骨髓间充质干细胞复合生物支架材料修复关节软骨缺损实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1探讨体外提取分离培养兔骨髓间充质干细胞(BMSC)的方法。
     2寻求更好的关节软骨生物支架材料,使其在孔隙率,比表面积,弹性模量等物理特性和细胞毒性、溶血试验、生物降解性等生物相容性方面更接近天然软骨支架材料的要求。
     3探讨异种异体脱细胞软骨支架材料(acellular cartilage material, ACM)复合同种异体兔骨髓间充质干细胞(rabbit bone marrow-derived mesenchymal stem cells, rBMSC)修复兔股骨内髁关节软骨缺损的效果。
     方法
     1采用密度梯度离心和差速贴壁法获得兔骨髓间充质干细胞.镜下观察细胞生物学形态及生长状态,细胞计数板下对第1、3、5代细胞计数,绘制细胞生长曲线,细胞表面抗原标记对其进行纯度分析。
     2①将猪膝关节软骨冻干加工为粉末,胰酶消化,曲拉通洗脱,蒸馏水洗净冻干,紫外线照射(UVI)后成型。电镜观察孔径分布,压汞仪测定孔隙率等参数;②细胞毒性测定:材料浸提液培养细胞进行细胞形态大体观察,MTT法观察细胞活性;③急性全身毒性反应:材料浸提液注射入SD大鼠腹腔观察材料对动物表现及体重变化的影响;④溶血试验:材料浸提液与稀释动物鲜血混合观察红细胞溶解情况,492nm下检测OD值计算相对溶血率;⑤观察细胞复合材料共培养情况并将材料埋植于动物皮下检测材料的生物降解性。
     3①密度梯度离心和差速贴壁法获得原代兔BMSC。选择第三代BMSC作为种子细胞;②利用冷冻干燥、胰酶消化和化学去垢剂等方法制备脱细胞软骨支架材料;③3月龄新西兰兔内髁制备直径4mm,深3mm动物关节软骨缺损模型,24只新西兰兔以2个时间段随机分为3组,ⅠACM-BMSC组:第三代BMSC 1×10~6个/mL与ACM于37℃、5%CO_2饱和湿度复合48h;ⅡACM组;Ⅲ空白对照组;④移植6,12周后大体及组织学观察,免疫组化染色观察修复组织Ⅱ型胶原,Wakitani评分评估修复效果。
     结果
     1原代培养的BMSC呈圆形、梭形、多角形等,48h可见贴壁细胞有伸展现象,呈梭形,多角形,成纤维细胞样展开,细胞核清晰,14d左右可达90%融合;1、3、5代骨髓间充质干细胞的生长曲线:细胞贴壁48h增殖缓慢,处于潜伏期;对数增殖期为3~4d,第6d后进入平台期;③第2代BMSC CD44表达阳性,标记率为93.0%。
     2①脱细胞生物支架材料为白色,略微发黄,外表呈多孔疏松网状结构。脆性大,有一定的弹性。孔隙率为68.54%,平均孔径为47.13μm;②细胞毒性试验:24h、48h、72h各时间段内三组细胞OD值两两比较(P>0.05),无显著差异,ACM细胞毒性为0级;③动物急性毒性实验:Ⅰ生物材料处理组和Ⅱ生理盐水处理组对动物体重影响没有差异(P>0.05),Ⅰ生物材料处理组和Ⅲ苯酚处理组对动物体重有显著差异(P<0.05);④溶血试验:材料的相对溶血率为2.92%,低于5%的标准,没有明显溶血现象;⑤材料直接接触试验:细胞嵌入软骨支架材料中,细胞成圆形和椭圆形,部分细胞可见细胞核,材料成颗粒状,染色均一;动物皮下埋植:组织学观察可见试样周围存在少量淋巴细胞和嗜中性粒细胞,致密纤维囊壁将复合细胞的材料包裹,材料被降解为细小颗粒,细胞均匀散在材料中成椭圆形,可见分裂相。
     3①大体观察及组织学观察:6和12周ⅠACM-BMSC组再生组织与正常关节软骨面平齐,修复部位表面较平整,界限模糊,接近正常软骨。ⅡACM组修复组织表面不平整并有明显下陷,修复组织全层可见成纤维样细胞,深层可见极少数透明软骨样细胞。Ⅲ空白旷置组未见明显修复,肉芽组织形成伴成纤维样细胞增生;②Wakitani组织学评分可见在不同的时间段内Ⅰ和Ⅱ组均低于Ⅲ组,差异有统计学意义(P<0.05),Ⅰ和Ⅱ组间组织学评分统计学无显著差异(P>0.05);③免疫组织化学: ACM-BMSC组修复组织的细胞为软骨样细胞,可见柱状排列,周围软骨基质Ⅱ型胶原染色阳性。
     结论
     1依据实验方法,BMSC可以较快良好的生长,且纯度较高,为BMSC的研究提供方便的提取和培养方法。
     2 ACM在孔隙率、比表面积、细胞毒性、溶血实验、动物急性毒性反应、生物降解性方面符合软骨组织工程中对于支架材料的要求,提示支架材料有良好的生物相容性和安全性。
     3以ACM为支架材料,同种异体BMSC为种子细胞制备的组织工程化软骨对兔股骨内髁关节软骨缺损有修复作用,形成的新生软骨为透明软骨样组织。
Objectives
     1 To investigate the more effective methods of isolation, culture of bone marrow mesenchymal stem cells (BMSC) in vitro.
     2 To explore the more conformable cartilage biomaterial that conforms to the natural biomaterial in total porosity, total specific surface area, average pore radius, elastic modulus and biocompatibility, such as test for in vitro cytotoxicity, test of hemolysis and biodegradation.
     3 To investigate the feasibility of repairing the whole layer cartilage defects of medial femoral condyles of adult rabbits with the BMSC/ACM materials.
     Methods
     1 Bone marrow stem cells of New Zealand Rabbit were obtained and purified by gradient centrifuge an adhesion culture in vitro. The morphology of BMSC were observed with phase contrast microscope; Drawing the growth curve of BMSC:The cells(P1,P3,P5)were assimilated by trypsin and cultivated in 24一well plate.Three bores were assimilated every day for 8 days, and then growth curve with average was drawn; Identifying the cel1-surface marker:The percentage of the wel1 growth P2 cells were identified by CD44 staining by flow cytometry.
     2①The articular cartilage of pigs were processed into powder. The components of cells were eliminated by Trypsin, TritonX-100 and distilled water. Finally the powder was freezed out by freezedryer and irradiated by ultraviolet. The microcosmic images of ACM were showed in electron microscope and the parameters of pore radius distribution were measured by sorptomtic Instrument;②Test for in vitro cytotoxicity: The BMSC were cultured in the special L-DMEM that ACM were dipped in and then observed through microscope and MTT;③Test for acute systemic toxicity: The changes of the behavior and the avoirdupois of the SD rats were evaluated after the special L-DMEM was injected into the SD rats by intraperitoneal injection;④Test of hemolysis: The grade of hemolysis was made in the macroscopical phenomenon and the measures of optical density at 492nm;⑤The growth state of the BMSC that immerged into ACM was described. Then the biodegradation of the ACM was estimated after the ACM was hypodermically embedded.
     3①Bone marrow stem cells of New Zealand Rabbit were obtained and purified by gradient centrifuge and adhesion culture in vitro. The passage 3 BMSC were used for the seeding cells of cartilage tissue engineering;②The acellular pig articular cartilage was prepared by lyophilization, trypsinization and chemical subtraction.③Full thickness empty defects measuring 4 mm in diameter by 3 mm deep were prepared in the medial femoral condyles of 24 3-month-old New Zealand White rabbits, which were randomized to select two groups. Each group was randomized to receive transplantations with ACM-BMSC (8 knees), ACM (8 knees), or no grafts (8 knees) into the cartilage defects.④The repairing effects of the condyles were macroscopically observed and the morphological changes of repaired defects were evaluated 6 and 12 weeks after the operation. The histological scores and the type-Ⅱcollagen immunohistochemistrical stains were carried.
     Results
     1①Observing the morphology of BMSC with inverted microscope:Cells showed fiber figure and swirl growth.Primary cultured BMSC were oval,spindle-shaped or polygonal,and adhered to plastic surface within 48h and reached 90% confluence within 14 days.After purification and proliferation,they were uniformly long spindle-shaped form;②Cells growth cure of BMSC;The BMSC were still in latent phase after being adherent to the bottom 2 days;3-4 days later, cells were in log phase;6 days later,and cells came into platform phase;③The result of the cell-surface markers:Cell membranes were colored up evidently after CD44 staining and CD44 of the passage 2 BMSC positive rate were 93%.
     2①The surface of the pale yellow ACM was porous and netty and the bouncy ACM was fragile. The results showed that the Average pore radius was 47.13μm and the Total porosity came to 68.54%;②Test for in vitro cytotoxicity: At every time interval, the OD scores of three groups were not significant differences (P>0.05).The grade of the cytotoxicity of the ACM was 0;③Test for acute systemic toxicity: The avoirdupois scores of both groupⅠandⅡwere not statistically significant differences (P>0.05), but the differences between groupⅠandⅢwere statistically significant(P<0.05);④Test of hemolysis: Hemolysis Percentage was 2.92%;⑤Observing the morphology of BMSC in the ACM with inverted microscope:BMSC were oval and nucleoli appeared in a few cells. And the ACM were decomposed into particulates; the histological observation after the ACM was hypodermically embedded: There were few lymphocytes and polymorphonuclear leucocyte around the ACM. And the ACM were closed in by compact fibrosis wall and were decomposed into small parts.
     3①In the 6th and 12th week after the operation, the morphology, distribution and arrangement of the regenerated tissues were similar to normal cartilage in the knees with ACM-BMSC transplantation, and the regenerated tissues grew to be integrated with the surrounding normal cartilage with obscure boundary between them. In the ACM group, the rough surface of regenerated tissue sunk obviously and the fibroblasts in all layer and the few chondrocytes in the deep layer were found. While the thin reddish grey layer of soft granulation tissue formed in the defect and the fibroblasts increased in non–transplantation group;②At every time interval, the histological scores of groupⅢbased on Wakitani scoring excelled both groupⅠandⅡwith statistically significant differences(P<0.05),but the differences betweenⅠandⅡwere not significant(P>0.05);③Immunohistochemistrical stains showed that cells in the zones of repaired tissues were abundant, arranged columnedly and the typeⅡcollagen staining was positive.
     Conclusions
     1 BMSC were easily isolated and cultured in vitro and proliferate prosperously, and more purified. The protocol should make it possible to undertake.
     2 ACM accords with the biomaterial standards of cartilage tissue engineering in Total porosity, Total specific surface area, test for in vitro cytotoxicity, test of hemolysis, tests for acute systemic toxicity and biodegradation.
     3 Tissue-engineering cartilage based on BMSC seeded into ACM can repair the defects of the whole layer cartilage defects of medial femoral condyles of rabbits. The repair tissue was confirmed to be hyaline cartilage.
引文
1曹谊林,刘伟,崔磊,组织工程学理论与实践,上海,科学技术出版社,2004
    2 Baek CH,Ko YJ, Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold, Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. suno@snu.ac.kr
    3吴俊,孙俊英,李海燕,常江.以PHBV为支架构建组织工程化软骨[J].中国矫形外科杂志,2006,14(13):1016-8
    4 Barry F. P., J. M. Murphy, Mesenchymal stem cells: clinical applications and biological characterization, Int. J. Biochem .Cell . Biol., 36:568-584, 2004
    5 Triffitt J. T., The stem cell of the osteoblast . J. P. Bilezikian, L. G. Raisz and R. G.A, eds., In: Principles of bone biology, Academic Press, San Diego, 1996, 39-50。
    6 Goshima J., V. M. Goldberg, A. I. Caplan , Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic, Biomaterials, 12:253-258,1991
    7 Bruder S. P., N. Jaiswal, S. E. Haynesworth, Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation, J. Cell. Biochem., 64:278-294,1997
    8 Haynesworth S. E., J. Goshima, V. M. Goldberg, A. I. Caplan, Characterization of cells with osteogenic potential from human marrow, Bone, 13:81-88,1992
    9 Krebsbach P. H., S. A. Kuznetsov, K. Satomura, R. V.Emmons, D. W. Rowe, P. G. Robey, Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts, Transplantation, 63 :1059-1069,1997
    10 Jaiswal N., S. E. Haynesworth, A. I. Caplan, S. P. Bruder, Osteogenic differentiation of purified, cultureexpanded human mesenchymal stem cells in vitro, J. Cell Biochem., 64:295-312.,1997
    11 Malekzadeh R, Hollinger JO, Buck D.et al. Isolation for human osteoblast-like cells and in vitro amplification for tissue engineering. J Periodontol, 1998, 69(11): 1256-1262
    12 Ma jumadar amk. Thiede MA, Mosca JD. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells and stromal cells.J Cell Physiol.1998, 176:56-66
    13 Goldstein S.Health Tech Institute's 2nd annuaI tissue-engineering/regenerative healing/stem cell biology.Cambrige:Presentation Pittsburgh 1999
    14曹谊林,刘伟,崔磊.组织工程学理论与实践,上海,科学技术出版社,2004.162
    15王蓓,汪维伟.间充质干细胞的研究进展[J].国外医学(外科学分册),2005,32 (6):459-62
    16.董海,陆骅,周之德,等.人骨髓间充质干细胞表面抗原测定[J].中国矫形外科杂志,2004,12(15):1161-5
    17 Daniel Rubio, Javier Garcia-Castro,et al. Spontaneous Human Adult Stem Cell Transformation. Cancer Research 65, 3035-3039, April 15, 2005
    18 Hanchen Li, Xueli Fan et al. Spontaneous Expression of Embryonic Factors and p53 Point Mutations in Aged Mesenchymal Stem Cells: A Model of Age-Related Tumorigenesis In Mice. Cancer Res. 2007 Nov 15; 67(22):10889-10898.
    19 Takeuchi M, Takeuchi K,et al. Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. In Vitro Cell Dev Biol Anim. 2007 Mar-Apr; 43(3-4):129-38.
    1曹谊林,刘伟,崔磊,组织工程理论与实践,上海,科学技术出版社,2004
    2黄伟春,张燕,杨洪义,软骨组织工程进展[J],国外医学生物医学工程分册,1999,22(5):270-276
    3 Munirah S, Kim SH, Ruszymah BH et al.The use of fibrin and poly (lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis[J]. Eur Cell Mater, 2008, 15:41-52.
    4 Courtman DW ,Pereira CA,Kashef Y, et al. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction[J]. J Biomed Mater Res, 1994, 28:655.
    5 Jeanie L. Drury, Robert G. Dennis, David J. Mooney,The tensile properties of alginate hydrogels[J],Biomaterials,2004,25(16):3187-3199
    6李强,孙正义,软骨组织工程支架材料研究现状[J],中国组织工程与临床康复,2007,11(1):133-136
    7刘彦春,王炜,曹谊林,卵磷脂、多聚赖氨酸和PLA包埋PGA与软骨细胞体外培养的实验研究[J],实用美容整形外科杂志,1997,8(5):225-227
    8 Peppas NA, Langer R.New challenges in biomaterials [J].Science, 1994 Mar 25; 263(5154):1715-1720.
    9 Sims CD, Butler PE, Cao YL,et al. Tissue Engineered Neocartilage Using Plasma Derived Polymer Substrates and Chondrocytes[J]. Plast Reconstr Surg , 1998 May; 101(6):1580-1585.
    10 Ehrmann R L, Gey GO. The growth of cells on a transparent gel of reconstituted rat tail collagen [J], J Natl Acad Sci, 1986, 16: 1375-1384
    11胡晓波,杨海鹰,吴多能。异种(猪)骨基质明胶的抗原性研究免疫组化(酶标)法[J],中华骨科杂志,1996,16(6):392-394
    12 Claase MB, de Bruijn JD, Grijpma DW, et al. Ectopic bone formation in cell-seeded poly(ethylene oxide)/poly(butylene terephthalate) copolymer scaffolds of varying porosity[J],J Mater Sci: Mater Med,2007,18 (7):1299-1307
    13 Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate[J].Science,2005,310(5751):1139-1143
    14 Brandl F, Sommer F, Goepferich A. Rational design of hydrogels for tissue engeneering: impact of physical factors on cell behavior. Biomaterials,2007,28(2):134-146
    15 Kleinman HK, Philp D, Hoffman MP. Role of the extracellular matrix in morphogenesis[J]. Curr Opin Biontechnol 2003,14(5):526-532
    16 Rosso F, Giordano A, Barbarisi M, Barbarisi A. From cell-ECM interactions to tissue engineering[J].J Cell Physiol 2004,199(2):174-180
    17 Brown E, Dejana E, editors. Cell-to-cell contact and extracellular matrix editorial overview: cell-cell and cell-matrix interactions -running, jumping, standing still[J]. Curr Opin Cell Biol,2003:15:1-4
    1 ISO 10993-11: 1993 Biological evaluation of medical devices—Part 11: Tests for systemic toxicity
    2戴伯军,李家顺,贾连顺等,纳米氧化锆强韧化高孔隙率磷酸钙人工骨细胞支架生物学评价[J],中国矫形外科杂志,2004,12(13):998-1001。
    3 TheiszováM, JantováS, DragúnováJ,et al, Comparison the cytotoxicity of hydroxyapatite measured by direct cell counting and MTT test in murine fibroblast NIH-3T3 cells[J], Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub ,2005,149(2):393-396.
    4裴国献,魏宽海,金丹,组织工程学实验技术,北京:人民军医出版社,2006,176-177。
    5 ISO 10993-4: 2002 Biological evaluation of medical devices—Part 4: Selection of tests for interactions with blood
    6 K. Jansen,J.F.A.van der Werff,P.B.van Wachem,et al, A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat[J], biomaterials, 2004,25(3):483-489
    7 F. Unger, U. Westedt, P. Hanefeld, et al, Poly(ethylene carbonate): A thermoelastic and biodegradable biomaterial for drug eluting stent coatings[J]?Journal of Controlled Release.2007,117(3):312-321
    8 Can Zhang, Guowei Qu, Yingji Sun, et al. Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulfate chitosan micelles loaded with paclitaxel. Biomaterials, 2008,29(9):1233-1241
    9 Leena Pravina Amarnath, Arvind Srinivas, Anand Ramamurthi, In vitro hemocompatibility testing of UV-modified hyaluronan hydrogels[J].Biomaterials,2008,27(8):1416-1424
    1姚康德,尹玉姬,组织工程相关生物材料,北京,化学工业出版社,2003
    2 ISO 10993-5: 1999 Biological evaluation of medical devices-Part5: Test for in vitro cytotoxicity
    3裴国献,组织工程学试验技术,北京,人民军医出版社,2006
    4 Chen G, Liu D, Tadokoro M, et al, Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold [J] , Biochem Biophys Res Commun,2004,322(1):50-55
    5 Wei G , Ma PX, Structure and properties of nano -hydroxyapatite /polymer composite scaffolds for bone tissue engineering, Biomaterials. 2004, 25(19): 4749-4757
    6 Jeon YH, Choi JH, Sung JK, Different effects of PLGA and chitosan scaffolds on human cartilage tissue engineering[J],Craniofac Surg. 2007,18(6):1249-1258
    7 Li Z, Zhang M, Chitosan-alginate as scaffolding material for cartilage tissue engineering[J],J Biomed Mater Res A.2005,75(2):485-493
    1 Shao X, Goh JC, Hutmacher DW, et al, Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model[J]. Tissue Eng, 2006, 12(6):1539-1551.
    2 Kang Y, Yang J, Khan S, et al, A new biodegradable polyester elastomer for cartilage tissue engineering[J], J Biomed Mater Res A, 2006, 77(2):331-339.
    3 Caplan AI, Elyaderani M, Mochizuki Y,et al. Principles of cartilage repair and regeneration[J]. Clin Orthop Relat Res. 1997 Sep; (342):254-69.
    4杨自权,卫小春,焦强等。自体骨髓间充质肝细胞移植修复兔关节软骨损伤[J],中华创伤杂志,2005,21(3):183-186
    5 Bail H, Klein P, Kolbeck S, et al, Systemic application of growth hormone enhances the early healing phase of osteochondral defects--a preliminary study in micropigs[J],Bone,2003,32(5):457-467
    6 Langer R, Tissue engineering, Molecular Therapy, 2000, 1(1):12-15
    7 Schulze-Tanzil G, Mobasheri A, de Souza P, et al. Loss of chondrogenic potential in dedifferentiated chondrocytes correlates with deficient Shc-Erk interaction and apoptosis[J]. Osteoarthritis Cartilage 2004;12(6): 448-458
    8 Kino Oka M, Maeda Y, Ota Y, et al. Process design of chondrocyte cultures with monolayer growth for cell expansion and subsequent three-dimensional growth for production of cultured cartilage[J].J Biosci Bioeng, 2005,100(1);67-76
    9孔清泉,项舟,杨志明.骨髓基质干细胞作为软骨组织工程种子细胞研究[J].中国修复重建外科杂志.2002,16(4):277-280
    10李强,孙正义,软骨组织工程支架材料研究现状[J],中国组织工程与临床康复,2007,11(1):133-136
    11杨自权,卫小春,郝一勇等,兔骨髓间充质干细胞的分离培养及其生物学性状的研究[J],中国骨伤,2004,17(5):263-266
    12 Triffitt JT, Osteogenic stem cells and orthopedic engineering:Summary and update[J], J Biomed Mater Res,2002,63(4):384-389
    1 Foster JW, Dominguez-Steglich MA, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene [J]. Nature, 1994 Dec 8; 372(6506):525-530.
    2 Kwok C, Weller PA, Guioli S,et al.Mutations in SOX9, the gene responsible for Campomelic dysplasia and autosomal sex reversal[J]. Am J Hum Genet .1995 Nov; 57(5):1028-1036.
    3 Bi W, Deng JM, Zhang Z, et al. Sox9 is required for cartilage formation[J]. Nat Genet. 1999 May; 22(1):85-89.
    4 Shum L, Nuckolls G.The life cycle of chondrocytes in the developing skeleton[J]. Arthritis Res. 2002; 4(2):94-106.
    5 Kitoh H, Ishiguro N. Molecular mechanism in the differentiation of chondrocytes[J]. Clin Calcium. 2007 Apr; 17(4):493-498.
    6 Healy C, Uwanogho D, Sharpe PT. Regulation and role of Sox9 in cartilage formation[J]. Dev Dyn. 1999 May; 215(1):69-78.
    7 Yoon BS, Ovchinnikov DA, Yoshii I,et al. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo[J]. Proc Natl Acad Sci U S A. 2005 Apr 5; 102(14):5062-5067.
    8 Chimal-Monroy J, Rodriguez-Leon J, Montero JA,et al. Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling[J]. Dev Biol. 2003 May 15; 257(2):292-301.
    9 Meech R, Edelman DB, Jones FS, et al. The homeobox transcription factor Barx2 regulates chondrogenesis during limb development [J].Development. 2005 May; 132(9):2135-2146.
    10 Murakami S, Kan M, McKeehan WL,et al.Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway[J]. Proc Natl Acad Sci U S A. 2000 Feb 1; 97(3):1113-1118.
    11 de Crombrugghe B, Lefebvre V, Behringer RR, et al.Transcriptional mechanisms of chondrocyte differentiation[J]. Matrix Biol. 2000 Sep;19(5):389-394.
    12 Zhao Q, Eberspaecher H, Lefebvre V, Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis[J]. Dev Dyn. 1997 Aug; 209(4):377-386.
    13 Bell DM, Leung KK, Wheatley SC, et al. SOX9 directly regulates the type-II collagen gene [J]. Nat Genet. 1997 Jun; 16(2):174-178
    14 Lefebvre V, Huang W, Harley VR,et al. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene[J]. Mol Cell Biol. 1997 Apr; 17(4):2336-2346.
    15 Liu CJ, Zhang Y, Xu K,et al. Transcriptional activation of cartilage oligomeric matrix protein by Sox9, Sox5, and Sox6 transcription factors and CBP/p300 coactivators[J]. Front Biosci. 2007 May 1; 12:3899-3910
    16 Tsuda M, Takahashi S, Takahashi Y,et al.Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9[J]. J Biol Chem. 2003 Jul 18; 278(29):27224-27229.
    17 Furumatsu T, Tsuda M, Taniguchi N, et al. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment [J]. J Biol Chem. 2005 Mar 4; 280(9): 8343-8350.
    18 de Crombrugghe B, Lefebvre V, Behringer RR, et al. Transcriptional mechanisms of chondrocyte differentiation[J]. Matrix Biol. 2000 Sep; 19(5):389-394.
    19 Nonaka K, Shum L, Takahashi I,et al. Convergence of the BMP and EGF signaling pathways on Smad1 in the regulation of chondrogenesis[J]. Int J Dev Biol. 1999 Nov; 43(8):795-807.
    20李立家,肖庚富.基因工程[M].北京.科学技术出版社,2004
    21刘德丽,刘芳军,胡晓洁等,病毒介导的基因转染在组织工程中的应用[J].上海第二医科大学学报.2004.24(4):311-314
    22戴克戎徐小良汤亭亭等,骨形态发生蛋白-2基因修饰的组织工程化骨修复羊胫骨干骨缺损[J].中华医学杂志.2003.83(15):1345-1349
    23卜丽莎,李建军,高申等,转染BMP-2基因的兔BMSCs种植PLA/PCL支架体外构建组织工程骨[J].中国矫形外科杂志.2004.12(9):677-679
    24李建军,杨绍娟,卜丽莎等,BMP-2基因转染的人骨髓基质干细胞复合PLA/PCL支架体外构建组织工程骨[J].骨与关节损伤杂志,2004,19(3):177-180
    25蒋欣泉,张志愿,陈建国等,人骨形成蛋白4基因修饰的组织工程化骨的实验研究[J].中华口腔医学杂志,2003,38(5):390-392
    26闫露,鱼兵,范清宇等,人骨形成蛋白-7基因增强的组织工程化骨修复骨缺损[J].实用医学杂志,2006,22(23):2724-2726
    27宋之明,张绍坤,刘一等,转基因同种异体组织工程软骨修复兔膝关节全层缺损[J].中国临床康复,2006,10(37):60-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700