前交叉韧带分束及其断裂对股骨内髁影响的生物力学和组织学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前交叉韧带(anterior curciate ligament,ACL)是维持膝关节稳定的重要结构,其作用主要表现为控制胫骨的前移和对膝内外翻和旋转运动的调节。股骨内髁是膝关节的重要组成部分。临床上ACL损伤十分常见,常导致膝关节继发性损伤。然而,ACL损伤是否影响股骨内髁软骨,目前研究甚少。本研究运用生物力学测定方法并结合聚类统计学分析方法对ACL各纤维束进行功能性分束;并在此基础上,运用生物力学、组织学方法观测ACL损伤后股骨内髁不同部位生物力学特性及病理学改变;同时检测IL-β、MMP-13表达。为ACL损伤是否对股骨内髁产生影响提供理论依据。
     第一章前交叉韧带功能性分束的生物力学研究
     目的探讨ACL功能性分束,为后续研究提供基础。
     方法新鲜成人正常膝关节标本6具,取ACL胫骨止点前方两侧、股骨止点后方两侧作为应变测量点,静态应变测试仪平衡标定后,在800N轴向载荷下,测试膝关节0°、30°、60°、90°状态下测量ACL前内侧束、前外侧束、后内侧束、后外侧束应变值。运用聚类方法进行功能性分束。
     结果1、膝关节0°位:后内侧束与前内侧束应变无显著性差异,P>0.05。后外侧束与前外侧束应变无显著性差异,P>0.05;ACL后外侧束、前外侧束应变大于内侧束、前内侧束应变,均有显著性差异,均P<0.05。30°位和90°位:后内侧束与前内侧束应变无显著性差异,P>0.05;后外侧束与前外侧束应变无显著性差异,P>0.05;ACL后内侧束、前内侧束应变均大于后外侧束、前外侧束应变,均有显著性差异,均P<0.05。60°位:ACL应变后内侧束最大后依次为、前内侧束、后外侧束、前外侧束,各束间应变比较均有显著性差异,均P<0.05。
     2.前内侧束与后内侧束应变变化一致,依序0°、30°、60°、90°逐渐增大,均有显著性差异,均P<0.05;前外侧束应变在膝0°、30°、60°、90°均无显著性差异,均P>0.05。后外侧束应变在膝关节60°位大于0°、30°、90°,均有显著性差异,均P<0.05;0°与90°应变无显著性差异,P>0.05;0°、90°应变均大于30°,差异均有显著性,均P<0.05。
     3、聚类分析:后外侧束与前外侧束归为一类,后内侧束与前内侧束归为一类。
     结论
     膝伸直位ACL后外侧区纤维束和前外侧区纤维束应变大于后内侧区纤维束和前内侧区纤维束。膝屈曲位后内侧区纤维束和前内侧纤维束应变大于后外侧区纤维束和前外侧区纤维应变,说明后外侧区纤维束和前外侧区纤维束主要维持膝关节伸直稳定性,后内侧区纤维束和前内侧区纤维束主要维持膝关节屈曲稳定性。结合聚类分析结果,证明ACL可分为前内、后外两功能性纤维束。
     第二章前交叉韧带断裂对股骨内髁生物力学影响的实验研究
     目的探讨ACL断裂对股骨内髁生物力学的影响,为防治股骨内髁继发性损伤提供依据和参考。
     方法新鲜成人尸体膝关节标本10具,分为ACL完整组、前内侧束(AMB)切断组、后外侧束(PLB)切断组和ACL完全切断组。先将ACL完整组(10具)分别在膝关节0°、30°、60°、90°位轴向加载200~800N,测量股骨内髁关节面的应变;再随机将标本造模成AMB切断组和PLB切断组(各5具),在上述条件下测试应变;最后将ACL完全切断组(10具)在上述条件下测试应变;并分别对数据进行统计分析。
     结果
     1.膝关节0°位,200N和400N载荷下,股骨内髁前部、中部、后部的应变在PLB切断组与ACL全断组、ACL完整组与AMB切断组之间无显著性差异,P>0.05;600N、800N载荷下,股骨内髁前部、后部的应变在各实验组间均有显著性差异,P<0.05,中部应变在各实验组间无显著性差异,P>0.05:相同载荷下,前部、中部应变值表现为全断组>PLB切断组>AMB切断组>完整组,后部表现为完整组>AMB切断组>PLB切断组>全断组。
     2.膝关节30°位,200N和400N载荷下,股骨内髁前部、中部、后部的应变在ACL完整组与PLB切断组、AMB切断组与ACL全断组之间无显著性差异,均P>0.05;600N、800N载荷下各实验组间均有显著性差异,均P<0.05,相同载荷下应变值表现为全断组>AMB切断组>PLB切断组>完整组。
     3.膝关节60°,200N和400N、600N、800N载荷下,股骨内髁前部、中部、后部的应变各实验组间均有显著性差异,均P<0.05;相同载荷下应变值表现为全断组>AMB切断组>PLB切断组>完整组。
     4.膝关节90°,在200N、400N、600N、800N载荷下,股骨内髁前部、中部、后部的应变各实验组间均有显著差异,均P<0.05;前部应变表现为完整组>PLB切断组>AMB切断组>全断组,中部、后部表现为全断组>AMB切断组>PLB切断组>完整组。
     结论
     1.PLB切断在膝伸直位对股骨内髁前、中、后各部位的应变均有影响。
     2.AMB切断在膝屈曲位时对股骨内髁前、中、后各部位的应变均有影响。
     3.ACL完全切断,对股骨内髁前、中、后各部位的应变均有影响。
     第三章前交叉韧带断裂对股骨内髁软骨的组织学影响
     目的观察ACL断裂后股骨内髁软骨组织HE染色改变与IL-1β、MMP-13的表达变化,探讨ACL断裂对股骨内髁软骨组织学影响。
     方法48只雄性家兔随机分为四组,兔后腿膝关节配对为实验侧和对照侧,自身对照,实验侧行ACL切断。造模后于第1、3、6、8周各随机处死12只。观察各时间点股骨内髁软骨组织结构HE染色与IL-1β、MMP-13表达的变化。
     结果1.大体观察:随着ACL断裂时间周期的延长,实验组股骨内髁软骨逐渐出现色泽改变、表面光泽减退、表面出现不平整甚至溃疡。
     2.组织HE染色观察:第1周实验组与对照组比较无显著性差异,P>0.05,其他各实验组均大于对照组,差异均具有显著性,均P<0.01;自第三周开始出现软骨表面及软骨细胞排列的异常。Mankin评分实验组随时间推移而增高,各实验组间比较均有显著性差异,均P<0.01;
     3.IL-1β表达:第1、3、6、8周实验组均高于正常对照组,均有显著性差异,均P<0.05。实验组第1周低于3、6、8周,均有显著性差异,均P<0.05;第6周表达高于第3、8周,均有显著性差异,均P<0.01;第8周表达高于第3周,有显著性差异,P<0.01。正常对照组各周间比较均无显著性差异,均P>0.05。
     4.MMP-13表达:第1、3、6、8周实验组均高于正常对照组,均有显著性差异,均P<0.01。实验组第1周低于第3、6、8周,均有显著性差异,均P<0.01;第6周表达高于第3、8周,均有显著性差异,均P<0.01;第8周表达与第3周比较无显著性差异,P>0.05。正常对照组各周间比较均无显著性差异,均P>0.05。
     结论
     1.证实ACL断裂继发引起股骨内髁软骨组织退变。
     2.ACL断裂后股骨内髁软骨IL-1β、MMP-13表达递提示IL-1β、MMP-13可能是ACL断裂后股骨内髁软骨退变因素之一。
Anterior cruciate ligament of knee joint stability is important to maintain the structure,its role is mainly expressed in the anterior tibial control and turned inside and outside of the knee and rotation adjustment.Within the femoral condyle is an important component of the knee.ACL injury clinically are common,often leads to secondary injury in the knee.However,ACL injury would not affect the femoral condyle with the cartilage,little current research.In this study,the use of bio-mechanical method combined with statistical analysis of clustering methods on the fiber bundle ACL functional splitter;and on this basis,the use of biomechanical and histological methods of observation after the ACL injury in different parts of femoral condyles in biomechanics characteristics and pathological changes;At the same time,detection of IL-β,MMP-13 expression.For ACL injury in femoral condyle of the impact and provide a theoretical basis.
     Chapter1 The biomechanical study of ACL bundles' functional classification
     Objective:To investigate the functional bundle division of the ACL.
     Methods:6 fresh cadaveric knees from adult human beings were used.Selected the bilateral anterior part of the ACL tibial insertion and the bilateral posterior part of the ACL femoral insertion The strain on the ACL bundles was measured when the knees were applied with 800N axial loading force in 0°、30°、60°、90°positions.The bundles were functional classified by cluster analysis.
     Results:1.In 0°position,the strain on the posterolateral and anterolateral bundles was significantly larger than the posteromedial and anteromedial bundles(P<0.05),There were no significant diference between the posterolateral and anterolateral bundles(P>0.05) and so did the posteromedial and anteromedial bundles(P>0.05);In 30°and 90°position,the strain on the posteromedial and anteromedial bundles was significantly larger than the posterolateral and anterolateral bundles (P<0.05),There were no significant difference between the posteromedial and anteromedial bundles(P>0.05) and so did the posterolateral and anterolateral bundles(P>0.05);In 60°position,the strain on the posteromedial bundle was the largest,and then the anteromedial、posterolateral、anterolateral bundle,the differences among bundles were all significant(P<0.05).2.The strain on the posteromedial and anteromedial bundles was increased by degrees when the knee flexed 0°、30°、60°、90°,and all the difference were significant(P<0.01); There were no significant changes of the strain on the anterolateral bundle among different angles(P>0.05).The strain on the posterolateral bundle in 60°position was larger than 0°、30°、90°positions,the differences were significant(P<0.05);The strain in 30°position was significantly smaller than 0°and 90°positions(P<0.05),but the difference of strain between 0°and 90°positions was not significant (P>0.05).3.Cluster analysis classfied the anteromedial bundle and the posteromedial bundle as one class and the anterolateral and posterolateral bundles as the other class.
     Conclusion:Extension after ACL knee lateral fiber bundle and the former lateral strain than the fiber bundle fiber bundle after the medial area of the medial preoptic area and the fiber bundle.Knee flexion after the medial area of fiber bundles and fiber bundles anteromedial lateral strain after more than fiber bundles and fiber strain anterolateral area shows that after the lateral fiber bundle and the former major lateral fibers to maintain the knee joint extended stability of fibers after the medial area of the medial preoptic area and the main fiber bundle to maintain the stability of knee flexion.Combining the results of cluster analysis that can be divided into pre-ACL,the posterolateral fiber bundles of the two functions.
     Chapter 2 The biomechanical influence of ACL rupture on the Within the femoral condyle
     Objective:To investigate the biomechanical influences of partial and total ACL rupture on the Within the femoral condyle and provide theoretic evidence for ACL repair and rehabilitation.
     Methods:10 fresh cadaveric knees from adult human beings were divided into ACL intact group、AMB broken group、PLB broken group(and ACL total broken group.The knees were applied with 200N~800N axial loading force when they flexed 0°、30°、60°、90°.The strain on the Within the femoral condyle was measured and analysed.
     Results:In 0°position,the straining of the anterior part,middle part and posterior part on the Within the femoral condyler shows no significant difference between PLB rupture group and ACL complete rupture group,complete ACL group and AMB rupture group under the load of 200N and 400N,P>0.05;significant difference is showed among the straining of the anterior part and posterior part on the Within the femoral condyler under the loads of 600N and 800N,P<0.05,the straining of middle part on the Within the femoral condyler shows no significant difference among all the groups under the loads of 600N and 800N,P>0.05;under the same load and angle of flexion,the correlateion of the absolute value of straining in every group of the anterior part and posterior part on the Within the femoral condyler increases in this way of ACL complete rupture group>PLB rupture group>AMB rupture group>complete ACL group,But,middle part on the Within the femoral condyler increases in this way of ACL complete rupture group>AMB rupture group>PLB rupture group>complete ACL group.In 30°position,the straining of the anterior part,middle part and posterior part on the Within the femoral condyler shows no significant difference between complete ACL group and PLB rupture group,AMB rupture group and ACL complete rupture group under the load of 200N and 400N,P>0.05;significant difference is showed among all the groups under the loads of 600N and 800N,P<0.05;under the same load and angle of flexion,the correlateion of the absolute value of straining in every group increases in this way of A CL complete rupture group>AMB rupture group>PLB rupture group>complete ACL group.In 60°position,the straining of the anterior part and middle part and posterior part on the Within the femoral condyler shows significant difference among all experiemental groups under the load of 200N and 400N and 600N and 800N,P<0.05;under the same load and angle of flexion, the correlateion of the absolute value of straining in every group increases in this way of A CL complete rupture group>AMB rupture group>PLB rupture group>complete ACL group.In 90°position,the straining of the anterior part and middle part and posterior part on the Within the femoral condyler shows significant difference among all experiemental groups under the load of 200N and 400N and 600N and 800N,P<0.05. under the same load and angle of flexion,the correlateion of the absolute value of straining in every group of the anterior part on the Within the femoral condyler increases in this way of A CL complete ACL group>PLB rupture group>AMB rupture group>complete rupture group, but,every group of middle part and posterior part on the Within the femoral condyler increases in this way of A CL complete rupture group>AMB rupture group>PLB rupture group>complete ACL group.
     Conclusion:
     1.PLB cut off in the knee in extension position of the femoral condyle before,during and after each part of the strain affects both.
     2.AMB cut off in the knee flexion with the femoral condyle on before, during and after each part of the strain affects both.
     3.ACL completely cut off,with the condyle of the femur before,during and after each part of the strain affects both.
     Chapter 3 The histological influence of ACL rupture on the Within the femoral condyler cartilage
     Objective:To investigate the tissue construction changes and IL-1、MMP-13 express in the Within the femoral condyler cartilage,to further explore the influence of ACL rupture on the Within the femoral condyler cartilage.
     Methods:48 male rabbits were randomly divided into four groups,and all were under one side posterior leg ACL cut and the opposite side as the control.HE staining and immunohistochemical methods were used.Tissue construction and IL-1β、MMP-13 expression changes of the lateral tibial plateau cartilage were observed 1、3、6、8 weeks later.
     Results:1.Gross observation:As the time lasted,the Within the femoral condyler cartilage had the color changed、the gloss decreased、the surface abrased and even had ulcer on the cartilage.2.Routine HE staining:There are abnormal cartilage surface and cell disposition after 3 weeks.The Mankin scores in experimental groups increased as the time lasted,the differences among the groups were all significant(P<0.01); there was no significant difference between 1-week group and control group(P>0.05),the Mankin scores in the other experimental groups were significantly higher than that in control group(P<0.01).3.IL-1β expression:All the experimental groups had higher IL-1βexpression than that in control groups(P<0.01).In experimental groups,IL-1βexpressed significantly lower in 1-week group than that in 3、6、8-week groups (p<0.05);In 6-week group,IL-1βexpressed higher than that in 3-week group and 8-week group(P<0.01).IL-1βexpressed higher in 8-week group than that in 3-week group(P<0.01).There were no signifigant differences among the control groups(P>0.05).4.MMP-13 expression: All the experimental groups had higher IL-1βexpression than that in control groups(P<0.01).In experimental groups,MMP-13 expressed significantly lower in 1-week group than that in 3、6、8-week groups (p<0.01);In 6-week group,MMP-13 expressed higher than that in 3-week group and 8-week group(P<0.01).There was no significant difference between 3-week group and 8-week group(P>0.05).There were no signifigant differences among the control groups(P>0.05).
     Conclusion:
     1.Confirmed ACL rupture with secondary femoral condyle caused by degeneration of cartilage tissue.
     Femur fracture within
     2.ACL condylar cartilage after IL-1β,MMP-13 expression prompt delivery IL-1β,MMP-13 may be broken after ACL femoral condyle cartilage degeneration in one of the factors.
引文
[1]Musahl V,Burkart A,Debski RE,et al.Anterior cruciate ligament tunnel placement:Comparison of insertion site anatomy with the guidelines of a computer-assisted surgical system.Arthroscopy,2003,19:154-160.
    I2]Anderson AF,Dome DC,Gautam S,Awh MH,Rennirt GW.Correlation of anthropometric measurements,strength,anterior cruciate ligament size,and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates.Am J Sports Med 2001;29(1):58-66.
    [3]姚作宾,任国良,陈明法.前交叉韧带的应用解剖.中国临床解剖学杂志,1989,7(3):141-3.
    [4]Zaffagnini S,Martelli S,Acquaroli F.Computer investigation of ACL orientation during passive range of motion.Comput Biol Med 2004;34(2):153-63.
    [5]王健全,敖英芳,刘平,陈临新.前交叉韧带股骨止点临床解剖学研究.中国运动医学杂志,2007,26(3):266-70.
    [6]Girgis FG,Marshall JL,Monajem A.The cruciate ligaments of the knee joint.Anatomical,functional and experimental analysis.Clin Orthop Relat Res,1975:216-231.
    [7]Mac T,Shino K,Miyama T,et al.Single-versus two-femoral socket anterior cruciate ligament reconstruction technique:Biomechanical analysis using a robotic simulator.Arthroscopy,2001,17:708-716.
    [8]Kurosawa H,Yamakoshi K,Yasuda K,et al.Simultaneous measurement of changes in length of the cruciate ligaments during knee motion.Clin Orthop Relat Res,1991:233-240.
    [9]Fineberg MS,Zarins B,Sherman OH.Practical considerations in anterior cruciate ligament replacement surgery.Arthroscopy,2000,16:715-724.
    [10]Hirokawa S,Yamamoto K,Kawada T.Circumferential measurement and analysis of strain distribution in the human ACL using a photoelastic coating method.J Biomech,2001,34:1135-1143.
    [11]郭林,杨柳,杨昌棋,等.四象限分区法用于前交叉韧带多纤维束动态受力分析.医用生物力学,2007,22:356-360.
    [12]Odensten M,Gillquist J.Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction.J Bone Joint Surg Am,1985,67:257-262.
    [13]刘秀梅,陶澄,肖东民.人膝关节前、后交叉韧带解剖研究及临床意义.医学临床研究,2006,23:1085-1087.
    [14]Zaffagnini S,Martelli S,Acquaroli F.Computer investigation of ACL orientation during passive range of motion.Comput Biol Med,2004,34(2):153-163
    [15]李昶,于赛华,张琪,闫明.前交叉韧带的功能解剖研究.内蒙古医学院学报,2000,22(4):230-232.
    [16]Loh JC,Fukuda Y,Tsuda E,et al.Knee stability and graft function following anterior cruciate ligament reconstruction:Comparison between 11 o'clock and 10 o'clock femoral tunnel placement.2002 Richard O'Connor Award paper.Arthroscopy,2003,19(3):297-304.
    [17]Boisgard S,Levai JP,Geiger B,et al.Study of the variations in length of the anterior cruciate ligament during flexion of the knee:use of a 3D model reconstructed from MRI sections.Surg Radiol Anat,1999,21:313-317
    [18]Gabriel MT,Wong EK,Woo SL,et al.Distribution of in situ forces in the anterio cruciate ligament in response to rotatory loads.J Orthop Res.2004,22:85-89.
    [19]王健全,敖英芳,刘平,陈临新.前交叉韧带股骨止点临床解剖学研究.中国运动医学杂志,2007,26(3):266-270.
    [20]Amis AA,Dawkins GP,Functional anatomy of the anterior cruciate ligament.Fibre bundle actions related to ligament replacements and injuries.J Bone Joint Surg Br,1991,73:260-267.
    [21]冯华,洪雷,耿向苏,等.前十字韧带损伤合并内侧半月板ramp损伤.中华骨科杂志,2005,25:651-655.
    [22]高士廉.使用解剖图谱(下肢分册).第2叛.上海:上海科学技术出叛社,2004.218-220
    [23]吴波,杨柳.前交叉韧带解剖和生物力学特性.中国矫形外科杂志,2006,14:1725-1726,1750.
    [24]Benjaminse A,Gokeler A,van der Schans CP.Clinical diagnosis of an anterior cruciate ligament rupture:a meta-analysis.J Orthop Sports Phys Ther 2006;36(5):267-88.
    [1]Goldstein J,Boseo JA 3rd.The ACL-deficient knee:natural history and treatment options[J].Bull Hosp Jt Dis,2001-2002,60(3-4):173-178.
    [2]Serpas F,Yanagawa T,Pandy M.Forward-dynamics simu-lation ofanterior erueiate ligament forces developed during isokinetic dynamometry[J].Comput Methods Biomech Engin,2002,5(1):33-43
    [3]Robert H.Fitzgerald,Jr,Herbert Kaufer,Arthur L.Malkani著,邱贵兴主译.骨科学.1版.北京:人民卫生出版社,2006.607-25.
    [4]王健全,敖英芳,刘平,陈临新.前交叉韧带股骨止点临床解剖学研究.中国运动医学杂志,2007,26(3):266-70.
    [5]Gabriel MT,Wong EK,Woo SL,et al.Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads.J Orthop Res,2004,22(1):85-9.
    [6]Musahl V,Lehner A,Watanabe Y,et al.Biology and biomechanics.Curr Opin Rheumatol,2002,14(2):127-33.
    [7]吴波,杨柳.前交叉韧带解剖和生物力学特性.中国矫形外科杂志,2006,14(22):1725-7.
    [8]Frain P,Fontaine C,D'Hondt D.Re v C hir O rt hop Reparutrice Appar Mot.1984;70(5);361-369.
    [9]Dennis DA,Komistek RD,Hoff WA et al.Clin Orthop,1996,331:107-117.
    [10]Callaghan JJ,Insall J,Greenwald AS et al.J Bone Joint Surg Am,2000,82(7),1020-1041.
    [11]Dennis DA,Komistek RD,Colwell CE et al.Clin Orthop,1998,356:47-57
    [12]Dennis DA,Fluoroscopic evaluation of knee kinematics following total knee arthroplasty.In Calder d'enseignement de la SOFCOT.Conferences d'enseignement.Paris,Elsevier,2001,1-18.
    [13]Draganich LF,Andriacchi TP,Andersson GB.J Orthop Res,1987,5(4):539-547.
    [14]Kurosawa H,Wallker PS,Abe S et al.J Biomech,1985,18(7):487-499.
    [15]M chael A H.Storical perspectires of chondromalacia patellae.Orthop Clin North Am,1992,10:517
    [16]Black burnels,Peel TE.A new method of measuring patellar hight.J Bone Joint Surg,1977,59(A):241.
    [17]Hayes WC,Huberti H,Lewallen D.Patellofemoralcontact pressure and the effects of surgical reconstructive procedures[A].InEwing J W,editor:Articular cartilage and knee joint function:Basic science and arthroscopy[M],NewYork,1990,RavenPress,pp57-771
    [18]王健,敖英芳.青少年前交叉韧带损伤流行病学研究[J].中国运动医学杂志,2002,21(5).
    [19]徐雁,敖英芳.前交叉韧带断裂继发软骨损伤的临床研究[J].中国运动医学杂志,2002,21(1).
    [20]王建,敖英芳.前交叉韧带损伤的临床流行病学研究[J].中国运动医学杂志,2001,20(4).
    [21]李放,关节炎和力学因素[J].中国临床康复,2002,6(1):10-12.
    [22]Buckwalter JA,Mankin HJ.Articular cartilage:degeneration and osteoarthritis,repair,regeneration,and transplantation.Instr Course Lect,1998,47:487-504.
    [23]陈百成,张静主编.骨关节炎.1版.北京:人民卫生出版社,2004.65-6.
    [24]肖东民,陈素芳,李雄等.前交叉韧带重建方法的生物力学研究.医学临床研究,2005,22(12):1667-70.
    [25]郭磊,赵玉岩,范广宇.髋臼发育不良的三维光弹力学实验研究及其临床意义.中国医科大学学报,2002,31(6):464-5.
    [26]张祚福,王万春.膝关节三维有限元分析.国际骨科学杂志,2006,27(2):43-5.
    [27]Donahue TL,Hull ML,Rashid MM,et al.A finite element model of the human knee joint for the study of tibio-femoral contact.J Biomech Eng,2002,124(3):273-80.
    [28]国家体育总局群体司.2000年国民体质监测报告.北京:北京体育大学出版社(第1版),2002:89-91.
    [29]Hirokawa S,Yamamoto K,Kawada T.Circumferential measurement and anslysis of strain distribution in the human ACL using a photoelastic coating method.J Biomech,2001,34:1135-43.
    [30]Zantop T,Herbort M,Raschke MJ,et al.The role of the anteromedial and posteralateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation[J].Am J Sports Med,2007,35(2):223-227.
    [31]Kwak SD,Colman WW,Ateshian GA,et al.Anatomy of thehuman patellofemoral joint articular cartilage:surface curvatureanalysis[J].J Orthop Res,1997,15(3):468-472.
    [32]Barrack RL,Burak C,Patella in total kneearthroplasty[J].Clin Orthop Relat Res,2001,(389):62-73
    [33]Ahmed AM,Burke DL,Yu Al In-vit ro measurement of static pressure distributionin synovial joints-Part Ⅱ:Retropatellar surface[J].J Biomech Eng,1983,105:226-236.
    [34]D'Agata SD,Pearsall AW,Reider B,et al.An in vit ro analysis of patellofemoral contactareas and pressure following procurementof central one-third patellar tendon[J].Am J Sports Med,1993,21:212-219.
    [35]Brechter JH,Powers CM.Patellofemoral stress during walking in persons with and without patellofemoral pain[J].Medicine and Science in Sports and Exercise,2002,34(10):1582-1593.
    [36]Brechter JH,Powers CM.Patellofemoral stress during stair ascent and descent in persons with and without patellofemoral pain[J].Giant and Posture,2002,16(2):115-123.
    [1]毕五禅,王亦骢.膝关节载荷传导紊乱所致关节炎关节软骨退变.中华骨科杂志,1991,11:3032305.
    [2]Pennock AT,Robertson CM,Emmerson BC,et al.Role of apop totic and matrix2degrading genes in articular cartilage and meniscus ofmature and aged rabbits during development of osteoarthritis.Arthritis Rheum,2007,56(5):1529-1536.
    [3]翟吉良,翁习生,邱贵兴.骨关节炎动物模型的建立及选择.中国矫形外科杂志,2007,15(11):843-845.
    [4]Johnson DL,Fu FH.Anterior cruciate ligament reconstruction:why do ailure occur? Insh Course Lect,1995(44):391-406.
    [5]陆勇,丁晓毅,宋卫峰,等.汉族成人膝关节软骨厚度变化规律的研究.生物医学工程与临床,2007(5).
    [6]陈启明,梁国穗,秦岭,等主译.骨科基础科学.北京:人民卫生出版社,2001.382-406.
    [7]Muir H.The chondrocyte,architect of cartilage.Biomechanics,structure,function and molecular biology of cartilage matrix macromolecules.Bioessays,1995,17(12):1039-48.
    [8]陈百成,张静.骨关节炎.北京:人民卫生出版社,2004.154-77.
    [9]Smith RL,Lin J,Trindade MC,et al.Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type Ⅱ collagen and aggrecan mRNA expression.J Rehabil Res Dev,2000,37(2):153-61.
    [10]Michael GE.Biochemical confirmation of an experimental osteoarthritis model [J].J Bone and Joint Surg,1975,57(a):392.
    [11]Fell HB,Jubb RW.The effect of synovial tissue on the breakdown of articular cartilage in organ culture.Arthritis Rheum,1977,20:1359-71.
    [12]Schwab W,Schulze-Tanzil G,Mobasheri A,et al.Interleukin-1beta-induced expression of the urokinase-type plasminogen activator receptor and its co-localization with MMPs in human articular chondrocytes.Histol Histopathol,2004,19:105-12.
    [13]Iannone F,Lapadula G.The pathophysiology of osteoarthritis,Aging Clin Exp Res,2003,15:364-72.
    [14]Arner EC,Tortorella MD.Signal transduction through chondrocyte integrin receptors induces matrix metalloproteinase synthesis and synergizes with interleukin-1.Arthritis Rheum,1995,38:1304-14.
    [15]Pelletier JP,Roughley PJ,DiBattista JA,et al.Are cytokines involved in osteoarthritic pathophysiology.Biorheology,2002,39:237-46.
    [16]Fernandes JC,Martel-Pelletier J,Pelletier JP.The role of cytokines in osteoarthritis pathophysiology.Biorheology,2002,39:237-46.
    [17]Dayer JM.The saga of the discovery of IL-1 and TNF and their specific inhibitors in the pathogenesis and treatment of rheumatoid arthritis.Joint Bone Spine,2002,69:123-32.
    [18]Vuolteenaho K,Moilanen T,Hamalainen M,et al.Regulation of nitric oxide production in osteoarthritic and rheumatoid cartilage.Role of endogenous IL-1inhibitors.Scand J Rheumatol,2003,32:19-24.
    [19]Pelletier JP,Faure MP,DiBattista JA,et al.Coordinate synthesis of stromelysin,interleukin-1,and oncogene proteins in experimental osteoarthritis.An immunohistochemical study.Am J Pathol,1993,142:95-105.
    [20]刘斌,瞿东滨,金大地,等.兔软骨终板退变过程中超微结构的观察[J].中国临床解剖学杂志,2004,22(4):398-401。
    [21]Moos V,Rudwaleit M,Herzog V,et al.Association of genotypes affecting the expression of interleukin-1beta or interleukin-1 receptor antagonist with osteoarthritis.Arthritis Rheum,2000,43(11):2417-22.
    [22]Jacques C,Gosset M,Berenbaum F,et al.The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation.Vitam Horm,2006,74:371-403.
    [23]Blanco FJ,Lotz M.IL-1-induced nitric oxide inhibits chondrocyte proliferation via PGE2.Exp Cell Res,1995,218(1):319-25.
    [24]Cawston TE,Billington C.Metalloproteinases in the rheumatic diseases.J Pathol,1996,180(2):115-7.
    [25]刘智敏,周总光.基质金属蛋白酶的结构、功能和调节.生物医学工程学杂志,2002,19(4):680-3。
    [26]Nagase H,Woessner JF Jr.Matrix metalloproteinases.J Biol Chem,1999,274(31):21491-4.
    [27]Freemont AJ,Byers RJ,taiwo YO,et al.In situ zymographic localization of type Ⅱ collagen degrading activity in osteoarthritic human articular cartilage.[J]Ann Rheum Dis,1999,58(6):357-63.
    [28]Gomez DE,Alonso DF,Yoshiji H,et al.Tissue inhibitors of metalloproteinases:structure,regulation and biological functions.Eur J Cell Biol,1997,74(2):111-22.
    [29]Ishiguro N,Ito T,Oguchi T,et al.Relationships of matrix metalloproteinases and their inhibitors to cartilage proteoglycan and collagen turnover and inflammation as revealed by analyses of synovial fluids from patients with rheumatoid arthritis.Arthritis Rheum,2001,44(11):2503-11.
    [30]Ogata Y,Miura K,Ohkita A,et al.Imbalance between matrix metalloproteinase 9 and tissue inhibitor of metalloproteinases 1 expression by tumor cells implicated in liver metastasis from colorectal carcinoma.Kurume Med J,2001,48(3):211-8.
    [31]Close DR.Matrix metalloproteinase inhibitors in rheumatic diseases.Ann Rheum Dis,2001,60 Suppl 3:ⅲ62-7.
    [32]Lafleur MA,Hollenberg MD,Atkinson SJ,et al.Activation of pro-(matrix metalloproteinase-2)(pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63kDa active species.Biochem J,2001,357(Pt 1):107-15.
    [33]Murphy G,Stanton H,Cowell S,et al.Mechanisms for pro matrix metalloproteinase activation.APMIS,1999,107(1):38-44.
    [34]姚如愚,张晓.基质金属蛋白酶与骨关节炎.国外医学.内科学分册,2001,28(4):159-62.
    [35]Aida Y,Maeno M,Suzuki N,et al.The effect of IL-1bete on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes.Life Sci,2005,77:3210-21.
    [36]吴宏斌,张景辉,等.兔前交叉韧带骨关节炎模型中MMP-1 MMP-13及MMP-1的mRNA表达研究.中华风湿病学杂志,2002,6:169-173,1001.
    [37]Fernandes JC,Martel-Pelletier J,Lascau-Coman V,et al.Collagenase-1 and Collagenase-3 synthesis in normal and early experimental ostearthritic canine cartilage:an immunohistochemical study.J Rheumatol,1998,25:1585-94.
    [38]薛海滨,敖桂英.基质金属蛋白酶与骨关节炎.中华风湿学杂志,2000,4:54-56
    [1]Anderson AF,Dome DC,Gautam S,Awh MH,Rennirt GW.Correlation of anthropometric measurements,strength,anterior cruciate ligament size,and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates.Am J Sports Med 2001;29(1):58-66
    [2]Anderson AF,Dome DC,Gantam S,Awh MH,Rennirt GW.Correlation of anthropometric measurements,strength,anterior cruciate ligament size,and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates.Am J Sports Med 2001;29(1):58-66.
    [3]Girgis FG,Marshall JL,Monajem A.The cruciate ligaments of the knee joint.Anatomical,functional and experimental analysis.Clin Orthop Relat Res 1975;(106):216-31.
    [4]Zaffagnini S,Martelli S,Acquaroli F.Computer investigation of ACL orientation during passive range of motion.Comput Biol Med 2004;34(2):153-63.
    [5]Arnoczky SP.Anatomy of the anterior cruciate ligament.Clin Orthop Relat Res 1983;(172):19-25.
    [6]Robert H.Fitzgerald,Jr,Herbert Kaufer,Arthur L.Malkani著,邱贵兴主译.骨科学.1版.北京:人民卫生出版社,2006.607-25.
    [7]Gabriel MT,Wong EK,Woo SL,Yagi M,Debski RE.Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads.J Orthop Res 2004;22(1):85-9.
    [8]Musahl V,Lehner A,Watanabe Y,Fu FH.Biology and biomechanics.Curr Opin Rheumatol 2002;14(2):127-33.
    [9]Frain P,Fontaine C,D'Hondt D.Rev Chir Othop Reparatrice Appar Mot.1984;70(5):361-369.
    [10]Kapandji IA.《Physiologie Articulaire》.Malonie,1994
    [11]More RC,Karras BT,Neiman R et al.Am J sports Med,1993;21(2):231-237.
    [12] Stiel JB Dennis DA, Komistek RD et al.Clin Orthop, 1997;345;60-66.
    [13] Dnnis DA ,Komistek RD,Hoff WA et al.Clin Orthop,l996,331:107-117.
    [14] Callaghan JJ,Insall J,Greenwald AS et al. J Bone Joint Surg Am. 2000, 82(7):1020-1041.
    [15] Dennis DA, Komistek RD,Colwell CE et al .Clin Orthop, 1998,356:47-57.
    [16] Dennis DA, Fluoroscopic evalution of knee linematrics following total knee arthroplasty. In:Cahier d'enseignement de la SOFCOT. Conferences d'ense- ignment .n°78,Paris :Elsevier,2001:l-18.
    [17] Kurosawa H, Walker PS,A be S et al.J Biomech,1985:18(7):487-499.
    [18] Huten D. Conception des prostheses uniet tricompartimentales a glissement du genou.In:Cahier d'enseignment de la COFCOT. Conception des prostheses artculaires. N°44.Paris:Elsever, 1993:94-126.
    [19] Matsumoto H.Seedhom BB.Suda Y et al.Clin Orthop,2000,371:178-182.
    [20] D'Lima DD,Trice M, Urquhart AG et al.Clin Orthop,2001,386:235-242.
    [21] Schlepckow P. Arch Orthop Tranma Surg,1192,111(2):204-209.
    [22] Carret JP. Biomecamque de Particulation du genou.In:Cahier d'enseigement de-1 a SOFCOT. Conferences d'enseignement, n040. Paris; Elsevier, 1991:189-208
    [23] Kwak SD, Colman WW, Ateshian GA, et al, Anatomy of the human patello-femoral joint articular cartilage: Surface curvature analysis. [J] J Orthop Res,1997,15:468-472.
    [24] Staubli HU, Durrenmatt U, Porcellini B, et al. Anatomy and surface geometry of the patellofemoral joint in the axial plane. [J] J Bone Joint Surg,1999, 81B:452-458.
    [25] Kaplan E. Some aspects of functional anatomy of the human knee joint. Clin Orthop. 1962;23:18.
    [26] Reider B, Marshall L, Koslin B, Girgis FG. The anterior aspect of the knee joint. J Bone Joint Surg 1981;63A(3):351-356.
    [27] Grelsamer RP, Weinstein CH. Applied biomechanics of the patella. [J] Clin Orthop Rel Res,2001,389:9-14.
    [28]Huberti HH,Hayes WC.Patellofemoral contact pressure.[J]J Bone Joint Surg,1984,66A:715-724.
    [29]Bull AMJ,Katchburian MV,Shih YF,et al,Standard station of the description of patellofemoral motion and comparison between different technique.[J]Knee Surg,Sports Traumatol,Arthrosc,2002,10:184-193.
    [30]Takaaki M,Shuichi M,Hiromasa M,et al,Patellar track in gand patellofemoral geometry in deep knee flexion.[J]Clin Orthop Rel Res,2002,401:161-168.
    [31]陈世益,袁旬华,Wang HC.人类髌股关节三维运动规律的研究.[J]中国运动医学杂志,1997,16:107-113.
    [32]Radin EL.Delamotte F,Maquet P.Role of the menisci in the distribution of stresss in the knee.Clin Orthop 1984,185:290-4.
    [33]Boden BP,Dean GS,Feagin JA Jr,Garrett WE Jr.Mechanisms of anterior cruciate ligament injury.Orthopedics 2000;23(6):573-8.
    [34]Olsen OE,Myklebust G,Engebretsen L,Bahr R.Injury mechanisms for anterior cruciate ligament injuries in team handball:a systematic video analysis.Am J Sports Med 2004;32(4):1002-12.
    [35]Krosshaug T,Nakamae A,Boden BP,Engebretsen L,Smith G,Slauterbeck JR,et al.Mechanisms of anterior cruciate ligament injury in basketball:video analysis of 39 cases.Am J Sports Med 2007;35(3):359-67.
    [36]Jarvinen M,Natri A,Laurila S,Kannus P.Mechanisms of anterior cruciate ligament ruptures in skiing.Knee Surg Sports Traumatol Arthrosc 1994;2(4):224-8.
    [37]McLean SG,Myers PT,Neal RJ,Walters MR.A quantitative analysis of knee joint kinematics during the sidestep cutting maneuver.Implications for non-contact anterior cruciate ligament injury.Bull Hosp Jt Dis 1998;57(1):30-8.
    [38]De Maria M,Barbiera F,Lo Casto A,Iovane A,Rossello M,Sparacia G,et al.[Biomechanical correlations of lesions associated with traumatic diseases of the anterior cruciate ligament.Analysis with magnetic resonance].Radiol Med(Torino) 1996;91(6):693-9.
    [39]王健全,敖英芳,刘平,陈临新.前交叉韧带股骨止点临床解剖学研究.中国运动医学杂志,2007,26(3):266-70.
    [40]Gabriel MT,Wong EK,Woo SL,et al.Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads.J Orthop Res,2004,22(1):85-9.
    [41]Han SK,Federico S,Epstein M,et al.An articular cartilage contact model based on real surface geometry.J Biomech,2005,38(1):179-84.
    [42]Wu JZ,Herzog W,Epstein M.Joint contact mechanics in the early stages of osteoarthritis.Med Eng Phys,2000,22(1):1-12.
    [43]Logan M,Dunstan E,Robinson J,et al.Tibiofemoral kinematics of the anterior cruciate ligament(ACL)-deficient weightbearing,living knee employing vertical access open "interventional" multiple resonance imaging.Am J Sports Med,2004,32(3):720-6.
    [44]Mannel H,Marin F,Claes L,et al.Anterior cruciate ligament rupture translates the axes of motion within the knee.Clin Biomech(Bristol,Avon),2004,19(2):130-5.
    [45]Harman MK,Markovich GD,Banks SA,et al.Wear patterns on tibial plateaus from varus and valgus osteoarthritic knees.Clin Orthop Relat Res,1998(352):149-58.
    [46]王旭,顾湘杰.前交叉韧带本体感觉与膝关节功能.中国矫形外科杂志,2002,9(4):398-400.
    [47]Beard DJ,Dodd CA,Trundle HR,et al.Proprioception enhancement for anterior cruciate ligament deficiency.A prospective randomised trial of two physiotherapy regimes.J Bone Joint Surg Br,1994,76(4):654-9.
    [48]Fremerey RW,Lobenhoffer P,Zeichen J,et al.Proprioception after rehabilitation and reconstruction in knees with deficiency of the anterior cruciate ligament:a prospective,longitudinal study.J Bone Joint Surg Br,2000,82(6):801-6.
    [49]Pap G,Machner A,Nebelung W,et al.Detailed analysis of proprioception in normal and ACL-deficient knees.J Bone Joint Surg Br,1999,81(5):764-8.
    [50]徐雁,敖英芳.前十字韧带断裂继发半月板损害的临床研究.中华骨科杂志,2002,22(4):216-9.
    [51]Ahmed AM,Burk DL,YU A.In-Vitro measurement of static pressure distribution in synovial joints-Part Ⅱ:Retropatellar surface.J Biomech Eng,1983,105:226-36.
    [52]Henning CE.Current staus of meniscus salvage.Clin Sports Med,1990,9:567-76.
    [53]Bellabarba C,Bush-Joseph CA,Bach BR Jr.Patterns of meniscal injury in the anterior cruciate-deficient knee:a review of the literature.Am J Orthop,1997,26:18-23.
    [54]黄加张,顾湘杰,潘哲尔,等.半月板突出在膝关节骨关节炎中地位的初步研究.中国临床医学,2004,11:1102-1104.
    [55]Papageorgiou CD,Gil JE,Kanamri A,et al.The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus.Am J Sports Med,2001,29:226-31.
    [56]Noyes FR,Barber-Westin SD.Arthroscopic repair of mensus tears extending into the avascular zone with or without anterior cruciate ligament reconstruction in patients 40years age and old.Arthroscopy,2000,16:822-9.
    [57]Sims WF,Jacobson KE.The postermedial corner of the knee:medial-side injury pattens revisited.Am J Sports Med,2004,32:337-45.
    [58]Smith JP 3rd,Barrett GR.Medial and lateral meniscal tear patterns in anterior cruciate ligament-deficient knees.A prospective analys of 575 tears.Am J Sports Med,2001,29:415-9.
    [59]Andersson C,Odensten M,Good L,et al.Surgical or nonsurgical treatment of acute rapture of the anterior cruciate ligament:a randomized study with longterm follow up.J Bone Joint Surg,1989,71A:9652974.
    [60]Frank CB,Jackson DW.Current concepts review:the science of reconstruction of the anterior cruciate ligament.J Bone Joint Surg,1997;79A:155621576.
    [61]Close DR.Matrix metalloproteinase inhibitors in rheumatic diseases.Ann Rheum Dis,2001,60 Suppl 3:ⅲ62-7.
    [62]Lafleur MA,Hollenberg MD,Atkinson SJ,et al.Activation of pro-(matrix metalloproteinase-2)(pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species.Biochem J,2001,357(Pt 1):107-15.
    [63]Freemont AJ,Byers RJ,taiwo YO,et al.In situ zymographic localization of type Ⅱ collagen degrading activity in osteoarthritic human articular cartilage.[J]Ann Rheum Dis,1999,58(6):357-63.
    [64]Ushmorov A,Ratter F,Lehman V,et al.Selective inhibition of inducible nitric oxide syntheses reduces progression of experiment ostroarthritis in vito.Arthritis Rheum,2000,43:1290-99.
    [65]Aida Y,Maeno M,Suzuki N,et al.The effect of IL-1beta on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes.Life Sci,2005,77:3210-21.
    [66]Fernandes JC,Martel-Pelletier J,Lascau-Coman V,et al.Collagenase-1 and collagenase-3 synthesis in normal and early experimental osteoarthritic canine cartilage:an immunohistochemical study.J Rheumatol,1998,25:1585-94.
    [67]徐雁,敖英芳.前十字韧带断裂继发半月板损害的临床研究.中华骨科杂志,2002,22(4):216-9.
    [68]Shelbourne KD,Wilckens JH,Mollabashy A,et al.Arthrofibrosis in acute anterior cruciate ligament reconstruction.The effect of timing of reconstruction and rehabilitation.Am J Sports Med,1991,19(4):332-6.
    [69]Shelbourne KD,Patel DV,McCarroll JR.Management of anterior cruciate ligament injuries in skeletally immature adolescents.Knee Surg Sports Traumatol Arthrosc,1996,4(2):68-74.
    [70]敖英芳,田得祥,王健全等.膝关节前交叉韧带急性损伤早期关节镜下检查和手术治疗.中华外科杂志,1999,37(11):671-3.
    [71]Moos V,Rudwaleit M,Herzog V,et al.Association of genotypes affecting the expression of interleukin-1beta or interleukin-1 receptor antagonist with osteoarthritis.Arthritis Rheum,2000,43(11):2417-22.
    [72]贺石林,李元建.医学科研方法学.人民军医出版社,第1版,2001:229-232.
    [73]陈启明,梁国穗,秦岭,等主译.骨科基础科学.北京:人民卫生出版社,2001.382-406.
    [74]Muir H.The chondrocyte,architect of cartilage.Biomechanics,structure,function and molecular biology of cartilage matrix macromolecules.Bioessays,1995,17(12):1039-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700