机器人辅助骨科虚拟手术系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,骨科手术机器人技术已经成为国际研究热点之一,然而,由于其操作对象是复杂的人体,对医生与手术机器人的交互技术提出了更高的要求,这是目前制约骨科手术机器人研究和发展的瓶颈问题。随着虚拟现实和虚拟增强技术的提高,机器人辅助骨科虚拟手术技术成为解决这一难题的有效途径之一。
     论文结合国家863计划项目和国家自然科学基金项目,针对机器人辅助骨科手术中的人机交互问题,通过虚拟现实技术、遥操作技术和现代医学图像理论,对机器人辅助骨科虚拟手术仿真中的虚拟环境图形建模、人体腿部三维形态学建模、人体腿部生物力学模型和软组织变形等关键技术进行研究,建立了机器人辅助骨科虚拟手术系统。
     在虚拟环境图形建模方面,首先研究了几何模型的表示方法,并针对课题实际情况和应用需求,研究了建模方案,选择了基于Pro/E建模和Java3D编程的机器人交互式图形仿真方法,建立了机器人三维几何模型和交互式虚拟场景。对导航机器人、C型臂及复位机器人分别进行了运动学建模研究。进行了碰撞检测分析研究,采用词法分析器原理,提取模型表面的近似多面体信息,用球模型表达实体,并对各种碰撞检测算法进行分析,结合八叉树算法和模型的球表达法,建立了虚拟环境下的图形碰撞检测模块。在人体腿部的三维形态学建模方面,详细讨论了基于医学CT图像的人体腿部生物组织三维几何重建问题。对CT图像进行了预处理研究,应用改进的MC重建算法、渐进网格简化算法,完成了获取医学体数据、抽取等值面、简化网格等几个方面的工作,实现了基于CT图像的人体股骨、胫骨、腿部肌肉、皮肤等组织的集合建模和共组。
     在人体腿部的生物力学建模方面,在给出线性弹性模型、非线性弹性模型描述生物组织变形特性理论模型的基础上,提出了建立多结构、多层次、多种材料并存的物理建模方法,完成了人体腿部各生物组织的有限元模型的建模。基于骨骼、肌肉、皮肤等组织的生物力学特性,在对外力做功、重力做功、生物组织边界条件分析的基础上,建立了生物组织运动的静态平衡方程和动态平衡方程,为生物组织变形的计算提供了理论方法。针对肌肉解剖形体复杂,难以精确建模的问题,提出了一种基于形态解剖学的新型肌肉建模方法,既考虑了肌腱的生物力学特性,又体现了肌纤维的微观解剖结构。对建立的人体腿部有限元模型进行了仿真验证,将计算后的有限元仿真数据与通过人体标本实验获得的力位数据相比较,二者的吻合性证明了建立的人体腿部有限元模型的可信性。
     最后,以腿部生物力学建模仿真的实现为应用实例,阐述了虚拟手术开发环境、控制界面及手术系统几种操作模式,并对虚拟系统根据功能进行了模块化分,对系统的机器人性能进行了测试研究。为了提高虚拟手术仿真系统进行实际作业的能力,提出了以BP神经网络模型来代替有限元模型,实现实时的生物力学响应。结合已有的机器人辅助接骨系统,构建了虚拟手术主从控制系统实验平台,利用并联主手输入运动信息,提供力反馈,而虚拟手术平台则负责提供视觉和计算对抗牵引力的大小,最后分别进行了力反馈实验和虚拟骨折复位手术实验。实验结果证明了基于生物信息的虚拟手术仿真系统的有效性和可用性。
In recent years, orthopaedics surgical robot technology has become one hot topic. However, operational objectives are human beings, so it raises the request about the interactive technique between the doctor and surgical robot. It’s a key problem that prevents the research and development of the orthopaedics surgical robot. With the improvement of virtual reality and virtual reinforcement technology, robot-assisted orthopaedics surgical robot technology becomes a available way to solve the problem.
     This paper, combined with the China 863 Program as well as the National Natural Science Foundation projects, aimed at the human-computer interaction issues in the robot-assisted orthopaedics surgery, using virtual reality technology, tele-operate technology and modern medicinal image theory, researches virtual environment image modeling, human leg three-dimensional geometric model and soft tissue deformation in the robot-assisted orthopaedics surgical simulation. And a robot-assisted orthopaedics surgical simulation system has been built.
     In terms of Graphical modeling of virtual environment, we introduced the representation method of geometric model, combined with the actual situation in the subject, the paper proposed a novel method using Java3D and the Pro/E to establish a virtual environment modeling and robotics program, get the model of virtual environment bone surgery and robot, and kinematic analysis of navigation robot, C-arm and recovery robot, then researched on the corresponding collision detection. Used the creative lexical analyzer principle to extracte the approximated polyhedron information of the model’s surface, expressed the entities with the sphere model. And analysed a variety of collision detection algorithm, combined with octree algorithm and the expression of sphere model, established the graphic collision detection module in the virtual environment.
     In terms of three-dimensional morphology of human legs, this paper discusses how to reconstruct three-dimensional geometric model of human legs based on medical CT images in detail. Using MC arithmetic, Gradient Mesh simplified arithmetic, arithmetic of cube model etc, some works have been finished, including obtaining medical cube data, taking out contour surface, simplifying mesh, constructing cube model and so on. Finally, assembly modeling together about human thighbone, cannon, leg skin based on CT images has been realized.
     In terms of biomechanical modeling of human legs, based on giving linear elastic model and nonlinear elastic model, this article discusses how to build multi-structure, multilayer and multi-material physical modeling and constructs finite element model of biological tissue of human leg. Base on biomechanical character of human tissue such as skeleton, muscle and skin, analyzing work of external force, boundary condition of biological tissue, this paper establishes static balance function and dynamic balance function of biological tissue, and supplies a theoretical method for calculation about deformation of biological tissue. Aimed at the problem of complexity of muscle dissection and difficulty of establishing model accurately, we raise a new modeling way based on morphology anatomy. This method considers biomechanical character of muscle tendon as well as microcosmic anatomy structure of muscle fibre. We process finite element simulation validation of human leg and then compare data of finite element simulation after calculating with data of forth location obtaining from body exemplar experiment, and inosculation of the data proves creditability of finite element model simulation of human leg.
     In the end, taking biomechanical modeling simulation of leg for example, it expounds some manipulation mode about development environment, control interface and surgical system of virtual surgery. To raise capacity that virtual surgical simulation system deals with real work, this article introduces BP NN model instead of finite element model, and realizes real-time biomechanical response. Then combining robot Assisted bone-knitting system, virtual surgical master-slave control test platform has been established. Using shunt-wound maser hand, manipulator inputs locomotion information and gets force feedback information. Virtual environment provides vision, calculates opposed tractive force and carries out force feedback experiments and virtual bone-knitting surgery experiments. The result of experiments testifies validity and usability of virtual surgical simulation system based on biology information.
引文
1 R.Satava. Medical Virtual Reality: The current status of the future. In Proc. 4th conf. Medicine Meets Virtual Reality (MMVRⅣ), San Diego, Ca, 1996:100~106
    2 M. Richard, B. Satava, J. Shaun. Current and Future Application of Virtual Reality for Medicine. Proceedings of IEEE. 1998, 86(3):53~70
    3 B. Philip, A. I. Anderson, N. S. Stott. Virtual Reality Simulators in Ortho-pedic Surgery: What Do the Surgeons Think? Journal of Surgical Research. 2006,133(1):133~139
    4 H. David. 3D Sensors and Virtual Reality. Journal of Oral and Maxillofacial Surgery. 2009,67(9):13~21
    5 C. B. Grigore. Invited Review:The Synergy Between Virtual Reality and Robotics. IEEE Transactions on Robotics and Automation. 1999, 15(3): 400~410
    6 Y. M. Khalifa, B. David, G. Vincent. Virtual Reality in Ophthalmology Training. Survey of Ophthalmology. 2006, 51(3): 259~273
    7 G. T. Herman, H. K. Liu. Three-Dimensional Display of Human Organs from Computed Tomograms. Computer Graphics Image Processing. 1979, (9):15~18
    8管伟光.体数据可视化及其在医学中的应用.中国科学院自动化研究所博士论文. 1995:115~127
    9 J. Wilhelms et al. Topological Considerations in Isosurface Generation. San Diego Workshop on Volume Visualization. 1991:23~35
    10 S. J. Yu, S. R. Sukumar, A. F. Koschan. 3D Reconstruction of Road Surfaces Using An Integrated Multi-Sensory Approach. Optics and Lasers in Engi- neering. 2007,45(7):808~818
    11 H. E. Cline et al. Two Algorithms for Three-Dimensional Reconstruction of Tomograms. Med. Phys. 1988, 15(3):96~108
    12 E. Keeve, S. Girod, P. Pfeifle and B. Griod. Anatomy-Based Facial Tissue Modeling Using the Finite Element Method. Proc. IEEE Visualization’96. 1996:21~28
    13 F. Scheepers, R. Parent, W. Carlson and S. May. Anatomy-Based Modeling of the Human Musculature. Proc. SIGGRAPH’97. 1997:163-172
    14 J. Wilhelms, V. Gelder. Anatomically Based Modeling. Proc. SIGGRAPH’97. 1997:173~180
    15 K. B. Shelburnea, M. G. Pandyb, F. C. Andersonc, M. R. Torrya. Pattern of Anterior Cruciate Ligament Force in Normal Walking. Journal of Biome-chanics. 2004(37):797~805
    16左力,李锦涛,王兆其.基于轴变形技术的实时人体肌肉变形. CAAI-2002传感器感知与虚拟现实学术会议. 2002:238~241
    17李开泰,黄艾香,黄庆怀.有限元方法及其应用.西安交通大学出版社, 1992:1~3
    18雷涛,张纲,谭颖徽.有限元法在颌骨生物力学研究中的应用研究进展.重庆医学. 2009,(3):79~83
    19 Y. Zohar, T. Nir, M. Charles.Reliable Simulations of the Human Proximal Femur by High-Order Finite Element Analysis Validated by Experimental Observations. Journal of Biomechanics. 2007,40(16):3688~3699
    20张春宝,马轩祥,张少峰等.跟骨内种植体植入牙槽骨吸收的中切牙的有限元应力分析.实用口腔医学杂志. 2008(19):103~106
    21张美超,赵卫东,原林.建立数字化虚拟中国男性一号膝关节的有限元模型.第一军医大学学报. 2003, 23(6):527~529
    22卢畅,韩珂,李晶.全颈椎三维有限元模型建立及验证方法探讨.医学临床研究. 2008,(3):19~22
    23 S. S. Dong, K. Lee, K. Daniel. Biomechanical Study of Lumbar Spine with Dynamic Stabilization Device Using Finite Element Method. Computer-Aided Design. 2007,39(7):559~567
    24 J. Marescaux, J. M. Clement, V. Tassetti. Virtual reality applied to hepatic surgery simulation: the next revolution. Annals of Surgery. 1998,228(5)-:627~634
    25 A. J. Lindblad, G. M. Turkiyyah, G. Sankanaranayanan. Two-handed Next Generation Suturing Simulator. Studies in Health Technology and Infor-matics. 2004,(98):215~220
    26尚鹏,王建平,王成焘.完整步态下人工髋关节微动的非线性有限元分析.上海交通大学学报. 2008,42(4):607~611
    27 J. Berkley, G. Turkiyyah, D. Berg. Real-Time Finite Element Modeling for Surgery Simulation: An Application to Virtual Suturing. IEEE Trans. on Visualization and Computer Graphics. 2004,10(3):110~112
    28 A. Sarti, R. Gori, C. Lamberti. A Physically Based Model to Simulate Maxillo-facial Surgery from 3D CT Images. Future Generation Computer Systems. 1999(15):217~221
    29 Y. C. Chen, A. S. Chiang, K. S. Hsieh. A Reliable Surface Reconstruction System in Biomedicine. Computer Methods and Programs in Biomedicine. 2007,86(2):141~152
    30 S. A. Cover, N. F. Ezquerra, J. F. Obrien. Interactively Deformable Models for Surgery Simulation.IEEE Computer Graphics and Applications. 1993, 13(6):68~759
    31 D. Trzopoulos, J. Platt, A. Barr. Elastically Deformable Models. Computer Graphics. 1987:205~214
    32 N. Andrew, M. Matthias, K, Richard. Physically Based Deformable Models in Computer Graphics. Computer Graphics Forum. 2006,25(4):809~836
    33 F. Sarah, F. Gibson. Beyond Volume Rendering: Visualization, Haptic Exploration, and Physical Modeling of Voxel-based Objects. Mitsubishi Electric Research Lab, Cambridge Research Center, Jan. 2007:15~22
    34 M. W. Bowyer, K. A. Streete, G. M. Muniz. Immersive Virtual Environments for Medical Training. Seminars in Colon and Rectal Surgery. 2008,19(2):90~97
    35 U. Meier, O. López, C. Monserrat. Real-time deformable models for surgery simulation: a survey. Computer Methods and Programs in Biomedicine. 2005,77(3):183~197
    36 G. C. Burdea. Invited Review: The Synergy Between Virtual Reality and Robotics. IEEE Transactions on Robotics and Automation. 1999,15(3): 400~410
    37景扶苇,王伯华.医用手术机器人.机器人技术与应用. 2001,(4):17~20
    38 A. Rovetta, R. Sala, X. Wen. Remote Control in Telerobotic Surgery. IEEE Trans. on Systems, Man, and Cybernetics-Part A: Systems and Humans. 2008,26(4):438~444
    39 A. Fumihito, T. Mitsutaka, F. Toshio. Multimedia Tele-surgery Using HighSpeed Optical Fiber Network and Its Application to Intravascular Neurosurgery-system Configuration and Computer Networked Robotic Implementation. Proceedings of the 1996 IEEE International Conference on Robotics and Automation. Minneapolis, Minnesots: IEEE (Robotics & Automation Society) Staff. 1996:878~883
    40王勇军,赵龙,郭光友,谭珂.虚拟手术仿真器技术.系统仿真学报. 2001, 13(3):271~273
    41 M. D. Tsai, M. S. Hsieh, S. B Jou. Virtual Reality Orthopedic Surgery Simulator. Computers in Biology and Medicine. 2001,31(5):333~351
    42 M. Cimerman, A. Kristan. Preoperative Planning In Pelvic and Acetabular Surgery: The Value of Advanced Computerised Planning Modules. Injury. 2007,38(4):442~449
    43 D. R. Wilkie. Mucscle.科学出版社. 1981:55~68
    44 B. Pflesser, A. Petersik, U. Tiede. Volume Cutting for Virtual Petrous Bone Surgery. Computer Aided Surgery. 2002,7(2):74~83
    45 S. J. O'Leary, M. A. Hutchins, D. R. Stevenson. Validation of a Networked Virtual Reality Simulation of Temporal Bone Surgery. The Laryngoscope. 2008,118(6):1040~1046
    46 Y Kim, K Lee, W Kim. 3D virtual simulator for breast plastic surgery. Computer Animation and Virtual Worlds. 2008,19(3):515~526
    47 I. Elhajj, J. Tan, etc. Supermedia Enhanced Human/Machine Cooperative Control of Robot Formations. Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems EPFL, Lausanne, Switzerland. 2002:1296~1302
    48 L. Fischer, K. Hoffmann, J. O. Neumann. The Impact of Virtual Operation Planning on Liver Surgery. Imaging Decisions MRI. 2007,11(1):39~44
    49 S Suzuki, N Suzuki, Ai Hattori. Virtual Surgery Using a Deformable Organ Model Created by the Sphere-Filled Method. Systems and Computers in Japan. 2004,35(13):1~9
    50 H. Yu, G. Shen, X. Wang. Surgical Planning and Simulation System for Orthognathic Surgery Based On Virtual Reality. International Journal of Oral and Maxillofacial Surgery. 2009,38(5):563~564
    51 G. R. Wignall, J. D. Denstedt, G. M. Preminger. Surgical Simulation: AUrological Perspective. The Journal of Urology. 2008,178(5):1690~1699
    52 P. Blyth, I. A. Anderson, N. S. Stott. Virtual Reality Simulators in Orthopedic Surgery: What Do the Surgeons Think? Journal of Surgical Research. 2006,131(1):133-139
    53 F. Tommaso. Future directions and development in reproductive surgery. International Congress Series. 2004,1266(2):107~110
    54王根本,刘裕民,韩连斗.医用局部解剖学.人民卫生出版社. 1992:94 ~127
    55 F. Neycenssac. Contrast Enhancement Using the Laplacian-of-a-Gaussian Filter. Graphical Models Image Process. 2007, 55(6): 447~463
    56 R. M. Rangayyan, H. N. Nguyen. Pixel-Independent Image Processing Techniques for Enhancement of Features in Mammograms. Proceedings of the Eighth IEEE Eng. Med. Biol. Conference. 1986: 1113~1117
    57 D. Chang, W. Wu. Image Contrast Enhancement Based on a Histogram Transformation of Local Standard Deviation. IEEE Trans. Med. Imaging. 2005, 17(4): 518~531
    58 A. Beghdad, A. L. Negrate. Contrast Enhancement Technique Based on Local Detection of Edges. Computer vision Graphics Image Process. 2006, 46(2): 162~174
    59 Gonzalez C Rafael, Woods E Richard.数字图像处理.电子工业出版社. 2003: 463~474
    60王爱民,沈兰荪.图象分割研究综述.测控技术. 2000,19(5): 1~7
    61 A. Kheddar, R. Chellali. Virtual Reality Assisted Teleoperation, in VE Handbook. K.M. Stanney, L. E. Assocates, Incorporation. Chapter 56. 2002
    62 E. Promayon, P. Bacoier, C. Puech. Physically-Based Deformations Con-strained in Displacements and Volume. Proceedings of Eurographics’96. 1996:155~164
    63 G. C. Burdea. Invited Review: The Synergy between Virtual Reality and Ro-botics. IEEE Transactions on Robotics and Automation. 2005, 15(3):400~ 410
    64 Y. Chen, T. Zhang. A Robot Simulation, Monitoring and Control System Based on Networkand Java3D. The 4th World Congress on Intelligent Control and Automation. 2002:100~105
    65 F. C. Salisbury, S. D. Farr, J. A. Moore. Web-Based Simulation Visualization Using Java3D. 1999 Winter Simulaion Conferfence. London. 1999:10~16
    66 S. Charles, D. H. Ohm, etc. Dexterity-Enhanced Telerobotic Microsurgery. In Proceedings of the International Conference on Advanced Robotics. Monterey, CA. 2006:342~345
    67 F. Tendick, R. W. Jennings, etc. Sensing and Manipulation Problems in Endoscopic Surgery: Experiment, Analysis, and Observation. Presence: Teleoperators and virtual environments. 2007, 2 (1):66~81
    68 J. Canny. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1986, 8(6): 679~698
    69 D. Demigny, F. G. Lorca. Evaluation of Edge Detectors Performances with a Discrete Expression of Canny’s Criteria. Proceedings of International Conference on Image Processing, Los Alamitos, CA, USA. 1995: 169~172
    70 D. Demigny, T. Kamle. A Discrete Expression of Canny’s Criteria for Step Edge Detector Performances Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997, 19(6), 1199~1211
    71 D. Demigny. Extension of Canny’s Discrete Criteria to Second Derivative Filters toward a Unified Approach. Proceedings of International Conference on Image Processing, Los Alamitos, CA, USA. 2005: 520~524
    72 P. L. Worthington. Enhanced Canny Edge Detection Using Curvature Consistency. Proceedings of International Conference on Image Processing, Los Alamitos, CA, USA. 2002: 596~599
    73 B. Zhang, Y. L. Su, S. L. Zhang. Method for Generating the Signed Distance Function Based on Curve Marching. Journal of Northwest University. 2007,37(7):697~700.
    74 A. Criminisi, P. Perez, K. Toyama. Region Filling and Object Removal by Exemplar-Based Image Inpainting. IEEE Trans. on Image Processing. 2004,13 (9):1200~1212 .
    75 I. Drori, D. Cohen, H. Yeshurun. Fragment-Based Image Completion. Proceedings of ACM. 2003, Siggraph:303-312.
    76马倩,王兆仲.一种基于纹理合成的高效图像填充方法.计算机工程与应用. 2009,45(3):187~190
    77 J. Wilhelms et al. Topological Considerations in Isosurface Generation. SanDiego Workshop on Volume Visualization. 1991:23~35
    78 S. J. Yu, S. R. Sukumar, A. F. Koschan. 3D Reconstruction of Road Surfaces Using An Integrated Multi-Sensory Approach. Optics and Lasers in Engi- neering. 2007,45(7):808~818
    79 G. M. Nielson. On Marching Cubes .IEEE Trans. on Visualization and Computer Graphics. 2003, 9(3):283~297.
    80崔世华,刘杰.两种简化标准Marching Cubes算法拓扑构形的方法.系统仿真学报. 2006,18(1):336~339
    81孙伟,张彩明,杨兴强. Marching Cubes算法研究现状.计算机辅助设计与图形学学报. 2007,19(7):947~952
    82孙燕.医学图像三维重建的研究.吉林大学硕士论文. 2007:33~49
    83袁斌,金其杰.消除Marching Cubes二义性的新方法.计算机辅助设计与图形学学报. 1998,10(5):457~463
    84唐泽圣.三位数据场可视化.清华大学出版社. 1999:183~225
    85刘泗岩,廖文和.基于改进MC算法的DICOM格式CT图像三维重建.机械科学与技术. 2006,25 (12):1438~1441.
    86王晓,何建英.考虑MC算法二义性后的三角化方法.湖北工业大学学报. 2007,22(6):65~68
    87谭福生.面向微操作机器人虚拟环境研究.哈尔滨工业大学博士论文. 2006:76~89
    88王子罡.计算机辅助立体定向神经外科手术系统及关键技术研究.清华大学博士论文. 2000:62~77
    89 G. Szekely, C. Brechbuhler, J. Dual. Virtual Reality-Based Simulation of Endoscopic Surgery. Presence. 2000,9( 3):310~330
    90彭群生,鲍虎军,金小刚.计算机真实感图形的算法基础,科学出版社. 1999:364~388.
    91顾耀林,朱晓燕.基于渐进网格的复杂模型简化算法.计算机工程与应用. 2007,43(2):78~80
    92谷冬冬,潘正运.渐进网格简化模型的改进算法.计算机工程与设计. 2008,29(18):4648~4650
    93皮道华,金莉华.线弹性微孔材料广义变分原理的构造函数理论.应用数学和力学. 1991,12(6):531~540
    94姚顺忠,戴永年,万晓虹.小变形各向同性线弹性材料弹性参数关系证明.西南林学院学报. 2007,27(3):76~78
    95 W. E. Loresen, H. E. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer and graphics. 1987, 21(4):163~169
    96毛坚强,丁桂彪.变形体的虚功原理及其在求解接触问题中的应用.西南交通大学学报. 2002,37(3):241~245
    97罗维东.有限变形弹性体的广义虚功原理.石油大学学报(自然科学版). 1999,23(5):60~63
    98 H. Hoppe, T. DeRose, T. Duchamp et al. Mesh Optimization. Computer Gra-phics (Siggraph Proceedings’93). 1993,27(4):19~26
    99 H. Hoppe. Progressive Meshes. Computer Graphics (Siggraph Proceedings’96). 1996, 30:99~108
    100彭群生,鲍虎军,金小刚.计算机真实感图形的算法基础.第一版,北京,科学出版社. 1999:238~292
    101雷晓燕,杜庆华.三维非线性有限元与弹性边界元耦合数值方法.固体力学学报. 1991.12(1):24~32
    102曹志远,张耀勤.非线性弹性有限条分析.力学季刊. 1992,13(1):31~37
    103潘亦甦,陈大鹏.适用于有限元分析的非线性弹性壳体理论.西南交通大学学报1992,87(7):1~8
    104吴畏.各向同性弹性固体介质中二维非线性纵波方程的有限元解法.吉林大学硕士论文. 2004:48~53
    105 Y. C. Fung. Biomechanics-Mechanical Properties of Living Tissues. Spring-Verlag, second edition. 1993:22~35
    106 W. Maure, Y. Wu, and N. M. Thalmann. Biomechanical Modes for Soft Tissue Simulation. ESPRIT Basic Research Series. Spriner-Verlag. 1998: 89~95
    107 E. Gladilin. Biomechanical Modeling of Soft Tissue and Facial Expressions for Craniofacial Surgery Planning. PhD thesis, Freie University Berlin. 2002:108~126
    108 H. Bayraktar, M. Adams, A. Gupta. The role of large deformations in trabecular bone mechanical behavior. In ASME Bioengineering Conference, 2003, Key Biscayne, USA:75~88
    109邓宗白,陶秋帆,金晖.关于材料力学中小变形问题的讨论.力学与实践. 2009,31(4):72~76
    110杨杰,张方春.结构有限元动态模型修正研究.山东大学学报(工学版). 2002,32(6):569~571
    111陈梦东,王田苗.机器人辅助微损伤神经外科手术系统的研究及其临床应用.中国生物医学工程学报. 2000,21(9):18~23
    112 J. T. Cheung, M. Zhang, A. K. Leung. Three-dimensional Finite Rlement Analysis of the Foot during Standing-a Material Sensitivity Study. Journal of Biomechanics. 2005,(8):1045~1054
    113郑思静,黄影等.中国人解剖学数值.中国解剖学会体质调查委员会编. 2000:183~185
    114冯元桢.生物力学-活组织的力学特性.戴克刚,鞠烽炽译.第1版.湖南科学技术出版社. 1986:403-434
    115 T. Arai, E. Nakano. Bilateral Control for Manipulators with Different Con-figurations. Proceedings of International Conference on Electronics, Control Instrument. 1984:40~45
    116 K. Kuta, M. Takeichi, T. Namiki. Virtual Endoscope System with Force Sensation. Proceedings of IEEE International Conference on Robotics and Automation. 1999, Detroit, Michigan:1715~1721
    117 F. Arai, M. Tanimoto, T. Fukuda. Multimedia Tele-surgery Using High Speed Optical Fiber Network and Its Application to Intravascular Neurosurgery. Proceedings of IEEE International Conference on Robotics and Automation. 1996:378~383
    118黄建龙,谢广娟,刘正伟.基于Mooney-Rivlin和Yeoh模型的超弹性胶材料有限元分析.塑胶技术与装备. 2008,34(12):22~24
    119 L. Vanderheyden. Telesurgery: Fiction or Reality. Dossier Telemedicine. 1997,11(4):70~76
    120 A. Gefen, M. M. Ravid, Y. Itzchak, M. Arcan. Biomechanical Analysis of the Three-dimensional Foot Structure during Gait: A Basic Tool for Clinical Applications. Journal of Biomechanical Engineering. 2000,12(2):30~35
    121 D. Lemmon, T. Y. Shiang, A. Hashmi, J. S. Ulbrecht, P. R. Cavanagh. The Effect of Insoles in Therapeutic Footwear: A Finite-element Approach. Journal of Biomechanics. 1997,30:615~620
    122 K. Radermacher, C. V. Pichler. 3D Visualization in Surgery. IEEE Inter- national Conf. on Medical Application. 2001, Aachen:69~73
    123 M. Tanimoto, F. Arai. Augmentation of Safety in Teleoperation System for Intravascular Neurosurgery: A New Control Strategy for Force Display Based on the Variable Impedance Characterization. Proceedings. IEEE International Conf. on Robotics and Automation. 1998:2890~2895
    124 R. Christopher, S. Nicholas, D. Robert. The Role of Force Feedback in Surgery: Analysis of Blunt Dissection. 10th Symposium on Haptic Interface for Virtual Environment and Teleoperator Systems. 2002:118~125
    125 A. Matsui, K. Mabuchi, etc. Development of A Remotely-operated Master-slave Manipulation System with a Forcefeedback Function for Use in Endoscopic Surgery. Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conf. of the IEEE. 2006, (2):1260~1263
    126 B. Davies. Tactile Sensing for Telesurgery. Towards Telesurgery, IEE Colloquium on. 1995, (7):105~110
    127 J. Rosen, B. Hannaford, etc. Force Controlled and Teleoperated Endoscopic grasper for Minimally Invasive Surgery-experimental Performance Evalua-tion. IEEE Trans. on Biomedical Engineering. 1999,46(10):1212~1221
    128 A. R. Luck, Y. Halevi. Observability under Recurrent Loss of Data. AIAA Journal of Guidance, Control and Dynamics. 1992,15:284~287
    129 A. Agrawala, S. Choi. Designing Temporal Controls. Technical. Report. University of Maryland at College Park.2005:8~16
    130 H. Lee, M. Chung. Adaptive Control of a Master-Slave System for Trans-parent Teleoperation. Journal of Robotic Systems. 2008,15(8):465~475
    131 H. Baier, F. Freyberger, etc. Interaktives Stereo-Telesehen–ein Bauste in wirklichkeitsnaher Teleprasenz. Automatisierungstechnik. 2001,49(7):295~ 303
    132 C. Sherman, etc. Design of Bilateral Teleoperation Controllers for Haptic Exploration and Telemanipulation of Soft Environments. IEEE Transaction on Robotics and Automation. 2002, 18(4):641~647
    133 C. Sherman, etc. Bilateral Controller Design for Telemanipulation in Soft Environments. Proceedings of the 2001 IEEE Intl. Conf. on Robotics & Automation, Seoul, Korea. 2001:1045~1052
    134飞思科技产品研发中心. Matlab 6.5辅助神经网络分析与设计.北京:电子工业出版社. 2003:32~36, 50~55
    135 J. William, M. S. Kenneth, etc. The VTK User’s Guide. Kitware Inc. 2001
    136吴涓,宋爱国,李建清.一种基于物理模型的快速力反馈形变模型及实时力觉响应算法.传感技术学报. 2005, 18 (1):12~14
    137 J. Yoon, J, Ryu. Design, Fabrication, and Evaluation of a new Haptic Device Using a Parallel Mechanism. IEEE/ASME Transaction on Mechatronics. 2001, 6(3):221~232
    138齐亮.医疗辅助遥操作主手机构及控制系统设计.哈尔滨工业大学硕士学位论文. 2004:58~66
    139 O. Gerovichev, P. Marayong, etc. The Effect of Visual and Haptic Feed-back on Manual and Teleoperated Needle Insertion. Proceedings of the Fifth International Conference on Medical Image Computing and Computer Assisted Intervention-MICCAI 2002. 2002:147~154
    140 H. Holton, L. Leslie. Force Models for Needle Insertion Created from Measured Needle Puncture Data. Medicine Meets Virtual Reality. 2007:32~ 39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700