    [108]米夏兹,邵贵荣.大功率毫微秒脉冲的产生.北京:原子能出版社,1982:
    [109]T. Ikai,K. Hashigushi.Heat input for crater formation in EDM[C]. Proceeding of International Symposium for Electro Machining-ISEMXI. Switzerland, April,1995. Page(s):163-170.
    [110]颜湘莲,文远芳,邹积岩.变压器绕组的暂态响应研究[J].高压电器,2001,(05):33-36.
    [111]Abetti PA. Transformer models for the determination of transient voltages[J]. Power Apparatus and Systems, Part Ⅲ. Transactions of the American Institute of Electrical Engineers,1953,72(2): 468-480.
    [112]Zhang Z, Li C, Lu F. The Very Fast Transient Simulation of transformer windings in parallel with MOV based on multi-conductor transmission lines theory[C]. Transmission and Distribution Conference and Exposition,2008. T&D. IEEE/PES,2008. Page(s):1-5.
    [113]崔翔.应用有限元方法计算含有电位悬浮导体的电场分布[J].华北电力学院学报,1995,(02):1-7.
    [114]王赞基.多绕组变压器线圈的波过程计算[D].北京:清华大学电机工程与应用物理系,1985.
    [115]Miri AM, Riegel NA, Kuhner A. Finite element models for the computation of the transient potential and field distribution in the winding system of high voltage power transformers[C]. Eleventh International Symposium on (Conf. Publ. No.467) High Voltage Engineering,1999. Page(s):39-42 vol.32.
    [116]陈维荣,李文豪,张倩et al.几种高速受电弓/接触网系统性能的比较[J].西南交通大学学报,2009,(03):354-359.
    [117]Lopes RHC, Reid, I., Hobson, P.R. "The two-dimensional Kolmogorov-Smirnov test"[J]. XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research 2007.
    [118]周克生,张林昌.高速电气化铁道无线电噪声预测[J].铁道学报,1999,21(2):54-57.
    [119]盛骤,谢式千,潘承毅.概率论与数理统计,1990:
    [120]范金城,梅长林.数据分析:北京:科学出版社,2010:
    [121]韩中庚编著.数学建模方法及其应用:北京:高等教育出版社,2009:
    [122]Paul CR, Feather AE. Computation of the Transmission Line Inductance and Capacitance Matrices from the Generalized Capacitance Matrix[J]. IEEE Transactions on Electromagnetic Compatibility,1976, EMC-18(4):175-183.
    [123]吴高纲.电磁兼容及其预测[J].电子科技,2001,1:34-35.
    [124]Paul CR. A simple SPICE model for coupled transmission lines[C]. IEEE 1988 International Symposium on Electromagnetic Compatibility. Symposium Record,1988. Page(s):327-333.
    [125]Kami Y, Weikun L. Analysis of coupling between transmission lines in arbitrary directions[C]. 1998 IEEE International Symposium on Electromagnetic Compatibility,1998. vol.2. Page(s):952-957
    [126]Paul CR, Bowles BA. Literal solution of the transmission-line equations for shielded wires[C]. IEEE International Symposium onElectromagnetic Compatibility. Symposium Record,1990. Page(s):591-599.
    [127]Paul CR, Bowles BA. Symbolic solution of the multiconductor transmission-line equations for lines containing shielded wires[J]. IEEE Transactions on Electromagnetic Compatibility,1991,33(3): 149-162.
    [128]Antonini G. SPICE equivalent circuits of frequency-domain responses[J]. IEEE Transactions on Electromagnetic Compatibility,2003,45(3):502-512.
    [129]Vu Dinh T, Cabon B, Chilo J. SPICE simulation of lossy and coupled interconnection lines[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B:Advanced Packaging,1994,17(2):134-146.
    [130]Paul CR. A SPICE model for multiconductor transmission lines excited by an incident electromagnetic field[J]. IEEE Transactions on Electromagnetic Compatibility,1994,36(4): 342-354.
    [131]Paul CR. Solution of the transmission-line equations under the weak-coupling assumption[J]. IEEE Transactions on Electromagnetic Compatibility,2002,44(3):413-423.
    [132]Oh KS, Schutt-Aine JE. Transient analysis of coupled, tapered transmission lines with arbitrary nonlinear terminations[J]. IEEE Transactions on Microwave Theory and Techniques,1993,41(2): 268-273.
    [133]Djordjevic AR, Sarkar TK, Harrington RF. Time-domain response of multiconductor transmission lines[J]. Proceedings of the IEEE,1987,75(6):743-764.
    [134]Tesche FM. On the inclusion of loss in time-domain solutions of electromagnetic interaction problems[J]. IEEE Transactions on Electromagnetic Compatibility,1990,32(1):1-4.
    [135]Arabi TB, Sarkar TK. Analysis of Multiconductor Transmission Lines[C]. ARFTG Conference Digest-Spring,31st,1988. Page(s):45-54.
    [136]Paul CR. Incorporation of terminal constraints in the FDTD analysis of transmission lines[J]. IEEE Transactions on Electromagnetic Compatibility,1994,36(2):85-91.
    [137]Bates CP, Hawley GT. A Model for Currents and Voltages Induced Within Long Transmission Cables by an Electromagnetic Wave[J]. IEEE Transactions on Electromagnetic Compatibility,1971, EMC-13(4):18-31.
    [138]Schelkunoff SA. The electromagnetic theory of coaxial transmission lines and cylindrical shields[J]. Bell Syst. Tech. J,1934,13(4):532-579.
    [139]Aguet M, Ianovici M, Chung-Chi L. Transient Electromagnetic Field Coupling to Long Shielded Cables[J]. IEEE Transactions on Electromagnetic Compatibility,1980, EMC-22(4): 276-282.
    [140]Tesche FM, Ianoz M, Karlsson T. EMC analysis methods and computational models: Wiley-Interscience,1997:286-287.
    [141]Sali S. An improved model for the transfer impedance calculations of braided coaxial cables[J]. IEEE Transactions on Electromagnetic Compatibility,1991,33(2):139-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700